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Abstract: Cross-spectral face verification between short-wave infrared (SWIR) and visible light
(VIS) face images poses a challenge, which is motivated by various real-world applications such
as surveillance at night time or in harsh environments. This paper proposes a hybrid solution that
takes advantage of both traditional feature engineering and modern deep learning techniques to
overcome the issue of limited imagery as encountered in the SWIR band. Firstly, the paper revisits the
theory of measurement levels. Then, two new operators are introduced which act at the nominal and
interval levels of measurement and are named the Nominal Measurement Descriptor (NMD) and the
Interval Measurement Descriptor (IMD), respectively. A composite operator Gabor Multiple-Level
Measurement (GMLM) is further proposed which fuses multiple levels of measurement. Finally,
the fused features of GMLM are passed through a succinct and efficient neural network based on
PCA. The network selects informative features and also performs the recognition task. The overall
framework is named GMLM-CNN. It is compared to both traditional hand-crafted operators as well
as recent deep learning-based models that are state-of-the-art, in terms of cross-spectral verification
performance. Experiments are conducted on a dataset which comprises frontal VIS and SWIR faces
acquired at varying standoffs. Experimental results demonstrate that, in the presence of limited data,
the proposed hybrid method GMLM-CNN outperforms all the other methods.

Keywords: cross-spectral face recognition; SWIR; measurement level; hybrid; feature fusion; limited
imagery

1. Introduction

Recognition of individuals based on their facial appearance has been a subject of
interest for many decades. Application of new imaging modalities such as near-infrared
(NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared
(LWIR) has recently opened up new opportunities for research in the area of IR face
recognition [1], which is usually encountered in monitoring human activities at night
or in harsh environments. For example, face recognition in the infrared is necessary at
nighttime when visible light is infeasible to acquire a face image. In addition, IR-involved
face recognition technology is preferred under bad weather conditions such as raining, fog,
etc., due to the higher imaging ability of IR imaging than visible light.

IR imagery demonstrates characteristics superior to imagery acquired in the visible
light band [2]. For example, thermal IR captures the patterns associated with heat emission
of a subject. In addition, unlike visible light, IR is usually less susceptible to the envi-
ronmental illumination or even needs no external source of illumination at all. Another
advantage of IR (especially thermal IR) is its inherent ability to emphasize not only the face
geometry and texture of the face as in the visible range, but also the anatomical structures
beneath the skin.
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IR face recognition has already attracted a lot of attention [3–25]. The research works
can be categorized as either intra-spectral face recognition or cross-spectral face recognition.
Intra-spectral face recognition refers to matching images within the IR band. Multi- and
hyper-spectral face recognition [26] are special cases of intra-spectral face recognition where
several subbands of the IR are fused to generate a multi- or hyper-spectral imagery, and then
matching is performed between the fused images. Cross-spectral face recognition [8], on the
other hand, matches IR images against visible light images. Since the imaging mechanism
as well as the facial tissue reflective properties under visible light and IR are quite different,
face images in the two cases demonstrate quite distinct characteristics (see the sample face
images in Section 5.1). Therefore, cross-spectral face verification presents a much more
challenging problem.

Addressing this problem of cross-spectral face verification would lead to many po-
tential real-world applications, such as all-time and all-weather secure surveillance will
be possible at public venues such as airports, office buildings, parking lots, etc. Solders
in battlefields can wear night vision devices that will be able to automatically identify
terrorists hidden in the darkness. Border patrolling officers can deploy cameras at the
boarder to automatically track and alarm for suspicious trespassers during off-hours.

This work focuses on the problem of cross-spectral face verification, and more specifi-
cally, of matching face images between visible light and an under-explored IR subband—
SWIR. The very subband of SWIR is chosen for study due to its advantages over other IR
subbands such as NIR and LWIR [27]:

• SWIR cameras generate cleaner imagery in harsh atmospheric conditions such as rain,
snow, and fog [28,29];

• SWIR cameras produce higher SNR images at night and are therefore more suitable
for long range imaging at night [30];

• SWIR is invisible to the human eye and is undetectable by silicon-based cameras [30].

As a special case of cross-spectral face recognition, verification between SWIR and
visible light is also confronted with the issue of feature extraction in a common space.
However, this issue in the case of the SWIR band is more pronounced than other IR
subbands such as NIR because SWIR images are even more distinct from visible light faces
than NIR images. More importantly, current SWIR imageries are very difficult to obtain
due to the cost of collection and a low popularity of usage. As a result, the sizes of publicly
available SWIR face datasets are much smaller compared to dataset sizes of visible light
and other IR subbands. Traditional non-deep learning methods need no large amount of
training data but are lower in robustness and performance. As deep learning techniques
emerge, how to address the problem of SWIR-Vis verification in the presence of limited
imagery poses a severe challenge.

In view of the issue of limited imagery as aforementioned, this research work provides
an alternative solution to traditional hand-crafted operator based methods and current deep
learning methods. This paper proposes to combine a composite operator with a succinct
PCA-based neural network. Inspired by the theory of measurement levels, the composite
operator fuses multiple levels of measurement information to extract distinguishing fea-
tures. These features are input into a following neural network that is constructed using the
matrix decomposition tool of PCA, where a high-level feature learning and classification is
conducted. Such a combination of composite operators and neural networks has advan-
tages of automatic global optimization and feature robustness as deep learning methods
possess, and advantages of very fewer parameters and less training requirements.

In addition to designing a hybrid method, there remains another interesting question
for SWIR-Vis verification. How each measurement level contributes to the final recognition
performance should be investigated. It is also of interest to find out whether recognition
performance increases by simply adding more measurement levels. This paper is therefore
driven to design more cross-spectral experiments to quantitatively study these questions.

The remainder of the paper is organized as follows: Section 2 provides a thorough
literature review on the topic of cross-spectral face recognition. Section 3 summarizes
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the motivations and contributions of our work. Following introduction of the theory of
measurement levels, Section 4 presents two new operators NMD and IMD, proposes GMLM
as a fused operator, and finally introduces the hybrid solution GMLM-CNN. Section 5
describes the experimental setup and analyzes and compares the performance of GMLM-
CNN and four other methods, as well as individual levels of measurement and their
combinations. Section 6 concludes the paper.

2. Review of Relevant Research

Most of the face recognition algorithms in the literature were developed for the pur-
pose of intra-spectral matching, and more specifically, for matching visible light probes
to a gallery of visible light images. As the IR band attracted more attention, some oper-
ators were later on tuned to work with face recognition in application to IR face images.
Matching IR face probes against an IR face gallery falls in the category of intra-spectral
face recognition.

