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Abstract: Disorders of swallowing often lead to pneumonia when material enters the airways
(aspiration). Flexible Endoscopic Evaluation of Swallowing (FEES) plays a key role in the diagnostics
of aspiration but is prone to human errors. An AI-based tool could facilitate this process. Recent
non-endoscopic/non-radiologic attempts to detect aspiration using machine-learning approaches
have led to unsatisfying accuracy and show black-box characteristics. Hence, for clinical users
it is difficult to trust in these model decisions. Our aim is to introduce an explainable artificial
intelligence (XAI) approach to detect aspiration in FEES. Our approach is to teach the AI about the
relevant anatomical structures, such as the vocal cords and the glottis, based on 92 annotated FEES
videos. Simultaneously, it is trained to detect boluses that pass the glottis and become aspirated.
During testing, the AI successfully recognized the glottis and the vocal cords but could not yet
achieve satisfying aspiration detection quality. While detection performance must be optimized, our
architecture results in a final model that explains its assessment by locating meaningful frames with
relevant aspiration events and by highlighting suspected boluses. In contrast to comparable AI tools,
our framework is verifiable and interpretable and, therefore, accountable for clinical users.

Keywords: XAI; segmentation; detection; aspiration; glottis; vocal cords; endoscopy; FEES;
interpretability; meaningful sequences; key frames

1. Introduction

Machine learning has a huge impact on biomedical applications and will play a
continuously increasing role in diagnostics and patient care [1]. The underlying AI models
can be divided into two classes: white-box models and black-box models. White-box
models, e.g., decision trees based on comprehensible input variables, allow the basic
understanding of their algorithmic relationships; they are thus self-explanatory with regard
to their mechanisms of action and the decisions they make. With black-box models, such as
deep neural networks that have recently redefined the state of the art in many applications,
it is generally no longer possible to understand their inner workings [2]. Instead, there are
methods for the explanation of single decisions (local explainability) or attempts at deriving
descriptions of specific input patterns that a trained model looks out for. Depending on
the specific requirements, it is possible to apply established explanation tools, e.g., LIME,
SHAP, Integrated Gradients, LRP, DeepLift or GradCAM [3]. However, even these tools
require expert knowledge for the interpretation of their output, and only a few of them
provide intuitively understandable decision explanations (e.g., saliency maps, prototypes
or surrogate models, or contrastive and counterfactual explanations) [4]. This means that
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the importance of explanatory strategies will continue to increase in the future, while
they are already an essential component of many AI applications today. The importance
of explainability varies greatly, depending on the field [5], with the healthcare sector
being one of the most demanding ones. To serve this need, technical and non-technical
challenges need to be overcome. This can lead to new and further developments of suitable
“hybrid” approaches that combine data- and knowledge-driven concepts and/or white-
and black-box modeling attempts [6]. Additionally, behavioral or cognitive science aspects
for explainable AI should be considered, such as transparency and the measurability of
the explanation, as well as automated explanation adaptations for users. Employing this
human–computer interaction (HCI) provides transparency to users, allowing them to
trust the machine [7]. For instance, regarding digital applications that are based on video
recordings, the identification of meaningful frames or key frames [8,9] in video sequences
is one saliency-map approach that can be very helpful to interpret algorithmic decisions.
As an example of such a perceptive human-based interpretation approach [3], we introduce
a concept that can be used to facilitate the clinical diagnosis of swallowing disorders based
on video–endoscopic swallowing examinations.

Disorders of swallowing are a relevant problem across various etiologies and all sec-
tors of healthcare provision. Each year, approximately one in 25 adults will experience a
swallowing problem in the United States. Dysphagia cuts across so many diseases and age
groups that its true prevalence in adult populations is not fully known and is often underes-
timated [10]. A recent systematic review demonstrated that the presence of oropharyngeal
dysphagia significantly increases healthcare utilization and cost, highlighting the need to
recognize oropharyngeal dysphagia as an important contributor to pressure on healthcare
systems [11]. The leading cause for the complications of dysphagia is the aspiration of
boluses and saliva (i.e., materials that pass the vocal cords and enter the airways). A
comprehensive review summarized that 43–54% of all acute stroke patients suffer from dys-
phagia and about 37% of those patients develop aspiration pneumonia, of which 3.8% die
if no dysphagia diagnosis and therapy take place. The aspiration pneumonia rate in the
first 14 days can be lowered from 8.2% to 1.3% (a relative risk reduction of 84%) by early
screening, instrumental diagnostics, and subsequent dysphagia therapy [12].

