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Abstract: Infrared Earth sensors with large-field-of-view (FOV) cameras are widely used in low-
Earth-orbit satellites. To improve the accuracy and speed of Earth sensors, an algorithm based on
modified random sample consensus (RANSAC) and weighted total least squares (WTLS) is proposed.
Firstly, the modified RANSAC with a pre-verification step was used to remove the noisy points
efficiently. Then, the Earth’s oblateness was taken into consideration and the Earth’s horizon was
projected onto a unit sphere as a three-dimensional (3D) curve. Finally, the TLS and WTLS were
used to fit the projection of the Earth horizon. With the help of TLS and WTLS, the accuracy of the
Earth sensor was greatly improved. Simulated images and on-orbit infrared images obtained via the
satellite Tianping-2B were used to assess the performance of the algorithm. The experimental results
demonstrate that the method outperforms RANSAC, M-estimator sample consensus (MLESAC),
and Hough transformation in terms of speed. The accuracy of the algorithm for nadir estimation is
approximately 0.04◦ (root-mean-square error) when Earth is fully visible and 0.16◦ when the off-nadir
angle is 120◦, which is a significant improvement upon other nadir estimation algorithms

Keywords: infrared Earth sensor; modified RANSAC; weighted total least squares

1. Introduction

An accurate and reliable attitude determination system is required for most spacecraft
missions. Attitude determination systems usually consist of multiple sensors, such as a star
tracker, infrared Earth sensor, sun sensor, magnetometer, etc. [1,2]. Among them, infrared
Earth sensors are widely used in spacecraft for their reliability and low cost [3].

Infrared Earth sensors can be roughly divided into two categories: scanning Earth
sensors and static Earth sensors. The scanning Earth sensors rotate along a certain axis and
detect infrared signals from Earth. Then, the roll angle of the spacecraft will be calculated
based on the time that the Earth runs across the sensor’s range of view. Some examples
include STD-15 [4], STD-16 [5], and IERS [6]. Although this kind of Earth sensors could
achieve a high accuracy, they are not well suited for small satellites because of their larger
size and greater power consumption [7].

On the other hand, traditional static Earth sensors use multiple thermopile detectors
to detect the Earth horizon and calculate the spacecraft’s attitude. These include MAI-
SES, manufactured by Maryland Aerospace [3], and HSNS, manufactured by Solar MEMS
Technologies [8]. The MAI-SES’s accuracy is 0.18◦(position known) while the HSNS’s
accuracy is better than 1◦(3σ). Generally, traditional static Earth sensors are low-cost and
easy to implement, but their performance is affected by the variation of radiance in the
atmosphere [9].

In recent years, many static Earth sensors use 2-D image sensors instead of thermopile
detectors. The basic idea is to capture the infrared images of the Earth and extract horizon
points with image-processing algorithms. Then, the Earth horizon points are fitted to
a circle, ellipse, parabola, or hyperbola and the nadir vector will be obtained from the
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parameters of the conic [10]. For example, the accuracy of the digital Earth sensor designed
by SITAEL is better than 1◦ and the Fov is 37◦ × 44◦ (horizontal and vertical) [11]. Saadat
used a miniature vehicle inspection camera as an Earth sensor and the accuracy was
0.69◦(1σ) [12]. Kikuya et al. proposed a three-axis attitude determination algorithm
using a visible-ray camera with a resolution of 3280× 2464 pixels as an Earth sensor [13].
With the help of image identification technology, this Earth sensor’s accuracy was similar
to a coarse sun sensor. Recently, Modenini took the Earth oblateness into account and
proposed a solution to estimate the attitude from imaged elilipsoids [14]. The accuracy of
the roll and pitch determination achieved 0.01◦. The performance of the prototype was
not reported when the off-nadir angle was over 10◦. Furthermore, the sensor prototype
was designed with three different cameras to capture the entire Earth limb, which may
introduce additional error. In [15], Christian modified Modenini’s solution and proposed a
tutorial to infer the relative position, attitude, or both from the observed body’s horizon.
This comprehensive work developed different algorithms for different optical navigation
scenarios. For the spacecraft venturing in low-Earth orbit (LEO), many Earth sensors
use wide FOV cameras, such as cameras with fisheye lens [16]. The most representative
commercial sensor of this kind is the CubeSense manufactured by CubeSpace [17]. Its
accuracy is up to 0.2◦(3σ) if the Earth is fully visible and the FOV is 130◦ (horizontal
and vertical). However, the effect of Earth oblateness is not considered and the accuracy
decreases when the Earth moves towards the edge of the FOV. Barf designed a horizon
sensor with a fisheye camera for sounding rockets [18,19]. Its error is below 0.5◦. Two
Cubesats, Athenoxat-1 and ISARA, also used fisheye cameras to obtain nadir vector, but no
further information about the sensors they used is available [20,21].

