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Abstract: In pursuit of high imaging quality, optical sparse aperture systems must correct piston errors
quickly within a small range. In this paper, we modified the existing deep-learning piston detection
method for the Golay-6 array, by using a more powerful single convolutional neural network based
on ResNet-34 for feature extraction; another fully connected layer was added, on the basis of this
network, to obtain the best results. The Double-defocused Sharpness Metric (DSM) was selected first,
as a feature vector to enhance the model performance; the average RMSE of the five sub-apertures
for valid detection in our study was only 0.015λ (9 nm). This modified method has higher detecting
precision, and requires fewer training datasets with less training time. Compared to the conventional
approach, this technique is more suitable for the piston sensing of complex configurations.

Keywords: Golay-6; sparse aperture; piston sensing; ResNet-34

1. Introduction

Deep-space exploration makes significant demands on the imaging abilities of telescopes [1]:
thus, the optical sparse aperture (OSA) becomes a substitute mode for high-resolution imaging,
being like a large monolithic aperture with lower size and lighter weight [2]. The Golay-6
configuration is a classic non-redundant sparse aperture array, first proposed by Marcel J.E.
GOLAY [3]. In addition, Boeing-SVS Inc has completed a Small Business Innovative Research
(SBIR) project called low-cost space imager (LCSI), that is based on the Golay-6 OSA system [4]:
its significance is to control the deviation among the sub-apertures known as pistons to within a
fraction of a wavelength [5]; therefore, piston sensing is needed, to gain better optical performance.

Many methods have been used for the piston error detection of the OSA system,
including the Schack Hartmann sensor, which can detect the piston error between the
sub-mirrors of the micro-lens array [6]; however, the low sensing accuracy of the Schack
Hartmann sensor only satisfies coarse phasing with a limited detection range, and suffers
2π ambiguity. Another mature approach, Phase Diversity (PD), extracts the piston through
a pair of focused and defocused images: it breaks the limits of the imaging content, and
could be applied to the expanded target [7]; however, Phase Diversity (PD) is cumbersome,
so the calculations waste much time, and the 2π ambiguity also affects this method.

In the past few years, deep learning has produced an outstanding achievement: re-
searchers have proposed an advanced convolutional neural network (CNN) that can directly
estimate the Zernike coefficients of an incoming wavefront from an intensity image, and
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use this for piston sensing [8]. Guerra-Ramos et al. used two shallow CNNs to learn the
intercept of the feature model’s ambiguity range and piston step values [9]. Xiafei Ma et al.
demonstrated that using only a single deep convolutional neural network (DCNN) is
sufficient to detect pistons from a broadband extended image [10]. Yirui Wang et al. au-
thenticated that a Bi-GRU neural work with a much simpler structure can be effectively
used for delicate phase segmented mirrors [11].

In this paper, we applied a deep network to the Golay-6 sparse aperture’s piston
sensing. By comparison, we demonstrated that a single ResNet-34 neural network can
effectively detect pistons with high precision and better training efficiency from feature
images. We also used focused and defocused images to build feature vectors, and chose the
DSM as a higher quality training sample, to improve the sensing accuracy and precision.
In addition, we added a fully connected layer, to further enhance ResNet-34’s performance.
Our proposed method realizes high-precision piston sensing for a complex configuration
OSA system.

2. Method
2.1. Basic Optical Principle and Alternative Metrics

The Golay-6 OSA system consists of six sub mirrors of the same size, which form a
large aperture. According to the principle of diffraction-limited incoherent imaging, the
image captured on the focal plane of the Golay-6 system can be modelled as

S = (FT{|FT[P(u, λ)]|2}) · [FT(O)] (1)

where P(u, λ) is the generalized pupil function expressed by a 2D vector u, λ is the wave-
length, FT(·) represents Fourier transform, O is the object, and S is the Fourier transforms
of the focused image, respectively. When piston errors are included in the system, the
generalized pupil function changes as follows:

P(u, λ) = p(u− u1) + ∑N
2 [p(u− un) · exp(

2πi
λ
· φn)] (2)

where p is the pupil function of the sub-aperture, N is the total number of all the pupils,
equal to 6 in this case, un represents the central position vector of the corresponding pupils,
and φn represents the piston error of each aperture. When including the defocus aberration
in the generalized pupil function, Equation (2) will become

Pde f ocus(u, λ) = P(u, λ) · exp[
2πi
λ
· ∆ψk(u, f , D)] (3)

where A is the binary pupil function of the minimum surrounding circle that encloses
all the pupils, 4ψk represents the defocus aberration, f is the focal length, and D is the
diameter of the surrounding circle.

We chose several feature vectors for network learning using focus diversity images,
also known as Gonsalves Metrics [12], which can be expressed as

E = ∑

∣∣∣∣So
∧
Hd − Sd

∧
Ho

∣∣∣∣2∣∣∣∣ ∧Ho

∣∣∣∣2 + ∣∣∣∣ ∧Hd

∣∣∣∣2
(4)

where So is the Fourier transform of the focused images, Sd is the Fourier transform of
the defocused images, Ho represents the focused optical transfer function (OTF), and Hd



Sensors 2022, 22, 9484 3 of 10

represents the defocused OTF. The ∧ implies the estimate operator [12]. If two defocused
images are used to construct the DSM, Equation (4) can be written as

Mdouble−sharpness =
(So · S∗d1 − S∗o · Sd1) + (So · S∗d2 − S∗o · Sd2) + (Sd1 · S∗d2 − S∗d1 · Sd2)

So · S∗o + Sd1 · S∗d1 + Sd2 · S∗d2
(5)

where So is the Fourier transform of the focused images, S∗o is its complex conjugate, Sd1
and Sd2 are the Fourier transforms of the two different defocused images, and S∗d1 and S∗d2
are their complex conjugates. The focused and defocused images can be obtained according
to Equation (1).

2.2. ResNet-34 Structure and Loss Function

As described in the first part, CNN’s shallow layers limit the feature extraction, and
make it impossible to identify all pistons from the feature vector. We used a ResNet-34
neural network to solve these problems, the added layers of which ensure extracting more
complex image features, and need fewer training data. To obtain the best detection results,
a fully connected layer was added to the ResNet-34 network, to enhance the network’s
nonlinear expression ability, and to further improve our method’s precision, as shown in
Section 3.3.

The architecture of ResNet-34 is shown in Table 1 [13]. Unusually, ResNet-34 has four
groups of Basic Block, each comprising several residual modules that avoid the gradient
explosion problem, and ensure the performance will not decline. Batch normalization
accelerates training, and ReLU activation functions realize the feature extraction.

Table 1. The structure of ResNet-34.

Layer Name Output Size Residual Module Layers

Conv1 112 × 112 0
[7× 7, 64], stride 2

3 × 3 max pool, stride 2

Conv2 56 × 56 3

[
3× 3, 64
3× 3, 64

]
× 3

Conv3 28 × 28 4

[
3× 3, 128
3× 3, 128

]
× 3

Conv4 14 × 14 6

[
3× 3, 256
3× 3, 256

]
× 3

Conv5 7 × 7 3

[
3× 3, 512
3× 3, 512

]
× 3

FC 1 × 1 0 average pool, FC

The loss function of the piston sensing is defined as follows:

LMSE =
1
n

n

∑
i=1

(ypredi − ylabeli)
2 (6)

where ypredi is the prediction and output of the network, ylabeli is the ground truth as label,
in company with the input feature vectors, and n is the number of the sub-apertures. By
iteratively calculating loss, the predicted value will be closer to the sample truth value,
making the prediction more accurate.