At present, there are two instrumental diagnostics that can be regarded as gold stan-
dards: Videofluoroscopic Swallowing Study (VFSS) and Flexible Endoscopic Evaluation
of Swallowing (FEES). In contrast to VFSS, FEES is appropriate for bedside administra-
tion, is radiation-free, and can be administered by speech and language pathologists and,
therefore, does not rely on medical personnel, which altogether leads to far lower costs
for FEES [13,14]. All these aspects limit the clinical use of VFSS. Consequently, FEES is
currently the most commonly used tool for instrumental dysphagia diagnostics. With
the goal of improving and systematizing training, a multi-level training curriculum was
developed [15] that is now implemented within the European Society for Swallowing Dis-
orders (ESSD). Hence, FEES is in widespread use across Europe. In 2010 in Germany, FEES
was incorporated in the German version of the International Classification of Procedures
in Medicine with a cost estimation of EUR 200 [16], which is lower than the retrospec-
tively calculated mean reimbursements of USD 321.23 in the US [14]. At present, and
to be in accordance with the reimbursement procedure (OPS), FEES must be performed
by two persons. According to relevant literature, the duration of FEES administration
varies between 30 min and 40 min [17] but can easily reach 90–120 min (authors’ own
experience of >1500 FEES). Furthermore, in a very time-consuming process, data need be
stored and inspected again for the diagnostic report to establish better reliability in the
detection of aspiration (Krippendorff’s alpha ~0.78 vs. second video inspection frame by
frame ~0.87) [18]. Beyond binary diagnosis (aspiration/no aspiration), more detailed scales,
such as the Penetration–Aspiration Scale (PAS) [19], can be used to describe the results. The
PAS classifies from score 1 (material does not enter the airway), via scores 2–5 (penetration
of material into the larynx at different depths and with different abilities of clearance), to
scores 6–8 (aspiration with different abilities for clearance, with score 8 meaning no attempt
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for clearance at all). In these cases, the overall inter-rater reliability (IRR) across clinicians is
stated to be between 0.35 (PAS score 5), 0.56 (PAS score 7) and 0.73. (PAS score 8) [20]; PAS
scores 7 and 8 are, especially, highly relevant, as they indicate aspiration. Most striking are
the differences between intra-RR (0.60) and inter-RR (0.29) before specific trainings [21], but
overall inter-RR scores, irrespective of clinical experience, can also reach 0.85 [22]. Hence,
the more differentiated the diagnostics should be and the less the staff are trained, the less
reproducible human decisions become. The low intra- and inter-RR values, especially for
PAS scores 7 and 8, clearly show the existence of relevant missing rates.

Taken together, there is room for improvements in FEES in the areas of validity,
reliability, and duration in the context of aspiration detection, the reduction in staff needed
for administration, and the report of findings, as well as in general costs. One recent
approach that addresses the problem of human misses for penetration and aspiration
detection is narrow-band imaging. It is implemented in certain types of endoscopes, can be
used to sharpen the optical contrasts, and has proven to increase the IRR [23,24]. However,
all of the described areas for improvement could be addressed when the administration
of FEES is combined with the help of an Artificial Intelligence (AI) tool that is capable of
giving reproducible and quantitative output based on a frame-by-frame analysis without
concentration errors.