As an example of earlier related works, Pan et al. [26] collected a face dataset acquired
in 31 narrow IR sub-bands ranging from 0.7 µm to 1.0 µm. They demonstrated effectiveness
of a hyperspectral approach where a spectral reflectance vector evaluated in face regions at
different wavelengths is employed as the feature vector. Chen et al. [31] applied PCA to
study face recognition in the thermal IR and visible light bands, separately, and compared
their performance with Faceit G5. Lin et al. [32] introduced a Common Discriminant
Feature Extraction method that brings images from different modalities (visible light, NIR
and sketches) into a common feature space. It was shown that the proposed algorithm
outperforms PCA, LDA, kernel PCA, and kernel LDA in the visible versus NIR comparison
and also when optical photos are matched against sketches. Li et al. [33] proposed a method
to compare face images within the NIR spectral band under different illumination scenarios.
Their face encoder involved the LBP operator to achieve illumination invariance and was
applied to NIR images acquired at a short distance.

Another special scenario of face recognition involving IR is cross-spectral face recogni-
tion between visible light and IR face images. For example, the work of Klare and Jain [5]
employed a method based on LBP and HOG features, followed by the LDA algorithm to
reduce dimensionality. The method was applied to NIR and color images for cross-spectral
matching. The results were shown to outperform Cognitec’s FaceVACS [34]. In their work,
Kong et al. [35] performed fusion of NIR and thermal IR face images in the Discrete Wavelet
Transform domain on the NIST/Equinox and UTKIRIS [36] datasets. They showed that,
when the fused images are fed to the Faceit recognition software, the resulting matching
performance improves with respect to the case when the same face classes are compared
within the same spectral band, NIR or thermal IR in this case. Yi et al. [37] encoded
images captured in NIR and visible bands by adopting a Laplacian of Gaussian (LoG)
filter. The method compared common patches (partial faces) in visible and NIR images.
The experiments were performed on MBGC data [38,39].

Liao et al. [40] applied a Multiscale Block Local Binary Patterns (MB-LBP) descriptor
to NIR and visible face images. Both types of images were preprocessed with Difference
of Gaussian (DOG) filters and then encoded with the MB-LBP operator. AdaBoost was
applied to select features, and a regularized LDA method was used to match processed
data. The method was tested on a multispectral dataset of 52 face classes. The implemented
approach was shown to outperform CDFE, PCA-CCA, and LDA-CCA [41] methods when
visible images are matched against NIR images. Akhloufi and Bendada [42] used the
classical Local Ternary Pattern (LTP) and a new Local Adaptive Ternary Pattern (LATP)
operator. They experimented with both Equinox and the Laval University Multispectral
Database [43], involving visible, SWIR, MWIR, and LWIR. The authors conducted a multi-
resolution analysis in the “texture space" to fuse images from different spectral bands and
reported that the fusion of different bands improves recognition rates when images are
matched within the same band.
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Maeng et al. [44] reported the results of long range cross-spectral face matching, where
long range NIR images are matched against visible face images. The paper introduced a
new long range NIR database called Near-Infrared Face Recognition at a Distance Database
(NFRAD-DB). Face recognition performance was evaluated using FaceVACS, DoG-SIFT,
and DoG-MLBP methods. The experiments involved 50 long range NIR classes and more
than 10,000 short range visible face images. The achieved rank-1 recognition performance
was 28%. Nicolo and Schmid [6,45] explored the case of matching SWIR face images
against visible light images at long standoff distances. They developed a new compound
operator for this special case by utilizing both the magnitude and phase response of a
Gabor filter bank combined with LBP, GLBP, and WLD. The operator outperformed Faceit
G8. The results were demonstrated on two datasets consisting of visible and SWIR images
at short and long standoff distances.

Bourlai et al. [7] collected a SWIR face dataset and considered the case of face verifica-
tion between visible light face images and SWIR images. Multispectral fusion of different
SWIR wavelengths (a collection of eight different wavelengths) was also investigated. The
work of Savvides et al. [10] proposed a dictionary learning-based approach to deal with
the problem of NIR-to-visible light matching. Their approach used a joint minimization of
the L0 norm to learn a mapping function between the heterogeneous images of NIR and
visible light, followed by reconstruction of VIS images hallucinated from the NIR light
band and vice versa.

Cao and Schmid [46] studied cross-spectral face recognition with the involvement of
NIR, SWIR, MWIR, and LWIR imagery. They modified the discrete representation of LBP
and WLD into a continuous representation and proposed a new composite operator. Their
experiments demonstrated that the proposed composite operator outperforms individual
and other composite operators available at that time. The work of Tao et al. [47] introduced
a common discriminant feature approach inspired by the probabilistic LDA, where hetero-
geneous face images were first encoded in a way similar to LBP and then NIR-VIS data
were used to train a common discriminant model which minimized the difference between
heterogeneous faces. A Gaussian kernel was added to boost the performance.

To summarize, early research works until the first decade of this century have raised
and studied many issues in the area of multispectral face recognition. However, all of them
deal with multispectral face recognition in a case-by-case manner, and use traditional non-
deep learning methods that rely on hand-crafted operators and feature extractors. These
traditional methods usually demonstrate low robustness and unsatisfactory performance,
despite the devoted intensive endeavors. This situation motivates and drives upcoming
researchers to keep on inputting research efforts into the multispectral problem.

Most recently, due to the advances in computing technologies, the machine learning
research community turned towards deep learning approaches and deep convolutional
neural networks (CNN). In application to cross-spectral face recognition, several promising
results have been demonstrated. The following publications have the highest relevance to
the cross-spectral face recognition.

Hu et al. [14] provides a thorough literature review on the topic of heterogeneous face
recognition. Sarfraz and Stiefelhagen [13] proposed to bridge the gap between thermal
and visible facial modalities by means of a deep neural network. Their model learned
a nonlinear relationship between visible and thermal imagery while preserving the face
identity. They claimed that the proposed approach improves Rank-1 recognition results by
10% to 30%, depending on the involved database.

Oh et al. [15] developed a single hidden-layer Gabor-based network for heterogeneous
face recognition. Their experiments involved the BERC visual-thermal infrared database
and CASIA visual-near infrared database.

Nasrabadi et al. [16] developed a coupled deep neural network architecture that ad-
dresses the problem of matching visible face images to polarimetric images. The network
architecture was developed to make a full use of polarization state information in polarimet-
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ric imagery, which is equivalent to textural and geometric information in visible imagery.
Performance analysis showed promising results.