2.3. Data Sets and Training

Like the previous studies [9,10], we also used simulated data to validate our method.
First, we built the Golay-6 OSA system, as shown in Figure 1. The diameter of the sur-
rounding circle approximated 24.17 mm, and the diameter of the sub-aperture was 5 mm,
with a filling factor roughly equal to 25.68%. The system’s focal length was 1000 mm.
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2a–c: each had 9000 images for the training and 1000 for the testing. Every image in a 

group was loaded with different pistons, and the values of the corresponding picture in 

both groups were the same. As the piston error is periodic in the imaging performance for 

the OSA system [14], the values ranged from 0 to λ, and the pistons ranged from 0 nm to 

600 nm. We set sub-aperture 1 as the reference, and randomly generated pistons among 

the remaining five sub-apertures. 

   

Figure 2. Examples of the training data for the Golay-6 system, based on the Alternative Metrics 

carried by the same pistons: (a) the Power Metric (PM); (b) the Sharpness Metric (SM); (c) the Dou-

ble-defocused Sharpness Metric (DSM). 

The whole process is shown in Figure 3, including training and testing procedures, 

where Sub-a0 represents the sub-aperture 0. In training, we used DSMs as the feature vec-

tors for the inputs, and the corresponding pistons as labels were also input as the ground 

truth, while using the Power Metrics (PM) and the Sharpness Metrics (SM) as a contrast 

Figure 1. Golay-6 structure and its simulated imaging results: (a) configurations of Golay-6 arrays;
(b) imaging target; (c) the simulated imaging map of Golay-6 system (focused image); (d) the
defocused imaging map.

After setting up the whole system, we used a resolution target as the object, to gain the
focused image and its defocused counterpart, illuminated by the light of 600 nm, as shown
in Figure 1. We built three data sets based on different metrics, as shown in Figure 2a–c:
each had 9000 images for the training and 1000 for the testing. Every image in a group was
loaded with different pistons, and the values of the corresponding picture in both groups
were the same. As the piston error is periodic in the imaging performance for the OSA
system [14], the values ranged from 0 to λ, and the pistons ranged from 0 nm to 600 nm. We
set sub-aperture 1 as the reference, and randomly generated pistons among the remaining
five sub-apertures.
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Figure 2. Examples of the training data for the Golay-6 system, based on the Alternative Metrics
carried by the same pistons: (a) the Power Metric (PM); (b) the Sharpness Metric (SM); (c) the
Double-defocused Sharpness Metric (DSM).

The whole process is shown in Figure 3, including training and testing procedures,
where Sub-a0 represents the sub-aperture 0. In training, we used DSMs as the feature
vectors for the inputs, and the corresponding pistons as labels were also input as the
ground truth, while using the Power Metrics (PM) and the Sharpness Metrics (SM) as a
contrast to explore the detection precision and accuracy. We used two defocused images
and one focused image to build the DSM. The defocused images had the same defocus
distance but opposite directions.

To ensure independence, we adopted the PM as the network input in Section 3.1. PM
images have fewer feathers, which can better test the actual extraction ability and learning
ability of different networks.

In testing, we first imaged a Golay-6 OSA system with unknown pistons, to obtain a
set of focused and defocused maps for constructing the test feature vector. Then, we put
it into the well-trained network. Finally, it could quickly predict all pistons for the five
sub-apertures.
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When the training data set was ready, we built the ResNet-34 in Python for piston
sensing. The proposed network was run and trained on a GPU (NVIDIA GeForce RTX3060
laptop GPU). The experimental environment is presented in Table 2.
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Figure 3. The principle of the piston sensing method based on ResNet-34, including the detailed
process of “Training” and “Testing” procedures.

Table 2. Experimental environment.

Hardware Environment Software Environment

Memory 16 GB System Windows 11

CPU 12th Gen Intel (R) Core (TM)
i7-12700H 2.30 GHz Platform PyCharm 2021

Graphics card NVIDIA GeForce RTX 3060
laptop GPU Environment Python 3.7 (Troch main)

3. Results
3.1. Performance and Comparison between ResNet-34, VGG-16, and Alex Net

According to the recorded experimental data, ResNet-34 learned from 9000 feature
vectors based on Power Metric with 100 epochs in about 172 min. The estimation for a
single image took only about 88 ms, which realized efficient testing. The training time of
the VGG-16 network reaches 280 min. Evidently, ResNet-34 is faster. Figure 4 shows the
respective loss function curves over the whole training section:
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Power Metric: (a) ResNet-34; (b) Alex Net; (c) VGG-16.