Although no one, to date, has developed an AI tool to detect aspiration for FEES
videos, various other attempts using machine-learning approaches to detect aspiration
or signs of unsafe swallowing have been performed. The only high potential application
is a CNN for aspiration detection of VFSS videos, with an accuracy of AUC of 1.00 [25],
but, as described above, VFSS is limited in its clinical use. Further studies investigated
the possibility of identifying dysphagia by means of localization of the hyoid bone or
hyoid bone movements by an AI tool: on the one hand, the detection of auscultations,
swallowing sounds, and vibrations is used [26–29], and on the other hand, video material
(VFSS or ultrasound) [30–32] is used. Both approaches yield good results. In general, the
detection of (impaired) swallowing based on auscultation is the subject of research in many
studies [33–35]. Furthermore, there are studies investigating the combination of pressure
build-up (lingual/palatal/pharyngeal) in combination with AI [36,37], sometimes with the
additional combination of VFSS data [38]; again, promising results can be obtained [39].
Combinations of various biometric data are also used for AI-based dysphagia diagnosis [40].
Studies looking at aspiration detection using image data (VFSS) [25] or swallow-onset
detection [41] also yield promising results. A different approach is an image analysis of the
external neck appearance for the detection of sarcopenic dysphagia [42]. Finally, speech
recordings have also been investigated for the presence of dysphagia [43]. While some of
these approaches already show sufficient accuracy, these existing machine-learning models
all show black-box characteristics and lack transparency regarding their classification
results: After the model’s outcome, there is no gold standard (ground truth) that can be
used by the examiner to validate the model’s assumptions, as they do not provide the
examiner with any explanatory insight about the airways. Hence, these models only classify
between healthy and at-risk for aspiration. Only a subsequent FEES or VFSS could validate
the model’s outcome. Hence, for clinical users it is difficult to trust in these models and their
decisions. Furthermore, such lack of transparency might not comply with requirements of
the European General Data Protection Regulation (GDPR), as it prohibits decisions that are
based solely on automated processing [44] and, therefore, limits practical applications in
the clinical context [45].

Thus, our aim is to introduce an explainable artificial intelligence (XAI) approach to
detect aspiration (i.e., of liquids, jelly, or saliva) during FEES for patients suffering from
dysphagia. The automatic detection should improve IRR but also be interpretable, increas-
ing its trustworthiness and transparency. To facilitate the detection of bolus aspiration,
while at the same time achieving explainability goals, the AI tool should also learn the
segmentation of relevant anatomical structures, such as the vocal cords and the glottis, a
task that has previously been shown to be feasible [46–48]. Simultaneously, the AI tool will



Sensors 2022, 22, 9468 4 of 17

be trained to detect boluses that pass the glottis and become aspirated into the airways. This
interpretable architecture results in a final model that explains its assessment by locating
specific video frames with relevant aspiration events and by highlighting the glottis, vocal
cords, and suspected boluses in situ as visual aids in meaningful frames.

2. Materials and Methods
2.1. Video Data and Annotation

Ninety-two patient videos (50 showing aspiration, 32 showing penetration, and
10 without aspiration) based on established PAS scores [22]—8-6 for aspiration, 5-2 for pen-
etration (no aspiration), and 1 for healthy—from an already existing data set of ~1500 FEES
recordings were retrospectively analyzed by two FEES experts as a basis for annotation.
All recordings were made by the same type of endoscope (Orlvision, Video Rhino Laryn-
goscope RS1, 3.9 mm diameter, 130◦/130◦ probe control, 90◦ viewing angle, 291.000 px
resolution, Orlvision GmbH) and recorded on an rpSzene system (Rehder/PartnerGmbH).
The study was approved by the responsible ethics committee of the State Chamber of
Physicians of Rhineland-Palatinate (No.: 2021-16141-retrospektiv) and is registered with
WHO (INT: DRKS00026822). We split the videos into disjunct sets for training, valida-
tion during training, and final testing. The videos were graphically annotated using the
highly customizable annotation tool for data curation and quality control, SATORI, see
Figure 1 [49]. To ensure a human-in-the-loop approach, the two domain experts performed
the annotation. The structures of the vocal cords, the glottis (open, closed, obscured) as
the region of interest (ROI), and cases of aspiration (saliva, liquid, slurry) as well as no
aspiration were drawn into certain frames and served as the gold standard (ground truth)
for the AI segmentation. In addition, frames not showing any of the structures or cases
of aspiration were labeled as such using a frame-labeling tool, to reduce the number of
false-positive segmentations when processing a full video.
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These labelled pixels created the data basis for a subsequent convolutional neural net-
work (CNN; U-Net) specifically designed for segmentation tasks. In addition to aspiration,
the AI tool was trained to segment the ROI and the vocal cords, because they are easier to
detect and the aspiration always appears within this region of interest.
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Furthermore, the training data was augmented using geometric transformations and
color modifications (rotations, zooming up to ×1.5, mirroring left-right, change of contrast,
and picture brightness based on a frame mean of ±25%) to add as many variants of the
annotated frames as possible. This was done in order to make the detection of aspiration not
dependent on incidental features, such as sharpness or contrast, as the detection of findings
becomes more robust to such distortions and shape changes when sufficiently trained with
appropriate data. Such augmentation techniques are commonly used to teach modern AI
models so that different positions, lighting conditions and camera angles, partial occlusions,
or horizontal and vertical shifts do not represent anomalies [50]. This approach increases
robustness, reducing the expected performance drop when applying the resulting model
to external test data. In summary, the goal was to train the model on a sample of videos
that reasonably covered the expected variability occurring during practical application.
Therefore, because the quality of the FEES videos also varies in reality, videos on which the
structures were rather poorly visible were also selected.