In our previous work [22], an Earth sensor composed of a panoramic annular lens
(PAL) and a complementary-metal-oxide-semiconductor (CMOS) infrared camera was
designed. The Earth sensor has been used on multiple missions [23]. Compared with
the Earth sensors using pinhole cameras, it only needs one camera to capture the entire
Earth horizon. It can also operate in low-Earth orbit (LEO) satellites and estimate the nadir
vector even when the off-nadir angle is over 90◦. Similarly to the CubeSense, the accuracy
decreases as the off-nadir angle increases and it did not take the Earth oblateness into
consideration. Additionally, Hough transformation is used to remove outliers, which is
robust but time-consuming.

In order to solve these problems, an algorithm based on modified RANSAC and WTLS
is proposed. The basic idea is to use modified RANSAC to remove the disturbance points,
then the weights of the Earth edge points are calculated. After that, the TLS and WTLS
technique is applied to fit the Earth edge points to a three-dimensional(3D) curve instead
of a conic section. Compared with the conventional Hough transformation and MLESAC
algorithm, the time consumption is dramatically reduced. Furthermore, the accuracy of the
sensor is especially improved when the Earth limb is small.

The main contributions of this paper are:

1. A modified RANSAC with a pre-verification procedure is used to remove outliers.
A small amount of data instead of all measured data are used to qualify the established
models, which is the pre-verification procedure that improves the efficiency.

2. The Earth horizon points are mapped onto the unit sphere instead of the image plane,
which forms a three-dimensional curve instead of a conic section. The 3D curve fitting
is more robust than conic fitting for PAL images or fisheye images.

3. The WTLS is introduced into the 3D curve fitting which is different for each horizon
point’s precision. Consequently, the accuracy of the sensor is improved.

The rest of this paper is organized as follows: In Section 2, the proposed method is
described by covering the modified RANSAC, the expression for the projection of the Earth
horizon points, and WTLS-based 3D curve fitting. In Section 3, the implementation and
performance of the proposed algorithm are denoted. In Section 4, conclusions and future
work are presented.
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2. Algorithm Description

The proposed algorithm consists of five steps. Firstly, the edge detection algorithm
is performed to extract edge points in the image. Secondly, the edge points are mapped
onto the unit image-sphere. Thirdly, the modified RANSAC is performed to remove the
disturbance points. Fourthly, the actual horizon is fitted to a 3D curve with WTLS. Finally,
the Nadir vector is calculated with the coefficients of the curve. The flowchart of the entire
algorithm is shown in Figure 1.

Input image

Edge detection

Modified RANSAC

Project edge points on image plane 
onto a unit sphere

Total Least Squares Fitting 

Off-nadir 
angle<90°

Weighted Total Least Squares Fitting 

Nadir vector Calculation

No Yes

Figure 1. Flowchart of the proposed algorithm.

2.1. Edge Detection

There are several kinds of edge detection algorithms that can be applied to the Earth
horizon detection, such as Sobel, Prewitt, and Canny [24]. To increase the accuracy, we
used the subpixel edge-localization algorithm developed by Christian [25,26]. Sobel edge
detection was used to find the approximate edge location. Then, the subpixel edge localiza-
tion algorithm using Zernike moments was performed to find the accurate edge points in
the image. In this paper, the size of the Zernike masks is 7× 7.
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2.2. Horizon Projection

The lens follows the principle of the flat-cylinder perspective [27]. The FOV of the
PAL camera we used is 360◦ in azimuth and 90◦ in zenith. The imaging formula of PAL is
given by:

r = f θ (1)

where f is the focal length of the PAL, r is the distance between the object and the lens’
center, and θ is the angle from the optical axis. According to [15], the Earth horizon in the
image plane, i.e., the z = 1 plane, must be a conic. Most algorithms project edge points
onto the image plane [28–30]. Set the coordinates of an observed point in the camera frame
as [XC, YC, ZC], then the image plane coordinates of the observed point [xz, yz] are given by:

xz = XC
ZC

yz = YC
ZC

(2)

