
Citation: An, Q.; Cai, Y.; Zhu, J.;

Wang, S.; Han, F. Multi-Target

Tracking Algorithm Combined with

High-Precision Map. Sensors 2022, 22,

9371. https://doi.org/10.3390/

s22239371

Academic Editor: Mateusz

Malanowski

Received: 27 October 2022

Accepted: 28 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Target Tracking Algorithm Combined with
High-Precision Map
Qingru An 1,†, Yawen Cai 2,† , Juan Zhu 3,*, Sijia Wang 4 and Fengxia Han 5

1 Beijing Rxbit Electronic Technology Co., Ltd., Beijing 100081, China
2 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
3 School of Physics & Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
4 The Trade Desk Inc., 42 N Chestnut St., Ventura, CA 93001, USA
5 School of Software Engineering, Tongji University, Shanghai 201804, China
* Correspondence: journey1022@126.com
† These authors contributed equally to this work.

Abstract: On high-speed roads, there are certain blind areas within the radar coverage, especially
when the blind zone is in curved road sections; because the radar does not have the measurement
point information in multiple frames, it is easy to have a large deviation between the real trajectory
and the filtered trajectory. In this paper, we propose a track prediction method combined with a
high-precision map to solve the problem of scattered tracks when the targets are in the blind area.
First, the lane centerline is fitted to the upstream and downstream lane edges obtained from the high-
precision map in certain steps, and the off-north angle at each fitted point is obtained. Secondly, the
normal trajectory is predicted according to the conventional method; for the extrapolated trajectory,
the northerly angle of the lane centerline at the current position of the trajectory is obtained, the
current coordinate system is converted from the north-east-up (ENU) coordinate system to the vehicle
coordinate system, and the lateral velocity of the target is set to zero in the vehicle coordinate system
to reduce the error caused by the lateral velocity drag of the target. Finally, the normal trajectory is
updated and corrected, and the normal and extrapolated trajectories are managed and reported. The
experimental results show that the accuracy and convergence effect of the proposed methods are
much better than the traditional methods.

Keywords: FMCW radar; high-precision map; Kalman filtering; data association

1. Introduction

In recent years, the number of cars has been growing, and the pressure on highway op-
erations has risen. The key point of building an intelligent traffic system (ITS) is monitoring
road traffic. The most common sensor used for highway monitoring is a vision sensor [1],
such as a camera commonly found on highways. Although video image processing tech-
nology is a new traffic detection method that has been gradually developed in recent years,
it is wireless, flexible in use, can detect multiple traffic parameters at once, and has a large
detection range, and it has a very broad application prospect with the rise of high-definition
cameras, deep learning, artificial intelligence, and other technologies [2–10]. However,
the detection performance of vision sensors is significantly reduced under bad weather
conditions such as low light, rain, snow, and fog. In addition, vehicle detection on highways
using vision sensors is also prone to driver privacy issues. Other researchers have pro-
posed using satellite remote sensing images to identify vehicles and roads to control traffic
congestion on roads and identify traffic density quickly and accurately [11–27]. However,
this method is computationally intensive and is not conducive to real-time processing. In
the development of highways into the process of intelligent construction, millimeter-wave
radar has the features of all-day and all-weather operation, is independent of the external
light environment, and the radar sensor has the characteristics of high accuracy, small size,
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and being a good estimate of the location of the vehicle target and speed information, so it
has been widely used in the field of high-speed traffic [28].

In recent years, more and more scholars have begun researching the use of radar to
monitor the traffic environment, and the problem of multiple object tracking (MOT) [29–33]
has been a subject of great importance to scholars both at home and abroad. Different
approaches for blind zone tracking have been proposed. A Joint Integrated Probabilistic
Data Association Filter (JIPDAF) [34] method is proposed to track pedestrians in front vision
and vehicle blind spots. The JIPDAF method is based on a camera and radar sensor, and
it is easier to suppress false alarms of blind spot radar (BSR). Researchers have proposed
a non-myopic multi-sensor collaborative scheduling method [35] for tracking the ground
maneuvering target in the presence of the detection blind zone (DBZ). The method not only
considers the immediate reward of the sensor scheduling action, but also takes into account
the future expected reward over the prediction time horizon. Most of the existing methods
of the blind zone for target detection and tracking are based on various sensors, but few
researchers are involved in target tracking in a single radar blind zone on the highway.