2.2. Deep Neural Networks for Segmentation

A 2D U-Net was chosen as neural network architecture to segment the glottis ROI,
vocal cords and aspirated boluses. U-Nets were developed specifically for the segmentation
of biomedical images [51] and variants of this idea have become the most commonly used
and most successful architecture to date [52]. The architecture is based on a performant fully
convolutional design and consists of an encoder and a decoder that produce a result at the
same resolution as the input image, with skip connections that facilitate information flow
and feature re-use for a detailed result. Unlike the original U-Net architecture, convolutions
with zero-padding and only 32 base filters in the first convolutional layer were used. For
regularization, dropout [53] and batch normalization [54] were added and PReLU [55]
was chosen as the activation function. The training was carried out on videos downscaled
by a factor of two to remove comb artifacts from interlaced recording, on patches of size
352 × 288 pixels and batch size 16. The training error was optimized using the Adam
optimizer [56] and Dice loss function [57] with an initial learning rate of 10−4. The patches
were sampled so that 80% included the glottis ROI and 25% of these showed aspirations,
and the remainder were frames labeled as not containing the ROI. Every 500 iterations,
the U-Net was evaluated on the validation data and the Jaccard score to the reference
segmentation was computed. After 15 validation steps without an improvement in the
Jaccard score, the training was stopped. The network state with the highest validation
Jaccard score was retained and selected as the output model (“early stopping”), which
helped to prevent overfitting, which this task on such a relatively small dataset (particularly
when considering frames from the same video to be correlated) [47]. The model output
was post-processed by selecting the largest connected component for the glottis structure
and restricting the vocal cords and aspiration segmentation to this ROI.

2.3. Evaluation

Comparison of the overlap of the surface area (pixels) between human assignment
during annotation and AI-based segmentation of the vocal cords, the glottis ROI, and
aspirated boluses was used to calculate the model’s segmentation performance (Dice score).
Given two binary masks X =

(
xij

)
and Y =

(
yij

)
, the Dice score is defined as

Dice(X, Y) =
2 ∑i,j xijyij

∑i,j xij + ∑i,j yij

To assess the model’s capability of correctly identifying frames where the glottis was
not visible, the number of pixels falsely segmented as glottis ROI were calculated on all
frames labeled as not containing the glottis. A confusion matrix was calculated to make
the aspiration detection capabilities of the AI assessable. The detection performance was
represented by its precision (positive predictive value: how many findings were actually
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aspirations) and recall (sensitivity: how many of the aspirations were found) metrics [58].
Based on these metrics, the F1 score as the harmonic mean of recall and precision was also
calculated, to rate the AI performance between 0 and 1 in a single metric [59]. Given the
number of true-positive (TP), false-positive (FP) and false-negative (FN) predictions of
aspirations, the metrics are defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2

Recall−1 + Precision−1 =
2TP

2TP + FP + FN

Spearman’s rho correlations were calculated for the overlap of AI-segmented boluses
with the size of the reference segmentation in order to investigate whether larger enti-
ties/more pixels could be detected more easily. The calculation of the metrics and the
correlation analysis were performed using the Python packages scikit-learn v0.24.2 [60]
and SciPy v1.5.2 [61].