In [48], Riggan et al. synthesized visible facial images from thermal facial images,
claiming that the existing face recognition software developed for visible imagery can be
applied in the situation of a cross-spectral face recognition. Zhang et al. [18,49] proposed
to use a generative adversarial network to synthesize a high quality visible facial image
from polarimetric thermal images. They also introduced an extended polarimetric dataset
of 111 subjects.

Di et al. applied a self-attention generative adversarial network [50] and Attribute
Guided Synthesis [20] to synthesize thermal facial images from visible facial images. Then,
deep features were extracted both from the original and synthesized data to form a com-
pound template. Performance analysis is performed on the ARL polarimetric thermal
face dataset.

Prabhu et al. [51] introduced two face recognition techniques using face image at
nine distinct spectral ranging from 530 nm to 1000 nm. They involved a CNN as a feature
extractor together with SVM and k-NN as a classifier.

Tan et al. [52] conducted high-resolution synthesis of NIR faces from visible light faces
by a complementary combination of a texture inpainting component and a pose correction
component. They demonstrate that such a combination improved heterogeneous face
recognition accuracy.

In the work of [53], Gao et al. proposed a coupled attribute learning method where
the relationship between face attributes and identities were considered.

In summary, deep learning-based methods have achieved great success and have
replaced traditional hand-crafted methods in the area of IR and cross-spectral face recogni-
tion, due to their advantages such as automatic feature extraction, greater robustness, and
higher performance. However, deep learning approaches typically demand an enormous
amount of real or simulated training data, which limits their real world application in
certain special situations. For instance, with several small datasets of SWIR face images
available in practice, the amount of data to train a deep CNN for SWIR-Vis cross-spectral
face recognition is insufficient. SWIR image datasets are usually small due to the high cost
of cameras. In addition, most SWIR datasets are collected by the military, hence they are
not available for public use. In the absence of a large SWIR training database, the attempt
to synthesize SWIR faces from visible images is not practical or feasible either. Furthermore,
the performance and scalability of these deep learning algorithms could be truly evaluated
only if a large dataset of SWIR facial images were made available to the public. Thus, it
is quite critical to design deep neural networks which can overcome the issue of limited
training data for the case of SWIR-Vis face recognition.

3. Motivation and Contribution

As pointed out in the previous section, the issue of limited training data restrains
typical deep learning methods from being deployed in the case of SWIR-Vis face recognition,
in spite of remarkable advances in the deep learning field. In view of this, rather than
designing a pure CNN, this work addresses the problem with a hybrid concept which takes
advantage of both modern deep learning techniques and traditional feature engineering
(i.e., hand-crafted features). The rationale behind such hybrid concept is that deep learning
is advantageous in automatic global optimization and robustness against input variety,
while traditional feature engineering has significantly fewer parameters and needs much
lighter training workloads. Combining the two as a hybrid solution could maintain the
advantages of both, and thus would lead to an improved performance than either of them.

The proposed hybrid approach, named GMLM-CNN, is built with two modules:
A composite feature extractor placed at the front and a following convolutional neural
networks. The hybrid method requires minimal training, has low computational cost, and
yields high matching performance. Therefore, it is especially suitable for cross-spectral
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face verification with limited imagery (i.e., small training datasets) as well as for mobile
device-based face authentication.

We will first introduce the concept of levels of measurement and then apply it as a cri-
terion to classify popular operators used in cross-spectral face recognition into four groups.
We will then propose two new operators based on the theory of levels of measurement,
the Interval Measure Descriptor (IMD) and the Nominal Measurement Descriptor (NMD),
operating at the interval level and the nominal level, respectively. To the best of our knowl-
edge, there are currently no operators designed to encode face images at these two levels.
It is expected that different operators acting at different levels of measurement extract
complimentary information, leading to improved cross-spectral recognition performance
when the information is fused.

To showcase the complimentary nature of the information extracted at different levels
of measurement, this paper further proposes to fuse the features extracted by the two
new operators, NMD and IMD, with features acquired by two other operators at the re-
maining two levels of measurement (the ordinal and ratio levels). The composite operator
that extracts all these features and fuses them is named the Gabor Multiple Level Mea-
surement (GMLM). To illustrate the performance of GMLM, it is compared with other
well-performing operators introduced in the literature. Both individual and composite
operators are involved and analyzed for the cross-spectral verification performance. Ex-
periments are conducted on two heterogeneous datasets, each composed of visible light
and SWIR faces at both short and long standoffs. To acknowledge the recent advances in
deep learning-based techniques, the proposed GMLM-CNN is further compared with two
typical CNN models of cross-spectral face recognition, Deep Coupled Learning [16] and
Attribute Guided Synthesis [20], which represent the state of the art. Additional experi-
ments are designed to investigate the contribution of each measurement level and effects of
different fusing schemes.

Our research and development led to the following main contributions:

• The problem of cross-spectral face verification is studied involving a relatively new IR
subband—SWIR;

• Two new operators, IMD and NMD, are proposed which extract face image features
at two different levels of measurement;

• A composite operator, GMLM, is introduced by fusing individual local operators
acting at four distinct levels of measurement;

• To alleviate the issue of limited imagery, in addition to data augmentation and transfer
learning, a hybrid framework of combining hand-crafted features and deep learning
is introduced, where GMLM features are input into a subsequent network, which is
succinct and efficient. The hybrid method is proved to achieve the state of the art;

• The contribution of each of the four levels of measurement is investigated. The effect
of different fusion schemes is also studied.

4. Proposed Methodology

Due to limited imagery and training data, existing deep learning models can not be
directly deployed to solve the SWIR-Vis face verification problem. One potential approach
to this problem is to combine and take advantage of both traditional methods and modern
deep learning techniques, that is, a hybrid solution. In this work, rather than designing
pure neural networks, we propose to use hand-crafted features as the input to the following
simple-structured CNN together to accomplish SWIR-Vis face verification.

In order to extract informative and distinguishing features as effectively as possible,
we first revisit the theory of measurement levels and introduce two new feature extraction
operators (NMD and IMD). We further extract face features at four different measurement
levels and fuse them into a single composite feature vector (GMLM). Following this, the
GMLM vector is formed as an input to a PCA-based succinct network, which finally per-
forms the verification task. The overall hybrid method is termed GMLM-CNN. Our choice
of the PCA structure is to maximally simplify the CNN. As a result, the proposed approach
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has dramatically fewer parameters that need to be estimated by training, distinguishing it
from other deep learning methods that require a substantial amount of data for training.