For an observed point near the edge of FOV, its ZC is close to 0. As a result, its image
plane coordinates will be large and inaccurate, which would lead the conic fitting process
to fail. Thus, projecting the edge points onto the image plane and fitting them to a conic is
not suitable for a wide-FOV camera such as PAL. In order to solve this problem, the edge
points are mapped one-to-one onto the unit image-sphere, just like our previous work.
The mapping is defined as follows:

x = sin θi
ui√

u2
i + v2

i

y = sin θi
vi√

u2
i + v2

i

z = cos θi

(3)

where [x, y, z] are the coordinates of the point on the sphere, and [ui, vi] are the correspond-
ing image coordinates. The angle θi is determined from Equation (1). After the projection,
the Earth horizon on the image-sphere is a 3D curve instead of a conic, and the details shall
be found in Section 2.4.

2.3. Modified RANSAC

The extracted edge points may not only contain the actual Earth horizon, but also the
boundary between areas with different infrared radiance. There are many algorithms that
can be applied to remove the disturbance points: among them RANSAC algorithms are
widely used [31–33]. The classic RANSAC algorithm randomly selects sample points to
establish a model, which is often an error model due to the disturbance points. Thus, all
other points have to be checked if the model was rejected. This means that it is significantly
time consuming. Although the Earth horizon on the image-sphere is a 3D curve, it is also
close to a circle because the Earth’s ellipticity is neglectable. Hence, this information can be
used to verify the model. The basic flow of the modified RANSAC is as follows:

1. Randomly select five sample points. The coordinates of the i-th point are [xi, yi, zi].
2. Calculate the normal vector to the plane determined by three of them using Equation (4):

p = [x1 − x2, y1 − y2, z1 − z2]

q = [x1 − x3, y1 − y3, z1 − z3]

n = −→p ×−→q
(4)

3. Calculate the angles between the normal vector and the vectors pointing from the
origin to the sample points, respectively, θ1 – θ5. θm is the mean of these angles. If the
mean deviation A.D. > T, go back to step 1.
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4. Calculate the angles between the normal vector and vectors pointing from the origin
to the rest points, for instance, θi, if |θi − θm| < T, the point is considered as an inlier.
The number of inliers is denoted as Nk.

5. If Nk > Nmax, then set Nmax = Nk.
6. Repeat steps 1–5 kmax times. Note that, if a set with 50% inliers is discovered, end

the loop.
7. Remove all the outliers and extract the actual horizon. Furthermore, the normal vector

n is approximately the nadir vector and thus the approximate off-nadir angle ϕ can
be obtained.

2.4. Three-Dimensional Curve Fitting

As mentioned above, the projection of the Earth horizon on the unit sphere is a 3D
curve. In this section, the representation of the curve is derived and the fitting method
is described.

2.4.1. Projection of Earth Horizon on the Unit Sphere

The geometry of the Earth sensor and Earth is shown in Figure 2.

XC

YC

ZC

Camera Earth

Unit Sphere Earth Horizon

i
S

OC

OE

r

Figure 2. The geometry of Earth sensor and Earth.

As shown in Figure 2, OC is the origin of the camera coordinate system, while OE is
the Earth’s center. Si is the vector pointing from OC to an Earth horizon point. r is a vector
pointing from OE to OC. The shape matrix of the Earth Ap is calculated as:

Ap =

 1
/

R2
a 0 0

0 1
/

R2
b 0

0 0 1
/

R2
c

 (5)

where Ra = Rb = 6378.137 km and Rc = 6356.755 km [34,35]. According to [15], the vec-
tor from the camera origin to the Earth horizon point in the camera frame, Si, obeys
the constraint:

Si
T MSi = 0 (6)

Normalized Si is the projection of a horizon point on a unit sphere. Furthermore, M is
given by:

M = ArrT A− (rT Ar− 1)A

A = T p
c ApTc

p
(7)

T p
c denotes the rotation matrix from an Earth coordinate system to the Earth sensor’s

coordinate system and Tc
p is the transpose of T p

c . Since M is symmetric, it can be written as:

M =

 a b
/

2 d
/

2
b
/

2 c e/2
d
/

2 e/2 f

 (8)
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Moreover, Equation (6) is rewritten as

ax2 + bxy + cy2 + dxz + eyz + f z2 = 0 (9)

where x, y, and z are the coordinates of the normalized Si. This is the representation of the
projection of Earth horizon on the unit sphere as well as a 3D curve. Since x2 + y2 + z2 = 1,
Equation (9) is the same as