2.4. Timeline for Interpretation of the Model Outcome

The XAI concept of our approach was based on a human-centered design of the model
output. In order to enable full perceptive interpretability of the model outcome by a post
hoc analysis that relies on the expert knowledge of the diagnostician, we implemented the
concept of identifying meaningful or key frames in sequences [8,9]. This became possible
because we automated the video analysis and applied the CNN to an entire video to
generate a new video in which all AI-based segmentations and detections of aspirations
were drawn into all frames of the video sequence. Furthermore, on a separate screen
window, a timeline was generated that plotted a curve displaying the number of pixels
for the segmentation tasks and the detected aspiration candidates. This provided the
examiner with an overview across the complete video captured at one glance, resulting
in a human-in-the-loop process. In other words, one could then look by scrolling at the
time points where aspiration was detected on several consecutive frames to decide about
the correctness of the AI detection. This human–computer interaction guarantees that the
demands of the EU GDPR [44] are met and provides transparency to the user.

3. Results

In order to provide transparency for the development and explainability for the system
process, the general distribution of the videos in the different datasets will be shown, and
then the number of annotated frames is presented. After that, first general results for the AI
performance are outlined before going into more detail on the segmentation and detection
results. Finally, the XAI approach will be demonstrated.

3.1. Video Distribution across Data Sets and Annotated Frames

Ninety-two videos were included and were split into disjunct sets for training (77.2%, 71),
validation during training (6.5%, 6), and final testing (16.3%, 15). Among the 50 videos with
aspirations, the distribution of bolus types included slurry (21), saliva (18), and liquids (11).
During preparation, 1330 frames were segmented and 2895 frames were labeled as not
showing the glottis. Table 1 shows their distribution across the three data subsets for the
development and evaluation of the AI.
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Table 1. Distribution of annotated frames across the different data sets.

AI Data Subset Segmented Frames Frames with Aspiration Frames Not Showing
Glottis

training 1029 424 2220
validation 103 17 186

test 199 63 489

3.2. AI Training

Figure 2 shows the learning process of the AI. The curves of the learning progress for
glottis and vocal cord segmentation (Jaccard scores 1 and 2) rise steeply from the beginning,
unlike the aspiration detection task (Jaccard score 4), where the AI does not learn until
about 19,000 iterations. After the rise of Jaccard score 4 (aspiration detection), only the
training loss curve, but not the validation loss curve, progresses to decline. The best model
performance based on the mean Jaccard score is reached at 32,000 iterations, building the
basis for the test run.
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Figure 2. Loss curves of training (blue) and validation (red), as well as validation Jaccard scores
(turquoise = mean of all; 1/dotted = segmentation of glottis; 2/dashed = segmentation of vocal cords;
4/dashed and dotted = detection of aspiration), show overlaps with the references. The vertical line
shows the moment of the optimally working model.

3.3. AI Performance

Boxplots for the Dice scores in Figure 3 show high values for the segmentation of the
glottis and few lower values for the vocal cords across all data subsets, with median values
of 0.94 and 0.85, respectively, on the test set.

The plot clearly shows some overfitting, despite early stopping, as the performance
is, overall, higher on the training set than on the validation and test sets, particularly for
aspiration segmentation. During training, the segmentation of aspiration achieves a median
Dice score of 0.75 but drops to a median of 0.32 during validation and 0.13 during testing,
accompanied by a large increase of the inter-quartile range. On frames that were labeled as
not containing the glottis, the model detects false positive pixels in 5.6 %, 4.3 %, and 9.4 %
of frames for training, validation, and test sets, respectively.
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For aspiration detection, a confusion matrix was also calculated (Figure 4) to determine
the performance of the AI. Whenever aspiration was segmented and the Dice overlap with
the reference was greater than 0, the frame was counted as true-positive detection. For the
training data, a very good result could be obtained for true-negative outcomes and a good
result could be obtained for true-positive outcomes. The achieved value for false positives
is in the lower range, which is the range for false negatives as well.
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Additionally, we calculated the resulting values for precision, recall, and F1 score
(Table 2). On the training set, the precision was very high (0.955), meaning that most
detections were indeed aspirations. This dropped to 0.5 during validation and 0.706 during
testing. Among all annotated aspirations, the AI detected 90% during training but only 59%
during validation and 57% during testing. The harmonic mean of both metrics (F1 score)
also dropped from 0.925 to 0.541 and 0.632 for training versus validation and testing,
respectively. As for the segmentation, this also showed the overfitting on the training set.
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Table 2. Metrics for aspiration detection for all data sets.