There are certain blind zones in the radar coverage, especially when there are radar
blind spots on curved roads. In addition, due to the absence of measurement point infor-
mation in multiple frames, it is easy to have a significant deviation between the real track
and the filtered track, resulting in a scattered track. Therefore, to solve this problem, this
article proposes a track prediction method combined with high-precision maps. First, the
lane centerline is fitted to the upstream and downstream lane edges obtained from the
high-precision map in certain steps, and the off-north angle at each fitted point is obtained.
Secondly, the normal trajectory is predicted according to the conventional method, and
for the extrapolated trajectory, the northerly angle of the lane centerline at the current
position of the trajectory is obtained, the current coordinate system is converted from the
north-east-up (ENU) coordinate system to the vehicle coordinate system, and the lateral
velocity of the target is set to zero in the vehicle coordinate system to reduce the error
caused by the lateral velocity drag of the target. Finally, the normal trajectory is updated
and corrected, and the normal and extrapolated trajectories are managed and reported.

This paper is organized as follows: the relevant theory is briefly introduced in Section 2.
Section 3 provides an overview of the algorithmic system, including the main techniques
of the algorithm and the algorithmic process. Experimental results and analysis are given
in Section 4. Finally, the conclusions are given in Section 5.

2. Relevant Theory
2.1. Coordinate System Conversion

In the article, four coordinate systems are mainly involved: WGS-84 geodetic coordi-
nate system, north-east-up (ENU) coordinate system, radar coordinate system, and vehicle
coordinate system.

The WGS-84 coordinate system is the abbreviation of the 1984 World Geodetic System
(WGS). It represents points on the Earth in terms of three quantities: latitude, longitude,
and altitude, also known as the LLA coordinate system. As shown in Figure 1, latitude
is the angle between the normal of the reference ellipsoidal plane across point P and the
equatorial plane, with latitude values ranging from −90◦ to +90◦, positive for the northern
hemisphere and negative for the southern hemisphere. Longitude is the angle between the
meridian plane passing through point P and the prime meridian, with longitude values
between −180◦ and +180◦. The altitude is the distance normal to the reference ellipsoid
from point P. It is negative inside the reference ellipsoid and positive outside.

The Earth-Centered, Earth-Fixed (ECEF) coordinate system is a Cartesian coordinate
system with the center of the earth as the origin, as shown in Figure 2. The z-axis is parallel
to the Earth’s axis and points to the north pole, the x-axis points to the intersection of
the prime meridian and the equator, and the y-axis points to the intersection of 90◦ east
longitude and the equator. Where a represents the major axis of the earth and b represents
the minor axis of the earth.
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The local Cartesian coordinate system is also called the north-east-up (ENU or NEU)
coordinate system, with the selected observation point as the origin, the due east direction
as the x-axis, the due north direction as the y-axis, and the direction pointing to the sky as
the z-axis.

The radar coordinate system is a Cartesian coordinate system with the radar installa-
tion position as the origin, with the radar beam pointing direction as the y-axis, and with
the y-axis oriented 90◦ clockwise as the x-axis.

The vehicle coordinate system is a Cartesian coordinate system with the selected
observation point as the origin, with the direction of vehicle travel as the y-axis, and with
the y-axis 90◦ clockwise as the x-axis.

2.1.1. LLA Coordinate System Converted to ENU Coordinate System

The conversion of the LLA coordinate system to the ENU coordinate system requires
the use of the ECEF coordinate system as a transition. For a point in space, the conver-



Sensors 2022, 22, 9371 4 of 17

sion relationship from longitude–latitude–altitude coordinates (L, B, H) to the Cartesian
coordinate system (X, Y, Z) is as follows.

X = (N + H) cos B cos L
Y = (N + H) cos B sin L
Z = [N(1− e2) + H] sin B

(1)

where N = a/
√

1− e2 sin2 B and N is the radius of curvature in the prime vertical at that
point. e2 = (a2 − b2)/a2; a, b, and e are the long semi-axis, short semi-axis, and the first ec-
centricity of the reference ellipsoid corresponding to the ECEF coordinate system, respectively.