(1− a
f
)x2 − b

f
xy + (1− c

f
)y2 − d

f
xz− e

f
yz = 1 (10)

2.4.2. Weighted Total Least Squares

Define ξ as

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5]
T = [(1− a

f
),− b

f
, (1− c

f
),− d

f
,− e

f
]T (11)

Let [xi, yi, zi] denote the i-th edge point’s coordinates, define ei as

ei = [x2
i , xiyi, y2

i , xizi, yizi] (12)

A linear system can be built based on Equation (10)

Eξ = 1n×1 (13)

where

E =


e1
e2
...

en

 (14)

Since E is noisy, it is more suitable to use the total least squares to estimate ξ [36,37].
Furthermore, the precision of each point’s coordinates is different. Thus, the weighted
total least squares can achieve better accuracy. However, the weighted total least squares
requires more time. Therefore, the total least squares is used to estimate the initial value
of ξ. Then, the weighted total least squares is only performed when the off-nadir angle is
large, because the coordinates of the points near the edge of FOV are less accurate.

The singular value decomposition (SVD) is used to find the solution to the total least
squares problem. Define matrix Ey as

Ey =
[

E 1n×1
]

(15)

Then, singular value decomposition of Ey is performed:

Ey = U ∑ V T (16)

The estimation of ξ is given by:

ξ = −V(1 : 5, 6)
V(6, 6)

(17)

The weighted total least squares will be performed when the approximate off-nadir
angle ϕ is greater than ϕT . The cofactor matrices of the design matrix and observation
vector are denoted by QE and Qy. Qy is set as a zero matrix because the observation vector
is a constant vector.
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Substituting Equation (3) into Equation (12), the functional relationship between the
elements of a design matrix and the coordinates of the edge points on the image is given by:

ei =
[

x2
i , xiyi, y2

i , xizi, yizi
]

=

[
sin2θi

u2
i

u2
i +v2

i
, sin2θi

uivi
u2

i +v2
i
, sin2θi

v2
i

u2
i +v2

i
, sin θi cos θi

ui√
u2

i +v2
i
, sin θi cos θi

vi√
u2

i +v2
i

] (18)

Symbolize the function between ei and [ui, vi] as F. The functional relationship be-
tween E and [ui, vi] is given by:

vec(E) =


F1(u1, v1, u2, v2, · · · un, vn)
F2(u1, v1, u2, v2, · · · un, vn)

...
F5n(u1, v1, u2, v2, · · · un, vn)

 (19)

where vec denotes the operator that stacks one column of a matrix underneath the previous
one. According to the law of the propagation of cofactors [38], QE is calculated by

QE = JuvQuv JT
uv (20)

where Juv is a matrix of partial derivatives

Juv =


∂F1
∂u1

∂F1
∂v1

· · · ∂F1
∂vn

∂F2
∂u1

∂F2
∂v1

· · · ∂F2
∂vn

...
...

∂F5n
∂u1

∂F5n
∂v1

· · · ∂F5n
∂vn

 (21)

Assuming that the precision of observables ui and v1 is the same, then Quv is an identity matrix.
Once the cofactor matrix is obtained, the parameters can be estimated according to [39].

The pseudocode is listed as follows:

ξ0 is estimated from TLS
for i=1 to N do

ξ
′
i−1 = ξi−1 ⊗ In

Qi
1 = ξ

′
i−1

T
QEξ

′
i−1

vec(δi
E) = −QEξ

′
i−1(Q

i
1)
−1(1n×1 − Eξi−1)

δi
E = reshape[vec(δi

E)]
Ei = E− δi

E
ξi = (Ei

T(Qi
1)
−1Ei)

−1Ei
T(Qi

1)
−1(1n×1 − δi

Eξi−1)
end when ‖ξi − ξi−1‖ < ε

Once ξ is obtained, set f to 1, then M is given by:

M =

 1− ξ1 − ξ2
2 − ξ4

2
− ξ2

2 1− ξ3 − ξ5
2

− ξ4
2 − ξ5

2 1

 (22)

With M, the nadir vector can be estimated by Christian’s algorithm, the details of
which can be seen in [15].
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3. Experiments
3.1. Calibration of PAL

Real lenses do not exactly follow the designed projection model. Additionally, the ori-
gin of the Earth sensor coordinate needs to be determined. Thus, it is better to calibrate the
PAL before using it. The PAL lens’ projection model is given by [40]

r(θ) = k1θ + k2θ3 + k3θ5 + . . . (23)

The calibration devices mainly include a two-axis rotator and an infrared source. The details
of the calibration method can be found in [41].