Metrics Training Validation Test

Precision 0.955 0.500 0.706
Recall 0.898 0.588 0.571

F1 score 0.925 0.541 0.632

Selected video frames in Figure 5 demonstrate this heterogeneity of results. When the
glottis is well visible, the segmentation of the glottis and the vocal cords is very precise
(Figure 5a–c), but may be less robust when the glottis is only partially visible or near the
image edge (Figure 5d). Aspirations can be detected in the correct location (Figure 5d–e),
but can also be overlooked (Figure 5f) or falsely detected—for example, due to light
reflections (Figure 5g). In addition, an ROI segmentation can appear even though the
relevant anatomical structure is not visible/present within the respective frame (Figure 5h,
piriform recess). Despite a correct detection of the aspiration itself, as in (Figure 5d–e), the
segmentation itself may be imprecise, leading to low Dice score values.
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Figure 5. Examples of segmentation results in the test set across different videos: (a–c) high overlap
between references (dotted) and AI-based (drawn through) segmentation in different states (open,
closed) and light conditions, (d) segmentation errors of partially visible glottis close to the image edge,
(e) correct detection of aspiration, (f) missed detection of aspiration, (g) false-positive detection of
aspiration, (h) false-positive segmentation of glottis and vocal cords on frame without visible glottis.
Solid lines denote the automatic segmentation (yellow: glottis ROI, cyan: vocal cords, magenta:
detected aspiration), dotted lines the reference segmentation. Numbers in the upper left corner
denote the index of the frame in the test set.

In order to investigate whether the bolus segmentation might depend on the amount
of aspirated bolus (e.g., the more aspirate, the easier it may be detected), as visualized
in Figure 6, we calculated Spearman’s rho correlations for the overlap of reference and
AI segmentation (Dice score) with the size of aspiration (number of pixels segmented in
reference). The correlation decreases from training (r = 0.62, p = 0) to validation (r = 0.43,
p = 0.08) and testing (r = 0.37, p = 0.003).
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3.4. Interpretability by Identifying Meaningful Frames

As a means for post hoc interpretation of the model outcome by the examiner, we
implemented a concept of identifying meaningful frames in sequences. Therefore, an
automated video analysis applies the CNN to an entire video to create a new video in
which all AI-based segmentations and detections of aspirations are drawn into all frames
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of the video sequence (Figure 7), serving as a first visual aid for key frames. The unmarked
video can be seen in parallel. As a second visual aid, on a separate screen window a timeline
is generated that plots a curve displaying the number of pixels for the segmentation tasks
and the detected aspiration candidates. It also features a further zoom window. Hence, the
examiner is provided with an overview across the complete video, captured at one glance,
and can scroll to meaningful frames for diagnostic purposes.
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Figure 7. Visual aids to find meaningful frames for interpretation of model output. Screenshot of
AI-based segmentation and detection of aspiration results (upper left), respectively, and normal view
(upper right). Timeline and timeline zoom with a curve displaying the number of pixels for the
segmentation tasks and the detected aspiration (below). Vertical line indicates the point in time.

In the given example (Figure 7), slurry parts of yoghurt and saliva become aspirated
and reside above the first cartilage of the trachea (membrana cricothyroidea). The AI detects
the part next to the vocal cords as an aspiration.

4. Discussion

The discussion will first focus on the XAI aspects of our approach; then, the model
accuracy will be mooted.