4.1. Theory of Levels of Measurement

Level of measurement, also known as scale of measure, refers to the nature of infor-
mation within the values assigned to a variable to be measured (certain attributes) and
the relationship among the values. Psychologist Stanley S. Stevens proposed a typology—
the best known one—with four levels for different types of measurement: the nominal,
the ordinal, the interval, and the ratio levels [54].

The nominal level of measurement is often referred to as the qualitative level, while
measurements made at the other three levels are called quantitative data. The concept of
levels of measurement has been extensively used in various disciplines such as natural
sciences, linguistics, and political sciences: taxonomic ranks in biology, parts of speech in
grammar, and political affiliation in politics. As an example, Figure 1 defines the nominal
level of measurement in gender classification of individuals.

Variable

Attribute

Value

Relationship

Female Male

Gender

0 1

Figure 1. Example of nominal measurement in gender classification.

The nominal level, which is also the lowest level, simply “names" the attributes of
a variable to be measured uniquely by assigning certain numerical values. Ordering of
the attributes is neither implied nor are arithmetic or logical operations on the assigned
values meaningful. In the example shown in Figure 1, the measured variable is the gender
of human, which can be female or male. The numerical value assigned is either 0 or 1.
When comparing the gender of two individuals (humans), the only meaningful relationship
between their nominal levels is either being the same or not.

In the case of the ordinal measurement, however, the attributes can be ranked. Larger
values suggest a greater amount of a certain quality. Nonetheless, the distance (the differ-
ence) between values can not be defined. Therefore, the interval between any two values is
not interpretable in such an ordinal measure. Take as an example the ranking of athletes at
competitions. A place/position is assigned based on the performance of an athlete. In this
example, only the ordering information is meaningful. By looking at the award, one can
determine the placement of the athlete, but it is impossible to say how much better this
athlete performed compared to his/her peers.

As for the interval measurement, not only the order but also the distance between
attributes is meaningful. Temperature reading is a good example for interval measurement,
where a higher temperature suggests a warmer weather than that of a lower tempera-
ture. The larger the temperature difference, the degree of warmness increases. However,
calculating the ratio of temperatures would not make sense.

Finally, in the ratio measurement, ordering, distance, and ratio are all meaningful,
and there is always an absolute zero defined. This implies that one can construct a mean-
ingful fraction (or ratio) with a ratio variable. This level of measurement is frequently
encountered in practice. This level of measurement is also commonly used in science. A few
most common examples are measuring length, mass, force, etc., where the scientists will
find or derive equations involving complex calculations using these variables.
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It can be easily observed that the four levels of measurement have increasing com-
plexity from the nominal to the ratio, and that they extract different types of information.
Each level can be described by different mathematical or logical operations. As a result,
operators and descriptors developed for face recognition applications can be partitioned
into four groups (corresponding to the four levels of measurement) by inspecting the
essential mathematical or logical operations involved. For instance, the LBP operator can
be placed in the category of the ordinal level of measurement, since the core operation
involves the determination of the order between a central pixel x and its neighboring pixels
xi. For HOG, the essence is to find the magnitude and orientation of the gradients, which
involves multiplication and division. Therefore, it can be viewed as an operator acting at
the ratio level of measurement. Another example of operators acting at the ratio level is
WLD (refer to Equation (11) for details), since not only operations of difference but also
operations of division are involved.

Table 1 summarizes properties of the four levels of measurement and presents exam-
ples of corresponding operators acting at different levels of measurement that are used in
face recognition.

Table 1. Summary of the four levels of measurement with example operators for face recognition.
Note that NMD and IMD (marked with asterisks) are new operators proposed in this paper.

Measurement Arithmetic and Logical Operations Complexity Meaning Example Operators

nominal =, 6= lowest categories NMD *
ordinal =, 6=, <, > medium orders LBP
interval =, 6=, <, >, +, − medium distance meaningful IMD *

ratio =, 6=, <, >, +, − , ×, ÷ highest absolute zero meaningful WLD, HOG

4.2. Nominal Measurement Descriptor

This section introduces a new operator acting at the nominal level of measurement and
is thus named the Nominal Measurement Descriptor (NMD). To the best of our knowledge,
this is the first operator reported at this level for face recognition applications.

Given an input image and a set of intensity classes that each pixel can belong to, NMD
compares the class of a pixel with the class of its neighbors and encodes this information.
For example, assume two intensity classes c0 and c1. Each pixel belongs to either of the
classes, defined as

C(x) =

{
c0, x ∈ [0, 127],
c1, x ∈ [128, 255].

(1)

Then, the nominal relationship between each pixel and its 8-pixel neighborhood is con-
sidered. A binary value of 0 is recorded if the classes of the central pixel and a neighbor are
identical, whilst a value of 1 is recorded if there is a difference. The comparison is performed
pixel-by-pixel within the 8-neighborhood. The final step of the encoding concatenates all
binary values into a single binary string. Mathematically, NMD is described as

NMD(x) =
8

∑
i=1

nom
(
C(x), C(xi)

)
· 2i, (2)

where xi is a neighbor of the central pixel x in the input image, and C(·) is a class assigning
function. In a two-class case, it is given by (1). In general, the range of the mapping
function C(·) can include up to 256 discrete classes. The operator nom(·) generates the
final numerical value of nominal measurement between two pixels with assigned classes ci
and cj,

nom(ci, cj) =

{
0, ci = cj,
1, ci 6= cj.

(3)
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An illustration of the encoding with the proposed NMD descriptor is shown in
Figure 2a. Examples of encoding with application to an actual face image are shown in
Figure 2b–e, in which an input face image acquired at SWIR 1.5 m and the same image after
filtering with a Gabor operator are encoded using the newly introduced NMD operator.

𝑥1 𝑥2 𝑥3 

𝑥8 𝑥 𝑥4 

𝑥7 𝑥6 𝑥5 

𝑐1 𝑐1 𝑐0 

𝑐1 𝑐1 𝑐1 

𝑐0 𝑐0 𝑐1 

1 1 0 

1 1 

0 0 1 

𝐶(⋅) 𝑛𝑜𝑚(⋅) 

(a)

(b) (c) (d) (e)

Figure 2. Encoding with NMD. (a) From left to right: the input, the output after class assignment
and the final nominal measurement values; (b) a cropped SWIR face image with contrast adjustment;
(c) NMD encoding applied to the face image in (b); (d) the magnitude response of the Gabor filter
applied to the cropped face; (e) NMD encoding applied to Gabor features in (d).