3.2. Simulation System

The proposed algorithm was verified and compared with other studies on a series of
simulated Earth images and real images. The parameters of the optical system are shown
in Table 1.

Table 1. Specifications of the infrared camera.

Parameter Value

Resolution of CMOS 288× 384
Size of one pixel 25 µm× 25 µm
Focal length 2.3 mm
FOV 180◦ × 360◦

Spectral range 8−14 µm
Dimension Φ 40× 30
Weight 40 g

The Earth infrared radiance is effected by latitude, season, and atmospheric pressure,
etc. [42]. The radiance of the Northern Hemisphere increases with increasing latitude in
the summer and decreases with latitude in the winter. The radiance also decreases with
increasing tangent height. The geometry of the tangent height is shown in Figure 3.

Line of sight
Earth sensor

Earth

Figure 3. Geometry of tangent height.

Ref. [43] provided the relation curves of the Earth infrared radiance at different
latitudes as a function of the tangent height HT . The latitudes in [43] were set from 15◦ N
to 90◦ N with a step of 15◦, the seasons was summer and winter, and tangent height was
from −30 km to 70 km. We assumed that the radiance of the Northern Hemisphere in
summer is the same as that of the Southern Hemisphere in winter and the radiance at any
latitude can be calculated by the known profiles using linear interpolation. For example,
the radiance at 20◦ N can be calculated by P15 + (P30 − P15)× (20− 15)

/
(30− 15), where

P15 and P30 denote the radiance at 15◦ and 30◦, respectively. The relationship between
the image intensity and the radiance can be determined according to on-orbit images.
Given a point at equator(0◦N,0 km tangent height), its radiance is denoted by P0, then the
corresponding gray value is set as the mean gray value of the Earth image Ie. The gray
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value of background noise is set as Ib. Then, the relationship between THE image intensity
and radiance is given by:

In =
Ie − Ib

P0
Pn + Ib (24)

The Earth images were simulated as follows:

Step1: Randomly set the Earth sensor’s position and attitude.
Step2: For each pixel of the image sensor, the line of sight is set as the vector from
the camera origin to the pixel’s projection on the unit-image sphere. Calculate the
corresponding tangent height and latitude.
Step3: Calculate each pixel’s radiance with tangent height HT and latitude.
Step4: The image intensity of each pixel is calculated by Equation (24).
Step5: Blur the image by a Gaussian function to simulate the effect of defocusing.
Then, add Gaussian noise to the image.
Step6: Add noisy points to the edge points to simulate the effect of clouds.

Figure 4a,b represent a simulated Earth image without noisy points and a real Earth
image obtained by the Tianping-2B satellite, respectively. Note that the real Earth image
has been cropped.

(a) (b)

Figure 4. (a) Simulated Earth image without noisy points; and (b) Real Earth image.

4. Results
4.1. Computational Efficiency

The modified RANSAC was compared with MLESAC, conventional RANSAC, and
Hough transformation on simulated images. These algorithms were implemented in
MATLAB on PC with Intel Core 3.10 GHz. The iteration number kmax can be calculated with

kmax =
log(1− psuccess)

log(1− (1− rout)
3)

(25)

where psuccess is the probability that the actual horizon is extracted and rout is the ratio of
the outliers. In our simulation, psuccess was set as 90% and rout was set as 80%, which is the
worst case we assumed; then, the iteration number kmax was set as 286. The threshold of
the modified RANSAC T was set as 1◦. The ratio of noisy points was set from 10% to 70%.

The running times of these algorithms are shown in Figure 5. As can be seen,
the Hough transformation is slower than other algorithms. Because it needs to go through
the whole parameter space to find the optimal solution. The modified RANSAC is faster
than MLESAC and conventional RANSAC because the wrong models are eliminated by
the sample points.
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The success rate of these algorithms is shown in Figure 6. As can be seen, the Hough
transformation is more robust than other algorithms, and its success rate remains over 99%.
However, the modified RANSAC can still achieve a success rate of 97.2% when the ratio of
the outliers is 80%, and it can be improved by increasing the iteration number.
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Figure 5. Time consumption vs. the ratio of noisy points.
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Figure 6. Success probability vs. the ratio of noisy points.