The graphs show that all these networks converged after learning 100 times against the
same training data set. In comparison, the training loss and test loss of the ResNet-34 had
astringency, and performed better than Alex Net; however, VGG-16 was slightly inferior,
reflecting that its loss had not been significantly reduced; by inference, ResNet-34 may have
higher precision.

Considering that sensing accuracy is an important criterion, we used the predicted
piston values minus the ground truth values, and took the absolute values as the error; the
values beyond 60 nm (0.1λ) were regarded as invalid. The sensing accuracy represented
the ratio of the number of valid predictions to the total number of predictions, which could
be calculated by counting the number of errors within the certain range in the test.

To test the precision of our proposed method, we separately calculated the RMSE
between the valid predicted pistons with their corresponding ground truth value for all the
sub-apertures, and took its average value as the final evaluation. Taking sub-aperture 0 as
an example, Figure 4 shows the error distributions of the test sets for three networks. We
also give details of all five sub-apertures in Table 3.

As shown in Figure 5a–c, most of the errors of ResNet-34 were located within the
region of [0, 15] nm, while those of Alex Net were in the range of [0, 60] nm, but most of
the results of VGG-16 were greater than 60 nm. In Table 3, we can see that the average
sensing accuracy for all the sub-apertures of ResNet-34 reached 93.78%. Furthermore, the
ResNet-34’s average RMSE was 12.58 nm—18.36% lower than that of Alex Net, and 59.41%
lower than VGG-16. The sufficiently small detection error indicates that ResNet-34 achieves
high-precision piston sensing.
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Table 3. The test results of the five sub-apertures based on different networks.

Evaluation Model Sub-a0 Sub-a2 Sub-a3 Sub-a4 Sub-a5 Mean

Sensing
Accuracy

VGG-16 21.00% 20.10% 19.30% 20.20% 17.80% 19.68%
Alex Net 93.90% 97.10% 88.60% 93.40% 99.30% 94.68%

ResNet-34 98.50% 96.70% 92.10% 93.30% 88.30% 93.78%

RMSE/nm
VGG-16 38.45 35.91 37.23 34.55 36.62 36.55
Alex Net 19.91 17.26 25.41 21.50 12.64 19.35

ResNet-34 8.29 14.26 15.75 14.73 26.51 15.91

3.2. Performance of the Piston Sensing, Based on Double-Defocused Sharpness Metrics

While PM performed well on ResNet-34, there was room for improvement in sub-
aperture 5’s detection. To further improve the precision and accuracy of our proposed
method, we used the DSM as input for training and testing on ResNet-34.

The scatter diagram of the corresponding testing results of sub-aperture 5 is displayed
in Figure 6a–c. We can see that both the DSM and the SM samples converged well within a
specific range, and that the DSM’s error was more centrally distributed. With few errors
ignored, the two Sharpness Metric splash ranges were more concentrated than the PM: this
shows that the DSM has higher precision.
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We also displayed the sensing results comparison of all the five sub-apertures based on
the DSM, the SM, and the PM in Table 4. Compared to the others, the DSM’s average sensing
accuracy went up to 96.8%, guaranteeing the correctness of its detection; meanwhile, its
average RMSE reduced to 9.74 nm. The high precision ensured that the error of the five
sub-apertures was less than 0.027λ (16 nm), which sufficed for the fine phasing.

Table 4. The test results of the five sub-apertures that were based on different metrics.