4.3. Interval Measurement Descriptor

The literature does not appear to employ an operator acting at the interval level of
measurement. Therefore, we propose a new descriptor operating at this level. It is named
the Interval Measurement Descriptor (IMD).

Given an input image and a neighborhood of a pixel within the image, IMD encodes the
difference between the intensity of each pixel and its neighbors. Once again, a neighborhood
of eight pixels is considered. The range of the difference in intensity is divided into K
intervals. The partition can be uniform or non-uniform. An illustration of a K-interval
partition scheme is provided in Figure 3. Each interval is further assigned an integer code.
The final code is generated by concatenating the codes of individual pairs of pixels within
their neighborhood (i.e., the 8 adjacent pixels). Mathematically, IMD is described as

IMD(x) =
8

∑
i=1
S(xi − x)Ki, (4)

where xi is the i-th neighbor of the central pixel x in the input image, and K is the total
number of intervals involved.

Denote the difference between two pixels as ∆z, and let S(∆z) be the mapping between
the interval that ∆z falls into and the corresponding code (an integer value). The expression
of S(∆z) is dependent on the partition scheme of the intervals. As an example, uniform
partition is an easy and straightforward one. However, such a uniform partition is rela-
tively naive and fails to consider the actual intensity distribution of SWIR and Vis face
images. Thus, this paper proposes a non-uniform partition scheme based on the Shan-
non encoding rule. Given K intervals, Ik, k = 1, 2, . . . , K, let the probability of intensity
that falls in each interval be P(Ik). Arrange the sequence of P(Ik) in decreasing order,
i.e., P(I

′
1) ≥ P(I

′
2) . . . ≥ P(I

′
K). By the Shannon’s encoding rule, the partition ∆ξi is calcu-

lated as:
∆ξi = − log P(I

′
i ) , i = 1, 2, . . . , K, (5)
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where ∆ξi = ξi − ξi−1 and ξi = 0. Given such a relationship, the right end of the ith interval
ξi can be in turn calculated as:

ξi =
i

∑
j=1

∆ξ j + ξ0. (6)

To normalize the partition to be between −255 and 255 along the horizontal axis and
keep it as an integer, the new partition ζi is further calculated as:

ζi = b510 · ξi

∑K
j=1 ∆ξ j

− 255c, (7)

where b·c denotes the round down operation. The new mapping function of S(∆z) using
the non-uniform partition scheme is thus given by:

S(∆z) = k, if ζk−1 ≤ ∆z < ζk. (8)

The non-uniform partition scheme is illustrated in Figure 3.

𝛥𝑧

𝑆(𝛥𝑧)

…

…

−255 2550

𝐾

𝐾 − 1

Figure 3. Illustration of IMD with non-uniform partition schemes.

It is worth noting that the IMD operator is insensitive to noise and is therefore very
robust in scenarios such as varying ambient lighting and cross-spectral recognition. This can
be attributed to the fact that IMD is a relative measure. It does not involve the values of pixel
intensities directly but the difference between pixel intensities. When the lighting varies or
noise is added, even though the pixel values are changed, the interval measurement is very
likely to stay the same. Further illustration of the IMD robustness can be found in Section 5.

The results of encoding with IMD in application to a SWIR 1.5 m face image is provided
in Figure 4. IMD operator was applied to both the original SWIR image and to the image
after Gabor filtering.

(a) (b) (c) (d)

Figure 4. Encoding with IMD: (a) a cropped SWIR face image; (b) the result of applying IMD to the
cropped face in (a); (c) the magnitude response of the Gabor filter; (d) IMD encoding applied to the
Gabor filtered image in (c).
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4.4. Gabor Multiple Level Measurement

To boost the recognition performance, the complementary information of a face image
encoded by four different operators is further fused up, each presenting its own level of
measurement. To be specific, IMD is fused with operators at the nominal, ordinal, and
ratio levels.

Figure 5 summarizes the structure of the proposed fusion approach (i.e., GMLM).
An input image is first passed through a bank of Gabor filters which perform the following
transformation:

G(z, θ, s) = ‖K(θ,s)‖2

σ2 exp
[
− ‖K(θ,s)‖2‖z‖2

2σ2

]
×

[
eiKT(θ,s)·z − e−

σ2
2

]
,

(9)

where K(θ, s) is a wave vector, σ2 is the variance of the Gaussian kernel, and z = (x, y) is a
pixel in the input image. The magnitude and phase of the wave vector determine the scale
and orientation of the oscillatory term. The wave vector can be expressed as

K(θ, s) = Ks(cos(φθ), sin(φθ))
T , (10)

where Ks is the scale parameter, and φθ is the orientation parameter. The parameters for
the wave vector in the experiments of this paper are set to be Ks = (π/2)s/2 with s ∈ N
and φθ = θπ/8 with θ = 1, 2, . . . , 8. The Gaussian kernel has a standard deviation σ = π.

The output of the Gabor filter bank is passed through a set of operators presenting
four different levels of measurement: the proposed NMD at the nominal level, LBP at the
ordinal level, the proposed IMD at the interval level, and WLD at the ratio level. The WLD
operator [55] is defined as

WLDl,N(x) = Ql

{
tan−1

[
N

∑
i=1

(
xi − x

x

)]}
, (11)

where xi is one of the N neighbors of a value x at a radius r (r = 1, 2 in the experiments).
Ql is a uniform quantizer with l quantization levels. It should be noted that the original
form of WLD is built as a combination of two operators: a differential excitation operator
and a gradient orientation descriptor. In this work, only the differential excitation is
engaged to encode the magnitude of the filter response. This considerably simplifies the
implementation of WLD without degrading the performance of the feature extraction block.

After encoding with the operators at four levels of measurement, the encoded outputs
are concatenated. The final fused operator is named Gabor Multiple Level Measure-
ment (GMLM).

INPUT IMAGE

GABOR 
FILTERS

INTERVAL 
DESCRIPTOR

WLD

LBP
OUTPUT 

ENCODING 

NOMINAL
DESCRIPTOR

NOMINAL LEVEL

RATIO LEVEL

INTERVAL LEVEL

ORDINAL LEVEL

FEATURE
FUSION

Figure 5. The structure of the fused operator proposed in the paper: Gabor Multiple Level Measurement.
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4.5. GMLM-CNN: The Hybrid Method

Following the encoding steps, GMLM features are applied as an input to a PCA-based
succinct network, PCANet [56], which performs the final recognition task. PCANet is
utilized due to its light-weight network structure, which learns informative features both
easily and efficiently. Such a succinct network is quite suitable for the task of interest, that
is, SWIR-Vis face verification in the presence of limited training data. The hybrid method is
termed GMLM-CNN, and the overall framework of the method is shown in (see Figure 6).