The conversion of the ECEF coordinate system (X, Y, Z) to the ENU coordinate system
(E, N, U) is calculated as follows.

E = − sin L0 · (X− X0) + cos L0 · (Y−Y0)
N = − sin B0 cos L0 · (X− X0)− sin L0 sin B0 · (Y−Y0) + cos B0 · (Z− Z0)
U = cos B0 cos L0 · (X− X0) + cos B0 sin L0 · (Y−Y0) + sin B0 · (Z− Z0)

(2)

where (X0, Y0, Z0) is the representation of the coordinate origin of the ENU coordinate sys-
tem in the ECEF coordinate system, and (L0, B0, H0) is the representation of the coordinate
origin of the ENU coordinate system in the LLA coordinate system.

Equation (2) can also be expressed asE
N
U

 = R ·

X− X0
Y−Y0
Z− Z0

 (3)

where R =

− − sin L0 cos L0 0
sin B0 cos L0 − sin B0 sin L0 cos B0
cos B0 cos L0 cos B0 sin L0 sin B0

.

2.1.2. LLA Coordinate System Converted to Radar Coordinate System

First, the LLA coordinate system is converted into the ENU coordinate system, the
installation position where the current radar is located is used as the origin of the ENU
coordinate system, and then the ENU coordinate system is rotated by an angle around the
z-axis according to the magnitude of the off-north angle of the radar (the angle between
the radar irradiation direction and the due north direction) to obtain the radar coordinate
system. The conversion of the ENU coordinate system to the radar coordinate system is
performed as follows.

Figure 3 shows a schematic diagram of the conversion of the ENU coordinate system
to the radar coordinate system, where the conversion formula is{

ax1 = ax cos ψ + by sin ψ
by1 = by cos ψ− ax sin ψ

(4)

2.1.3. LLA Coordinate System Converted to Vehicle Coordinate System

The process of converting the LLA coordinate system to the vehicle coordinate system
is the same as the process of converting the LLA coordinate system to the radar coordinate
system, except that the origin of the vehicle coordinate system is the radar installation
position with the number 0.

2.2. System Model
2.2.1. Equation of State

On high-speed roads, vehicles generally maintain a uniform motion, so we use the
constant-velocity (CV) model to describe the motion of vehicle targets. The equation of
state is an assumption of the law of motion of the target. For example, assuming that the
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target moves in a uniform linear motion in a two-dimensional plane, the state (xk, yk) of
the target at moment tk under the discrete-time system may be expressed as

xk = x0 + vtk = x0 + vxkT (5)

yk = y0 + vytk = y0 + vykT (6)

where (x0, y0) is the position of the target at the initial moment, vx and vy are the velocities
of the target in the x-axis and y-axis, respectively, and T is the sampling time interval.
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Equations (5) and (6) can be expressed in recursive form as

xk+1 = xk + vxT = xk +
.
xkT (7)

yk+1 = yk + vyT = yk +
.
ykT (8)

Consider the impossibility of obtaining an accurate model of the target and many
unpredictable phenomena. In other words, the target cannot do absolute uniform motion,
and its velocity must have some small random fluctuations; for example, the target in the
process of uniform speed, the driver or environmental disturbances, etc., can cause unpre-
dictable changes in velocity, and these small changes in velocity can be regarded as process
noise to the model. Thus, after the introduction of process noise, Equations (7) and (8)
should be expressed as follows

xk+1 = xk +
.
xkT +

1
2

vxT2 (9)

yk+1 = yk +
.
ykT +

1
2

vyT2 (10)

where vx and vy denote the random variation in the target x-axis and y-axis velocities,
respectively, and the velocity of the target can be expressed as

.
xk+1 =

.
xk + vxT (11)

.
yk+1 =

.
yk + vyT (12)

In the uniform velocity model, the state vector describing the dynamic characteristics
of the system is X(k) = [xk yk

.
xk

.
yk]

T . Then, Equations (9)–(12) can be expressed in matrix
form as 

x(k + 1)
y(k + 1)
.
x(k + 1)
.
y(k + 1)