Due to the human-in-the-loop process and the HCI, our XAI can be considered a
“hybrid” concept that combines data- and knowledge-driven approaches, as well as white-
and black-box modeling approaches. Our attempt provides full post hoc human-based
perceptive interpretability of the model outcome by the examiner. Hence, our concept
of identifying meaningful frames by adding visual aids adds a further example to the
notion of key frame identification as XAI approaches [8,9]. The user can decide, if the AI
explanation is suitable, and based on that the further course for the patient can be planned
(e.g., oral feeding is possible). Therefore, the final explanation provided by the system is
effective and acceptable. This goes beyond most existing approaches for this task (except
the VFSS approach [25]), because they only provide predictions or classifications without
providing proper interpretable information for the diagnostician [28,35,37,42,43,62,63]. As
this lack of transparency conflicts with EU GDPR, which prohibits decisions based solely
on automated processing [44,45], a subsequent FEES or VFSS would become necessary, in
any event, before critical decisions—such as abstinence from food, insertion of a nasogastric
tube, or even re-intubation and tracheotomy—could be made. Furthermore, regarding
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interpretability, our concept of meaningful frames not only enables interpreting the model
output for diagnostic purposes, but also facilitates the ongoing quality and performance
assessment of the model compared to a patient-level black-box prediction, helping to
further develop our decision-support system. Additionally, since in current FEES practice a
retrospective video analysis may already be preferable [18] but is very time-consuming,
our interpretable model output is an appropriate tool for focusing on relevant meaningful
frames, instead of viewing the whole video again.

Regarding the accuracy of the segmentation of anatomical structures, we obtained
very satisfying results that were similar to comparable work in the field [46–48]. Despite
using only selected frames for training and not full videos, we achieved a false-positive rate
for glottis segmentations of only 5% on frames labeled as not containing the ROI, allowing
for the processing of full videos. We expect to be able to further reduce this rate by labeling
more negative example frames, which is a relatively fast annotation operation, as no seg-
mentation is required. Taking into account information from consecutive frames (e.g., using
a recurrent network architecture) would likely help to further reduce spatiotemporal noise
in the predictions.

Hence, we conclude that the general requirement for the second step, the AI-based
detection of aspiration, was fulfilled. To be of use for the clinical workflow, both high recall
(i.e., identification of true aspiration events) and high precision (i.e., not too many false
positives) are desirable. In our preliminary study, we achieved satisfying precision during
training (0.955) and testing (0.706), but slightly lower recall during training (0.925) and
testing (0.571), meaning that a large amount is still overlooked. A trade-off between preci-
sion and recall is typical for detection algorithms; therefore, we might increase recall at the
cost of lower precision. Newly emerging false-positive detections might be eliminated in a
post-processing step. The segmentation accuracy of the detected aspiration was satisfactory
during training (Dice score 0.75) but still needed to be improved during validation (0.32)
and testing (0.13), and was accompanied by a large increase in the inter-quartile range.
Overall, the decline in detection and segmentation performance from training to validation
and testing was unsatisfying. In a qualitative analysis, we looked at samples of mispredic-
tions to evaluate whether the type of bolus (slurry, saliva, liquid) played a role, especially
since we had no equal distribution for them in the training data; however, we were not
able to identify such a contributing factor. When considering the size of the aspiration as
a potential explanation for its detectability within a frame with known aspiration (i.e., a
segmentation), we saw a strong correlation of the true bolus size with the Dice score in the
training data, but it was not as high during validation and testing. While the Dice score
itself is known to correlate with the area-to-contour ratio of a 2D object, this still indicates
that other factors, in addition to bolus size, may impact the segmentation accuracy during
testing—for example, changed lighting conditions. This limited performance can already
be seen in the loss and validation plot of the training process (Figure 2), where the AI shows
signs of overfitting to training data.

Hence, the currently trained AI lacks sufficient generalization for aspiration detection
but not for segmentation of vocal cords and glottis ROI. Regarding the aspiration detec-
tion task, the current model performance might be comparable to that of an untrained
human examiner [21]. Hence, at present, our model does not lead to better results than
comparable non-endoscopic/non-radiologic approaches [28,33,35,37,62,63]; but in clear
contrast to them, our model outcomes, as well as the false positives and negatives, are fully
interpretable and can therefore be corrected by an experienced examiner. This becomes
particularly easy, because the examiner can perform the correct assignment by jumping to
the respective point in the timeline of the video sequence.