The details of PCANet can be found in [56]. Here, only a general description is
provided. Assuming that the number of filters in the PCA layer is L, PCA minimizes the
reconstruction error within a family of orthonormal filters, i.e.,

argmin
V

‖X−VVTX‖2
, s.t.VVT = IL, (12)

where X is the input training images stacked together after the removal of the mean (in our
paper, it is the GMLM feature maps). IL is the identity matrix of size L× L. The solution VT

is known as the L principal eigenvectors of XXT. The PCA filters are therefore expressed as

Wl = mat(ql(XXT)), l = 1, 2, . . . , L, (13)

where mat(·) is a function that maps a vector to a matrix W, and ql(XXT) denotes the l-th
principal eigenvector. The PCA layer is connected to two subsequent fully connected layers
which conduct the recognition and then output the final result.

It can be clearly observed that, due to the inputs of GMLM, the proposed frame-
work does not need elaborated convolutional layers to learn informative features as other
common deep networks do. It is also worth noting that the only convolutional layer
(i.e., the PCA layer) present in the network is significantly simplified due to the PCA
theory-based structure.

𝑾𝑳

𝑾𝟏

𝑾𝟐

GMLM 
Feature

Extraction

GMLM Features PCA Layer FC Layers

Figure 6. The overall structure of GMLM-CNN, the proposed hybrid method: GMLM feature
extraction first and then PCANet Learning.

5. Experiments and Analysis
5.1. Experimental Setup

The multispectral face dataset of Tactical Imager for Night/Day Extended-Range
Surveillance (TINDERS) and Pre-TINDERS are used throughout our experiments. Both
of them are collected by the Advanced Technologies Group, West Virginia High Tech
Consortium (WVHTC) Foundation [57] (Figure 7).

(a) (b) (c) (d)

Figure 7. Sample face images: (a) visible light; (b–d) SWIR at 1.5 m, 50 m, and 106 m, respectively.
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In the experiments, we first study the performance of GMLM-CNN, the hybrid method
proposed in this work. Its performance is compared to that of two other well-performing
traditional methods, which are Gabor + LBP + GLBP + WLD [45] and Gabor Ordinal
Measures (GOM) [58]. To acknowledge the recent progress in deep learning in application
to face recognition, the performance of the above three methods is further compared to that
of two typical convolutional neural network models that represent state of the art, namely
Deep Coupled Learning [16] and Attribute Guided Synthesis [20].

As a side experiment, it is also investigated how each individual operator contributes to
the composite operator of GMLM. We analyze their performance individually. As mentioned
earlier, LBP is selected as an operator applied at the ordinal level of measurement. WLD is an
operator acting at the ratio level of measurement. NMD and IMD, as introduced in this work,
are the operators at the nominal level and the interval level of measurement, respectively.

Subsequently, we look into the impact of different fusion schemes on the performance.
We examine different combinations of operators involving multiple levels of measurement.
To logically and systematically deal with this problem, we use an incremental way of
fusion. Additionally, we fuse operators at the same level to examine the scheme of same-
level fusion.

Prior to encoding and matching of face images, an alignment is performed, where
geometric transformations such as rotation, scaling, and translation are applied to project
the eyes to a fixed position. The aligned face images are further cropped to the size of
120× 112. After being cropped, images undergo an intensity normalization, where color
images are converted to grayscale images and SWIR images are preprocessed using a
log transformation. As mentioned earlier in this paper, during feature extraction, face
images are first passed through a set of Gabor filters, followed by encoding with singular
or compound operators working at different levels of measurement. To acknowledge the
two-step encoding process, the results of encoding are denoted as Gabor + NMD, Gabor +
IMD, Gabor + LBP, Gabor + WLD, etc.

5.2. Matching SWIR vs. Vis Faces by GMLM-CNN

The first experiment is conducted to match SWIR face images (the probes) to visible
face images (the gallery), i.e., SWIR-VIS face verification. The verification performance of
two composite operators, Gabor + LBP + GLBP + WLD and GOM, as well as two deep
learning methods Deep Coupled Learning and Attribute Guided Synthesis, is compared to
that of our proposed method GMLM-CNN (see Figure 8).
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Figure 8. ROC of Matching SWIR against visible light images.

In the experiment, GMLM-CNN involves a set of 16 Gabor filters with two different
scales and eight different orientations. The scales are set to be s = 1 or 2 while the
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orientation angles are φθ = π
8 θ, θ = 1, 2, . . . , 8. A uniform division scheme with eight

intervals is used for the IMD descriptor. Histograms with 135 bins are calculated on the
encoded responses of all the four levels of measurement using non-overlapping blocks of
8× 8.

The filter numbers of the PCA layer in PCANet are set to be 8, and the filter size is
5× 5. The first and the second fully connected layers are of size 4096 and 96, respectively.
In comparison, the Deep Coupled Learning model is built in a coupled structure with two
streams, each of which corresponds to one of the heterogeneous light bands (visible light or
SWIR). The Inception-ResNet v1 model [59] was chosen as the backbone. The two streams
of the coupled network share initial weights and are subsequently trained to be different
from each other. Attribute Guided Synthesis consists of an attribute predictor network
and a U-Net generator. The two deep models are first trained on the public face dataset
CASIA-WebFace [60], which includes 10,000 subjects with a total of 500,000 images. All face
images are detected and aligned by an existing tool called MTCNN [61] and then cropped
to the size of 120× 112. The deep models are subsequently trained in a transfer learning
way on the multispectral training subsets of Pre-TINDERS and TINDERS.

Since the training set is small in size, it is first augmented by adding synthesized noise
to SWIR and Vis face images, as well as by mirroring, translating, and rotating. These
actions resulted in a ten-times larger dataset (a total of 6240 images). Training of the two
networks was performed on a computer equipped with an 8 Core Intel i9-9900K 3.6 GHz
CPU and an Nvidia GeForce RTX 2080 Ti GPU.