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1




x(k)
y(k)
.
x(k)
.
y(k)

+


0.5T2 0
0 0.5T2

T 0
0 T

[vx
vy

]
(13)
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That is, the target state equation can be expressed as

X(k + 1) = F(k)X(k) + Γ(k)v(k)
= F(k)X(k) + V(k)

(14)

where v(k) = [vx, vy]
T is the process noise vector, F(k) =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 is the state trans-

fer matrix of the system, Γ(k) =


0.5T2 0
0 0.5T2

T 0
0 T

 is the process noise distribution matrix, and

V(k) is a zero-mean, white Gaussian measurement noise sequence with covariance Q(k).

2.2.2. Measurement Equation

The measurement equation is an assumption of the radar measurement process; for
linear systems, the measurement equation can be expressed as

Z(k + 1) = H(k + 1)X(k + 1) + W(k + 1) (15)

where Z(k + 1) is the measurement vector; H(k + 1) is the measurement matrix; W(k + 1) is
a zero-mean, white Gaussian measurement noise sequence with covariance R(k+ 1), i.e., the
measurement noise at different moments is independent of each other, and the process
noise sequence is assumed to be independent of the measurement noise sequence and the
initial state of the target.

When modeling the target in the two-dimensional plane with uniform motion, the corre-
sponding state variable is X(k) = [xk yk

.
xk

.
yk]

T, the measurement vector is Z(k) = [xk yk
.
xk

.
yk]

T ,
and the corresponding measurement matrix is

H(k) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (16)

2.3. Filtering Model

The Kalman filter is a filter under the linear mean square error criterion for non-smooth
problems with finite observation intervals.

The minimum mean square error estimate for the time-varying case can be defined as

X̂(k|k) = E[X(k)|Zk] (17)

where
Zk = {Z(j), j = 1, 2, . . . , k} (18)

The state error covariance matrix accompanying Equation (17) is defined as

P(k|k) = E
{
[X(k)− X̂(k|k)][X(k)− X̂(k|k)]T |Zk

}
(19)

Applying the expectation operator conditioned on Zk to Equation (14) yields a one-step
prediction of the state as

X̂(k + 1|k) = E[X(k + 1)|Zk] = E[F(k)X(k) + V(k)|Zk]
= F(k)X̂(k|k) (20)
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The error of the predicted value is

X̃(k + 1|k) = X(k + 1)− X̂(k + 1|k) = F(k)X̃(k|k) + V(k) (21)

The one-step prediction covariance is

P(k + 1|k) = E[X̃(k + 1|k)X̃T
(k + 1|k)|Zk]

= E
{
[F(k)X̃(k|k) + V(k)][FT(k)X̃

T
(k|k) + VT(k)]|Zk

}
= F(k)P(k|k)FT(k) + Q(k)

(22)

Similarly, the predicted value of the measurement can be expressed as

Ẑ(k + 1|k) = E[Z(k + 1)|Zk] = E
{
[H(k + 1)X(k + 1) + W(k + 1)]|Zk

}
= H(k + 1)X̂(k + 1|k)

(23)

In turn, the difference between the predicted and measured values of the measurement
can be found as

Z̃(k + 1|k) = Z(k + 1)− Ẑ(k + 1|k) = H(k + 1)X̃(k + 1|k) + W(k + 1) (24)

The predicted covariance (or new interest covariance) of the measure is

S(k + 1) = E[Z̃(k + 1|k)Z̃T
(k + 1|k)|Zk]

= E
{
[H(k + 1)X̃(k + 1|k) + W(k + 1)][HT(k + 1)X̃

T
(k + 1|k) + WT(k + 1)]|Zk

}
= H(k + 1)P(k + 1|k)HT(k + 1) + R(k + 1)

(25)

The Kalman gain is

K(k + 1) = P(k + 1|k)HT(k + 1)S−1(k + 1) (26)

Further, the state update equation at moment k + 1 can be found as

X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)v(k + 1) (27)

where v(k + 1) is the measurement residual, i.e.,

v(k + 1) = Z̃(k + 1|k) = Z(k + 1)− Ẑ(k + 1|k) (28)