Evaluation Metric Sub-a0 Sub-a2 Sub-a3 Sub-a4 Sub-a5 Mean

Sensing
Accuracy

PM 98.50% 96.70% 92.10% 93.30% 88.30% 93.78%
SM 95.60% 95.60% 93.50% 95.70% 99.30% 95.90%

DSM 95.80% 98.20% 94.60% 96.40% 99.00% 96.80%

RMSE/nm
PM 8.29 14.26 15.75 14.73 26.51 15.91
SM 13.36 7.68 13.15 10.04 7.92 10.43

DSM 12.61 6.87 13.77 10.32 5.11 9.74
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3.3. Further Improvements

We continued to improve the proposed method, to obtain better detection performance.
Our initial ResNet-34 network did not use a softmax classifier, but rather a fully connected
layer, to directly gain the distributed feature representation, which was the predicted value:
on this basis, we added another fully connected layer to reduce the number of parameters.
We used the modified network to learn and test again; the results are shown in Table 5. The
new network improved the parameters for the same data sets based on the three metrics:
specifically, the DSM’s average sensing accuracy went up to 97.26%, and its average RMSE
reduced to 9 nm. Compared with other research [10], which used 120,000 images to build
the training data set for the piston sensing of the Golay-6-1 systems, and whose detection
error was about 24 nm, our detection was more accurate, and our method relied less on the
data sets, which made it more feasible.

Table 5. The test results of the five sub-apertures that were based on the modified ResNet-34.

Evaluation Metric Sub-a0 Sub-a2 Sub-a3 Sub-a4 Sub-a5 Mean

Sensing
Accuracy

PM 93.80% 95.80% 90.90% 94.30% 98.50% 94.66%
SM 95.70% 98.50% 94.10% 96.90% 99.30% 96.9%

DSM 96.30% 98.50% 95.50% 96.70% 99.30% 97.26%

RMSE/nm
PM 15.87 12.06 17.35 12.79 7.53 13.11
SM 11.59 6.97 13.68 11.41 5.48 9.83

DSM 10.11 6.97 12.41 9.12 6.40 9.00

4. Discussion

We used Local Binary Pattern (LBP) to analyze the reasons for the different perfor-
mances among the DSM and others, and explored their specific features loaded with the
same piston errors [15]. By contrast, we could see fewer features in Figure 7a. As a result,
the number of features extracted by the network based on the PM was limited, and it was
more challenging to recognize. The local feature tracing in the yellow outline in Figure 7c
shows that the basal part of the SM and the DSM was abundant. In addition, the distinction
between the features in the yellow outline is conspicuous.
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Therefore, this explains how the SM and the DSM can learn more rich features. Com-
pared with the SM in Figure 7b, the same area in the red outline of the DSM has a high gray
value, and the scale is shallower for non-primary features. In addition, the main features in
the yellow outline of the DSM are more emergent than the SM; thus, we may indicate that
the DSM can avoid learning redundant features, to guarantee better precision prediction,
which fits well with Yan’s research [16].

For actual implementations, further imaging experimentation is still needed in future
developments. As for the role of the network, further work is needed, to consider reducing
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the training time and cutting the number of data sets. In addition, an advanced computing
device could also accelerate computation speed.

5. Conclusions

This paper improves the existing deep-learning piston detection method with a more
advanced ResNet-34 network. By simulation, we verified the feasibility and efficiency of the
proposed method. Specifically, the average detection RMSE achieved 9 nm, and the sensing
accuracy reached 97.26%: this proves that our method, based on the Double-defocused
Sharpness Metric (DSM), breaks the limits of the structural redundancy on sensing accuracy
for a complex non-centrosymmetric array, such as a Golay-6 system. By using the Uniform
Pattern LBP to extract features from different metrics with the same pistons, we conclude
that the DSM could relieve the impact of feature redundancy on network performance, and
improve sensing accuracy. Based on the above advantages, our proposed method could be
widely applied to phasing the OSA telescope.

However, this method needs to collect a large number of real images, and to pre-
process the corresponding piston values, which requires a significant amount of time for
preliminary preparation.
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