As seen from Figure 8, the performance of the proposed method, GMLM-CNN, is
noticeably higher than the performance of the other two composite operators, Gabor + LBP
+ GLBP + WLD and GOM, as well as of Deep Coupled Learning and Attribute Guided
Synthesis. To be more specific, GMLM-CNN achieves GAR = 99.58% at FAR = 10% (see
Table 2) followed by Gabor + LBP + GLBP + WLD and GOM with a GAR of 98.33% and
98.12%, and then by Attribute Guided Synthesis with a GAR of 97.92%. Deep Coupled
Learning has the lowest GAR of 97.56%. As the FAR set to 0.1%, GMLM-CNN still achieves
the highest of all (GAR = 74.37%) while GOM comes in last (GAR = 59.58%). In terms of
the EER value, GMLM-CNN achieves 2.67%, which is significantly lower than the value
achieved by any of the other four algorithms. Furthermore, the metrics of area under
curve (AUC) and d-prime value for GMLM-CNN are also higher than that of all other
methods. This demonstrates the advantage of GMLM-CNN over the other two traditional
operators as well as the two deep learning methods in the case of a relatively small dataset
available for training. It could be argued that the performance of Deep Coupled Learning
and Attribute Guided Synthesis would be improved if a large training set was available.
However, publicly available SWIR datasets such as PreTINDER and TINDER are of small
sizes, and there are no other publicly available datasets of that type.

Table 2. Comparison of GARs and EER between different methods: SWIR vs. visible light.

Method GAR (%) at FAR = 10−1 GAR (%) at FAR = 10−3 EER (%) AUC d-Prime

GOM [58] 98.12 59.58 4.94 0.9896 2.92

Gabor + LBP + GLBP + WLD [45] 98.33 66.67 3.86 0.9929 2.98

Deep Coupled Learning [16] 97.56 69.09 4.93 0.9898 2.86

Attribute Guided Synthesis [20] 97.92 66.25 5.36 0.9895 2.80

GMLM-CNN
(Proposed) 99.58 74.37 2.67 0.9971 3.13

5.3. Performance of the Individual Measurement Level

In the previous subsection, experiments are carried out to demonstrate the advantage
of using GMLM as a composite operator. It is not evident, however, how the inclusion of
each individual level of measurement affects performance of the cross-spectral face recog-
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nition system. It would be interesting to rank the levels in terms of their contribution to the
performance. Therefore, this subsection presents the results of a different experiment, where
each of the four individual operators contributing to GMLM is used individually when
encoding the input face. The performance of the four individual operators is summarized
in Table 3.

From Table 3, it can be concluded that Gabor + IMD yields the best performance of
EER = 4.33%, while Gabor + NMD displays the worst performance in terms of EER. Its EER
is equal to 8.39%. The second most important component is the ordinal level, followed by
the ratio level. The EER values of Gabor + LBP and Gabor + WLD are 5.99% and 7.92%,
respectively. The AUC and d-prime value for Gabor + IMD are also the highest. This
suggests that the interval level of measurement is the most informative in terms of cross-
spectral face verification performance. The second important component is the ordinal
level, and the third in order of importance is the ratio level. The nominal level contributes
the least.

This observation contradicts a natural yet naive expectation that the most complex
operator should display the best performance. It can be explained in the sense that the
ordinal and interval levels encode information of a "looser" relationship between neighbor-
ing pixels rather than an "exact" relationship as the ratio level does, which in turn makes
the two levels more robust with respect to the cross-spectral verification scenarios where
heterogeneous pixel values vary significantly (in other words, the exact relationship is
unstable). However, analyzing the performance in Table 3 and observing how closely they
follow one another leads to a natural conclusion that every level is important and each
level contributes to the performance of GMLM.

Table 3. GARs and EER for each individual measurement level: SWIR vs. visible light.

Method Measurement Level GAR (%) at FAR = 10−1 GAR (%) at FAR = 10−3 EER (%) AUC d-Prime

Gabor + NMD Nominal 92.92 42.92 8.39 0.9713 2.49
Gabor + LBP Ordinal 95.42 52.92 5.99 0.9776 2.73

Gabor + IMD Interval 97.92 65.83 4.33 0.9918 2.91
Gabor + WLD Ratio 93.13 53.13 7.92 0.9763 2.69

5.4. Performance of Fused Measurement Levels

In this subsection, the impact of different fusion combinations on the recognition
performance is further investigated.

5.4.1. Fusing Complementary Levels

One would naturally argue that, since each of the four levels of measurement con-
tributes to the performance, all of them are necessary. This argument is indeed true and is
supported by our experimental results shown below. For instance, when GOM is replaced
with Gabor + LBP + WLD + GLBP, the recognition performance is boosted due to inclusion
of the ratio level of measurement in addition to the ordinal level. To abbreviate the notation,
we will call the combination scheme of Gabor + LBP + WLD + GLBP as 2nd + 4th levels
(or 2 + 4 in short). In total, four different fusion combinations in an incremental manner are
considered, as summarized in Table 4.

Table 4. Summary of different combination schemes.

Fusion Scheme Levels Notation

GOM Ordinal 2

Gabor + LBP + GLBP + WLD Ordinal + Ratio 2 + 4

Gabor + LBP + NMD + WLD Nominal + Ordinal + Ratio 1 + 2 + 4

GMLM-CNN Nominal + Ordinal + Interval + Ratio 1 + 2 + 3 + 4
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As can be seen from Table 5, when the algorithm is changed from GOM to Gabor +
LBP + WLD + GLBP, the GAR value is increased from 98.12% to 98.33% at FAR = 10% and
EER is decreased from 4.94% to 3.86%.

Table 5. GARs and EER when fusing complementary levels.

Fusion Scheme Notation GAR (%) at FAR = 10−1 GAR (%) at FAR = 10−3 EER (%) AUC d-Prime

GOM 2 98.12 59.58 4.94 0.9896 2.92

Gabor + LBP + GLBP + WLD 2 + 4 98.33 66.67 3.86 0.9929 2.98

Gabor + LBP + NMD + WLD 1 + 2 + 4 98.58 69.37 3.66 0.9953 2.95

GMLM-CNN 1 + 2 + 3 + 4 99.58 74.37 2.67 0.9971 3.13

When the combination is further changed to Gabor + LBP + NMD + WLD (i.e., the 1st
level of measurement is further added), the GAR value increases to 98.58% and EER
decreases to 3.66%. Finally, when IMD, i.e., the 3rd level, is added to Gabor + LBP + NMD +
WLD, the performance reaches the highest value of GAR = 99.58% and achieves the lowest
value of EER = 2.6%, yielding the best result of the experiment.