The covariance update equation is

P(k + 1|k + 1) = P(k + 1|k)− P(k + 1|k)HT(k + 1)S−1(k + 1)H(k + 1)P(k + 1|k)
= [I−K(k + 1)H(k + 1)]P(k + 1|k)

(29)

3. System Overview
3.1. Main Technologies
3.1.1. High-Precision Map Lane Line Fitting

In the radar Cartesian coordinate system, two lane centerlines are fitted according to
the Y values of the road edges given by the high-precision map in certain steps (e.g., 10 m),
but the Y values are discrete and the X values corresponding to the Y values selected by a
certain step distance each time do not necessarily exist in the high-precision map, so we
need to interpolate to obtain the corresponding X values. The Lagrangian interpolation
method can find a polynomial that takes exactly the observed value at each observed point,
and the details of the algorithm are as follows.

For a certain polynomial function, it is known that there are k + 1 given taking points:
(x0, y0), (x1, y1), . . . , (xk, yk), where xj(j = 0, 1, 2, . . . , k) corresponds to the position of the
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independent variable, and yj(j = 0, 1, 2, . . . , k) corresponds to the value of the function
taken at this position.

Assuming that any two distinct xj are different from each other, the Lagrangian
interpolation polynomial obtained by applying the Lagrangian interpolation formula is

L(x) =
k

∑
j=0

yjlj(x) (30)

where each lj(x) is a Lagrangian fundamental polynomial (or interpolating basis function)
with the expressions

lj(x) =
k

∏
i=0,i 6=j

x− xi
xj − xi

=
x− x0

xj − x0
. . .

x− xj−1

xj − xj−1

x− xj+1

xj − xj+1
. . .

x− xk
xj − xk

(31)

The Lagrangian fundamental polynomial lj(x) is characterized by taking the value 1
on xj and 0 at other points xi(i 6= j).

In the actual Lagrangian interpolation process, we use k = 2 and select three actual
high-precision map lane information points.

3.1.2. Data Association Algorithm

In the data association process, we use the computationally simple Nearest-Neighbor
Data Association (NNDA) Algorithm, which works by first setting up a tracking wave
gate, and the echoes obtained by the initial screening of the tracking wave gate become
candidate echoes.

A tracking wave gate is a subinterval in the tracking space centered at the predicted
position of the tracked target. The size of the tracking wave gate should be designed to
ensure that the correct echoes are received with a certain probability. The simplest method
of correlation wave gate formation is to define a rectangular region in the tracking space,
i.e., a rectangular wave gate.

Let the measurement residual v(k + 1), the i-th component of the measure Z(k + 1),
and the predicted value of the measure Ẑ(k + 1|k) be denoted by vi(k + 1), Zi(k + 1),
and Ẑi(k + 1|k), respectively, and the i-th row and j-th column element of the predicted
covariance S(k + 1) be denoted by Sij. When all components of the measure Z(k + 1) satisfy
Equation (32), the measure Z(k + 1) is said to fall into the rectangular wave gate and the
measure is a candidate echo.

|vi(k + 1)| = |Zi(k + 1)− Ẑi(k + 1|k)| ≤ KG
√

Sii i = 1, 2, 3, 4 (32)

where KG is the wave gate constant.
In practice, we first set a smaller wave gate (KG = 2) and initially select the association

list of the track and the measurement; the association list includes the index of the track and
the measurement points; the correlation weights and the association weights are calculated
as shown in Equation (33); the square of the Mahalanobis distance between the track and
the measurement points is used as the weights.

The remaining unassociated tracks are associated with the measurement points for a
second large wave gate (KG = 5), and to prevent the large wave gate association weights
from being smaller than the association weights of the small wave gate, the association
weights of the large wave gate are all increased by a larger fixed value, and the associated
results are merged into the association list. Finally, the optimal association is obtained
from the association list to obtain the final association list according to the idea of the
greedy algorithm.

d2(Z) = [Z− Ẑ(k + 1|k)]TS−1(k + 1)[Z− Ẑ(k + 1|k)] (33)
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3.1.3. Track Prediction Combined with High-Precision Map