4.2. Accuracy

The proposed nadir vector estimation algorithm (TLS and WTLS) was tested on
simulated images along with the circle fitting algorithm [22] and non-iterative nadir vector
estimation algorithm [19]. The orbit altitude was set to 600 km. The off-nadir angle was set
from 0◦ to 120◦ with a step of 0.1◦. For each off-nadir angle, 500 images were generated.
The rotation matrix and latitude of the Earth sensor in these images were randomly set.

The nadir vector error represents the angular separation between the estimated nadir
vector and the true nadir vector. The root mean square (RMS) of the nadir vector error is
shown in Figures 7 and 8. As can be seen, when the off-nadir angle is below 90◦, using TLS
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and WTLS to fit the Earth horizon can achieve nearly the same accuracy. Their RMS errors
(RMSEs) are below 0.1◦. When the off-nadir angle is below 25◦, which is the scenario in
which the Earth is fully visible, their RMSEs are approximately 0.04◦. As for the circle-fitting
algorithm and non-iterative algorithm, their RMSEs are over 0.1◦. This is mainly because
these algorithms did not consider the Earth’s oblateness. The Earth’s oblateness may cause
a maximum error of 0.19◦. When the off-nadir angle is over 90◦, the RMSE of TLS fitting
increases from 0.1◦ to 0.27◦, while the RMSE of WTLS fitting increases from 0.1◦ to 0.16◦.
Thus, our algorithm uses WTLS to fit the Earth horizon when the off-nadir angle is over
90◦. As for the circle fitting algorithm and non-iterative nadir vector estimation algorithm,
their RMSEs are approximately 0.14◦ and 0.15◦, respectively. However, the accuracy of
these algorithms would be worse when the latitude is near 45◦.
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Figure 7. RMS error of the nadir vector vs. off-nadir angle. Off-nadir angle = 0–90◦.
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Figure 8. RMS error of the nadir vector vs. off-nadir angle. Off-nadir angle = 90–120◦.
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Compared with Cubesense, whose accuracy is 0.2◦(3σ) when Earth is fully visible,
the accuracy of our algorithm is similar, however, the Earth’s oblateness is considered in
our algorithm and the resolution of our Cmos is lower. Furthermore, our algorithm is
more accurate when the off-nadir angle is large. Furthermore, compared with another
commercial sensor MAI-SES whose accuracy is 0.18◦ (RMSE), our algorithm outperforms.

4.3. Performance on Real Earth Images

The Earth sensor was carried on the Tianping-2B satellite, which was developed by
Zhejiang University and launched in March 2022. Several images of Earth were taken in
orbit, as shown in Figures 9 and 10. As shown in Figures 9c and 10c, the red lines on the
sphere are the 3D curves formed by Earth horizon points. Because the attitude matrix of
the satellite is unknown when taking pictures, it is difficult to evaluate the accuracy of the
proposed algorithm. However, the efficiency of the algorithm can be evaluated. Table 2
shows the time for the three algorithms to remove outliers. As can be seen, the proposed
algorithm is more efficient.

(a) (b) (c)

Figure 9. (a) Real Earth image. (b) Edge detected. (c) Actual horizon extracted.

(a) (b) (c)

Figure 10. (a) Real Earth image. (b) Edge detected. (c) Actual horizon extracted.

Table 2. The time for outlier detection.

Algorithm Figure 8 Figure 9

Proposed algorithm 8.89 ms 13.84 ms
Hough transformation 35.66 36.13 ms
MLESAC 27.94 ms 33.36 ms

5. Conclusions

A nadir vector estimation algorithm combining a modified RANSAC and TLS is
proposed in this paper. It was intended to improve the efficiency and accuracy of Earth
sensors with large-wide-FOV cameras. The algorithm uses a modified RANSAC algorithm
to remove the noisy points and projects the Earth horizon onto the unit sphere as a 3D curve
instead of a conic, which is more suitable for large-wide-FOV cameras. Then, the TLS and
WTLS techniques are used to fit the 3D curve and improve the accuracy. The algorithm also
takes the Earth’s oblateness into consideration. The experiments show that this algorithm
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is efficient and the accuracy is 0.04◦ when the Earth is fully visible. The RMSE increases as
the off-nadir angle increases, but it can still achieve an accuracy of 0.16◦ when the off-nadir
angle is 120◦. Furthermore, the proposed algorithm is much faster in dealing with real
pictures taken in orbit than those of the Hough transformation and MLEASAC. Future
work will focus on further improving the accuracy and validating the proposed algorithm
to be used in an Earth sensor.
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