To summarize, when an operator at a measurement level is incrementally combined
with other measurement levels, the performance gradually improves. This conclusion
supports the statement made earlier in this paper that different levels of measurement
contain complementary information useful for the face recognition task.

5.4.2. Fusing Same-Level Operators

However, similar to the problem of selecting informative features [62–64], simply
involving a larger number of operators does not necessarily lead to improved perfor-
mance, especially when several operators in the combination represent the same level
of measurement. This is due to correlation and redundancy of information extracted by
the operators acting at the same level of measurement. Information redundancy rarely
improves verification performance.

In order to demonstrate this, a new experiment is designed where two operators
both representing the 4th level are combined. The performance of such a combination is
compared with that of a single 4th-level operator. The 4th level is chosen for demonstration
because of a large number of operators in the literature acting at this level. In particular,
WLD and HOG are selected. The results listed in Table 6 demonstrate that GAR and EER
values do not necessarily improve when fusing the two operators acting at the same level
of measurement. As a matter of fact, both GAR and EER become even worse when the
same level of measurement (note that both HOG and WLD are at the fourth level) is added.
This can be attributed to the fact that operators performing at the same level extract similar
information from the data and therefore introduce redundancy.

From the results of different operator-fusing experiments in this section, it is concluded
that the fusion of operators representing different levels of measurement is more beneficial
than fusion of operators representing the same level. Therefore, our design of GMLM
which follows such a fusing rule can be justified and explained.

Table 6. GARs and EER when fusing operators at the same level.

Method GAR (%) at FAR = 10−1 GAR (%) at FAR = 10−3 EER (%) AUC d-Prime

Gabor + WLD 93.13 53.13 7.92 0.9763 2.69
Gabor + WLD + HOG 93.12 51.67 8.13 0.9761 2.62

6. Conclusions

This paper focuses on the problem of cross-spectral face verification where face images
of a relatively new IR subband, SWIR, are matched against images acquired in the visible
light spectrum. The proposed hybrid solution takes advantage of both traditional feature
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engineering and modern deep learning techniques to overcome the issue of limited training
data. Both fusion among handcrafted features and fusion between handcrafted and deep-
learned features are involved.

Two new individual operators, the Nominal Measurement Descriptor (NMD) and the
Interval Measurement Descriptor (IMD), are firstly introduced, representing the nominal
and interval levels of measurement, respectively. Then, operators with respect to all the
four levels of measurement are fused, resulting in a new composite operator named Gabor
Multiple Level Measurement (GMLM). Such fusion extracts complementary information
and yields considerably improved cross-spectral face recognition performance. Finally,
the fused features of GMLM are passed through a simple-structured but efficient PCA-
based neural network which selects informative features and also performs recognition.
The overall framework is named GMLM-CNN. Throughout the experiments, transfer
learning and data augmentations are utilized. Experimental results show that GMLM-CNN
outperforms two other well-performing composite operators as well as the state-of-the-art
deep learning-based methods, Deep Coupled Learning and Attribute Guided Synthesis.

Contribution of each individual operator representing four distinct levels of measure-
ment is also investigated. It is observed that the proposed interval level (IMD) contributes
the most to the performance. Finally, effects of different fusion schemes are also studied in
detail. It is concluded that fusing operators at complementary levels of measurement is
beneficial to the performance, while fusing at the same level results in little performance
improvement or even leads to degraded performance.

For future work, we plan to replace PCANet with matrix decomposition-based net-
works that are even more efficient and succinct, such as SVD decomposition based networks
and LU decomposition based networks. In addition, rather than a hybrid solution, a pure
deep learning solution can be proposed where the hand-crafted composite operator of
GMLM can be also replaced by pure neural networks inspired by the measurement theory.
For instance, special convolutions can be designed to comply with the operations respective
to different measurement levels.

Author Contributions: Conceptualization, Z.C., N.A.S. and L.P.; methodology, Z.C. and L.P.; soft-
ware, Z.C.; formal analysis, Z.C., N.A.S. and L.P.; data curation, Z.C. and S.C.; writing—original draft
preparation, Z.C. and N.A.S.; writing—review and editing, N.A.S., S.C. and L.P.; visualization, Z.C.;
supervision, L.P.; project administration, Z.C.; funding acquisition, Z.C. and L.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is funded by the National Natural Science Foundation of China (NSFC
No. 61906149), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No.
2021JM-136), the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX1068), and the Xi’an
Science and Technology Program (No. 21RGSF0011).

Institutional Review Board Statement: Ethical review and approval are not applicable due to no
involvement of humans or animals.

Informed Consent Statement: Informed consents are not applicable due to no involvement of
humans or animals.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the West Virginia High Technology Consortium
(WVHTC) Foundation for providing the datasets employed in the experiments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.



Sensors 2022, 22, 9500 18 of 20

References
1. Bourlai, T. Face Recognition across the Imaging Spectrum; Springer International Publishing: Berlin/Heidelberg, Germany, 2016.
2. Kong, S.G.; Heo, J.; Abidi, B.R.; Paik, J.; Abidi, M.A. Recent advances in visual and infrared face recognition—A review. Comp.

Vis. Image Underst. 2005, 97, 103–135. [CrossRef]
3. Socolinsky, D.A.; Wolff, L.B.; Neuheisel, J.D.; Eveland, C.K. Illumination invariant face recognition using thermal infrared

imagery. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI,
USA, 8–14 December 2001; Volume 1, pp. 527–534.

4. Buddharaju, P.; Pavlidis, I.T.; Tsiamyrtzis, P.; Bazakos, M. Physiology-based face recognition in the thermal infrared spectrum.
IEEE Trans. PAMI 2007, 29, 613–626. [CrossRef] [PubMed]

5. Klare, B.; Jain, A.K. Heterogeneous Face Recognition: Matching NIR to Visible Light Images. In Proceedings of the International
Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 1513–1516.

6. Nicolo, F.; Schmid, N.A. A Method for Robus Multispectral Face Recognition. In Proceedings of the International Conference on
Image Analysis and Recognition, Burnaby, BC, Canada, 22–24 June 2011; Volume 2, pp. 180–190.

7. Bourlai, T.; Kalka, N.; Ross, A.; Cukic, B.; Hornak, L. Cross-Spectral Face Verification in the Short Wave Infrared (SWIR)
Band. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010;
pp. 1343–1347.

8. Klare, B.F.; Jain, A.K. Heterogeneous Face Recognition Using Kernel Prototype Similarities. IEEE Trans. Pattern Anal. Mach. Intell.
2013, 35, 1410–1422. [CrossRef]
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