When the vehicle target is located in the radar blind zone, continuous multi-frame
prediction of the track tracking process is needed as the track filtering result when there is
no measurement point, especially when the blind zone is at a curve. The filtering result
without measurement is likely to make the filtered track deviate greatly from the real track,
resulting in the track divergence. Therefore, instead of using the velocity vector of the
track itself for position prediction within the radar blind spot, the coordinates of the track
position and velocity information are converted from the ENU coordinate system to the
vehicle coordinate system by matching the off-north angle of the lane centerline. In the
vehicle coordinate system, the lateral velocity of the target becomes zero, and the target is
predicted according to the lane direction, which can prevent the divergence of the track due
to its lateral velocity component. After completing the track filtering, the vehicle coordinate
system is transferred back to the ENU coordinate system.

3.2. Tracking Master Process

On the highway, the tracking of vehicle targets requires the measurement information
of the target to correct the predicted state of the target. However, when the target is in the
radar blind zone, especially in the curved road, as shown in Figure 4, the predicted track
with no measurement point correction in multiple frames will be output as the final track,
which is likely to cause the output track to deviate from the real track or even diverge. To
solve this problem, when the target is driving in a blind zone or the measurement is missed,
the track can be predicted by combining high-precision maps. The algorithm steps are
as follows:
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Step 1: Divide the four edges of the high-precision map according to the coverage area
of radar power.

Step 2: Using the radar’s latitude and longitude coordinates and off-north angle
information given by the high-precision map, the four sidelines within each radar coverage
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area are converted from the LLA coordinate system to the corresponding radar coordinate
system under the corresponding radar.

Step 3: Using the road edge data in the radar coordinate system, according to the
method in Section 3.1.1, the road edge is fitted with a certain step (such as 10 m) to obtain
the corresponding horizontal coordinate values, and then the coordinates of the road
centerline at the corresponding distance are obtained.

Step 4: By taking the position relationship between the centerline points of two adjacent
lanes, the offset angle ∆θ of each differential point in the radar coordinate system is obtained,
and then, combined with the current radar off-north angle θ, an angle θ′ = θ + ∆θ can be
calculated as the off-north angle of the lane of the differential section.

Step 5: Traverse the list of tracks reported at the last moment in the ENU coordinate
system, and predict the position and speed information of each track.

Step 6: Adaptively set the predictive model noise Q for the transient track list according
to the variable tick values and update the covariance matrix P of the track according to
Equation (22).

Parameter tick is mainly used to set the track reporting module and the covariance
matrix Q of noise. In the experiment, when tick > 8, the track is considered to be a stable
track, reaching the standard of track reporting. For the covariance matrix Q of noise, set
Q = k · diag[0.0009 0.0009 0.0004 0.0004] during initialization, where k is the coefficient.

When tick ≤ 8, set k = 1, and it is assumed that the mobility of the target movement
is small, which is beneficial to filtering the unstable track. When tick > 8, setting k = 100
can effectively track the target with strong mobility. The settings of the above parameters
are all obtained after the comparative analysis of the experimental results, and they have
obvious advantages in the experimental results.

Step 7: Associate the trajectory with the measurement points once with a smaller wave
gate (KG = 2) to obtain a list of all associations, which includes the indexes and association
weights of the tracks and the measurement points.

Step 8: Associate the remaining unassociated tracks with the measurement points
for a second time with a large wave gate, and merge the association results into the
association list.

Step 9: Obtain the optimal association from the association list to obtain the final
association list according to the greedy algorithm.

Step 10: Update the track states according to Equations (23)–(29).
Step 11: For the track without measuring point information, the prediction result

of Step 5 is canceled, the track prediction method combined with a high-precision map
is adopted, and add 1 to the track quality parameter age. First, the track is transferred
from the ENU coordinate system to the radar coordinate system according to Equation (4),
and then the target track is transferred from the ENU coordinate system to the vehicle
coordinate system according to the Y value of the track matching the off-north angle of the
corresponding lane center line. The lateral velocity component of the target is set to zero,
and the predicted track is predicted according to the vehicle motion model. Finally, the
predicted track is converted back to the ENU coordinate system.