Because explainability forms a crucial aspect of XAI but needs to be accompanied by a
profound model performance, and because only this concurrence will lead to the acceptance
of our developed system, we are at present in a re-evaluation process to understand the
limitations of our model for aspiration detection. As explanations for this particularly
unsatisfying model performance at present, we have already identified various limiting
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aspects that can be specifically addressed. First, with 4225 annotated (thereof 1330 seg-
mented) frames, we have only achieved a basic sample for the training. Furthermore, we
did not achieve a homogeneous distribution of annotated frames regarding the different
subtypes of aspiration (i.e., slurry, saliva, liquids); this was only provided for the samples
with and without aspiration (50 vs. 42). Therefore, regarding the training data, there were
far more frames in which the ROI appeared than in which aspirations occurred. We did
apply a sampling strategy to account for part of the imbalance; however, we did not fully
optimize the ratio of frames with and without aspiration, or not showing the ROI at all,
in a hyperparameter tuning step. In the future, we will, therefore, include more patient
videos, annotate significantly more frames (especially more frames with aspirations), and,
in addition, apply more data augmentation techniques to strengthen the robustness. More-
over, we have currently processed the videos in a pure 2D approach, analyzing the video
frame by frame. The 2D approach for training and prediction was chosen on the basis of
our sparsely labeled training set, in which only a few frames per video were manually
annotated and could be directly used for supervised training. To further strengthen the
aspiration detection, we will consider a 2D + T approach—for example, using recurrent
neural networks, which take a temporal sequence of frames into account. To achieve this,
we need to explore strategies for combining labeled and unlabeled frames in the training.
Additionally, we want to implement an online augmented reality approach to highlight
moments of potential aspiration as detected by the AI in a separate small window, while
the endoscopic procedure can continue. This would enable real-time verification, possibly
with an adjustment of the FEES procedure (e.g., retesting a certain type of bolus).

As a further future goal, as well as a general idea for other research groups engaged
in the development of XAI systems in the field of dysphagia diagnostics, we propose to
implement a feedback system, especially for corrections and negative feedback information,
that can be provided by the domain experts. In such an active learning scenario, the
algorithm itself could suggest frames in which it is not clear whether aspiration was
detected or not and ask for feedback. This would enable continuous training or planned
re-training in certain intervals to enhance the model performance, while at the same time
reducing annotation effort when compared with that of an undirected approach. Moreover,
when gaining research partners who are in possession of a reasonable amount of narrow-
band imaging videos showing aspirations [23,24], this could also be used to further facilitate
the AI-based detection. Additionally, we could implement other XAI concepts, such as a
combination of frame-wise classification for aspiration detection and XAI methods such
as GradCAM or Saliency maps [3]. We could compare the output of these methods to
the proposed segmentation to evaluate their usefulness as visual aids. Taken together,
and despite the discussed limitations of the current model’s state, our novel concept of
AI-based detection of aspiration during video-endoscopy with visual aids in meaningful
frames makes it possible to interpret the model outcome. With the proposed XAI approach,
the AI segmentation and the pixel-wise classification as an aspiration can be verified,
thereby providing proper interpretable information for the diagnostician to understand why
subjects were classified, and beyond that, enabling the identification of misclassifications.
This substantially reduces the black-box character of the machine-learning model. Therefore,
our current attempt is an important step in making the identification of meaningful frames
an XAI approach that will become more applicable in clinical contexts.

5. Conclusions

For the first time, we have introduced an XAI that has been trained to detect aspiration
in endoscopic swallowing videos. While detection performance needs to be optimized
significantly in future studies, our architecture resulted in a final model that explains
its assessment by locating specific video frames with relevant aspiration events and by
highlighting the suspected bolus in situ as a meaningful sequence. Hence, in contrast to
existing machine-learning tools for aspiration detection, the AI decision in our framework
is verifiable, interpretable, and, thus, accountable for clinical users. During the next
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development steps, the interaction with dysphagia experts will continuously improve
the outcome.

After the implementation of this tool in FEES software, it will aid endoscopists in
improving accuracy (thereby potentially saving lives), shorten the duration of the adminis-
tration, and save overall costs, as positive contributions to healthcare.
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32. Zhang, Z.; Coyle, J.L.; Sejdić, E. Automatic hyoid bone detection in fluoroscopic images using deep learning. Sci. Rep. 2018,
8, 12310. [CrossRef]

33. Frakking, T.T.; Chang, A.B.; Carty, C.; Newing, J.; Weir, K.A.; Schwerin, B.; So, S. Using an Automated Speech Recognition
Approach to Differentiate Between Normal and Aspirating Swallowing Sounds Recorded from Digital Cervical Auscultation in
Children. Dysphagia 2022, 37, 1482–1492. [CrossRef] [PubMed]
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