Parameter age is mainly used for the track termination module and track extrapolation
judgment. When age > 600, the track termination condition is met. When 5 ≤ age ≤ 600,
that is, there are more than 5 frames of the track that are not related to the measurement
point, which meets the conditions of track extrapolation. The track filtering algorithm
combined with the high-precision map proposed in this paper is adopted. When age > 600
is satisfied or there are measurement points on the track for more than 5 consecutive frames,
stop track extrapolation and set age to zero.

The track quality parameter age and tick are two criteria to measure the track quality
in track management, which are related to whether the target track can be related to the
measurement points. If there are no measurement points in the current track, the age value
will be increased by 1, and if there are measurement points in the track, the tick value will
be increased by 1.
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Step 12: Initial track generation for measurement points that are not associated.
Step 13: For the updated list of transient tracks, report the tracks that meet the

reporting conditions.
Figure 5 shows the overall flow of the tracking algorithm in this paper. Therefore,

when the target is within the radar irradiation range, the traditional track filtering method
is used to filter the target track. When the target is in the radar blind area, the multi-target
tracking algorithm combined with the high-precision map proposed in this paper is used to
filter the target. Compared with the traditional multi-target tracking algorithm, we consider
the situation of target tracking in the radar blind zone.
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4. Results

This section aims to evaluate the track filtering results of the proposed method for
targets in radar blind zones in complex scenarios. We compare the filtering results of a
radar deployed on a highway in two scenarios: on a straight road and a curved road.

4.1. Parameters

The traffic radar used in this experiment is based on a 79 GHz millimeter-wave
radar, cascaded with a long-range antenna, a medium-range antenna, and a short-range
antenna, each with a different downward tilting installation angle, to achieve a long-range
radar coverage of 45 m~550 m, breaking the limitation of the traditional antenna beam
coverage and achieving a longer-range radar coverage to meet the current road detection
requirements. The specific parameters of the traffic radar are shown in Table 1.

The radar is mounted in the middle of the green belt between the upstream lane and
downstream lane at a height of 10 m. Figure 6 depicts the coverage of traffic radar, from
which it can be seen that there is a 45 m radar blind zone for a single radar. On high-speed
roads, as in Figure 7, two radars are mounted at one radar installation point with opposite
irradiation directions, so there is a radar blind zone of approximately 90 m. The supporting
components have no shielding surface, which will not interfere with the electromagnetic
waves emitted by radar, and will not affect the detection of objects.
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Table 1. Traffic radar parameters.

Parameters Short-Range Medium-Range Long-Range

Installation inclination (elevation angle) 1◦ 3◦ 6◦

Installation inclination (azimuth angle) 0◦ 0◦ 0◦

Range 45 m–120 m 100 m–220 m 200 m–550 m

Range resolution ±0.2 m

FOV (elevation angle) ±6◦ ±4.4◦ ±4.4◦

FOV (azimuth angle) Covering 10 lanes (50 m)

Maximum velocity −250 km/h ~ +250 km/h

Velocity resolution ±0.1 m/s

Installation height 10 m

Central Frequency 79 GHz
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4.2. Straight Roads

In a straight road, the radar covers five upstream lanes and five downstream lanes.
Figure 8 represents the filtered output of the track, which shows that there is a blind zone
at the location of the radar installation.
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Figure 9 shows the radar track filtering results. Figure 9a is the track filtering result
of the traditional method. It can be seen from the figure that although there is no track
deviation of the vehicle target in the radar blind zone, the track filtering at the junction of
the radar blind zone and the radar irradiation area is not smooth, so it can be concluded
that the track filtering result obtained by the traditional method in the radar blind zone is
quite different from the real track. Compared with the track filtering results in Figure 9a,
the track filtering results in Figure 9b combined with high-precision maps are smoother,
and the track filtering results in the radar blind area are closer to the real track of the
target. There are some false detection targets in lane 4 and lane 5 of the downstream lane
in Figure 9, which belong to the signal detection part. However, this paper discusses the
multi-target tracking processing, which belongs to the data processing part, and does not
deal with the false detection generated by the signal processing part.
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In the experiment, the data we used for the test contained thousands of frames of
radar echo data, so what we presented on the result chart was only a small part of the test
data. In Figure 9b, the five lanes above the radar are upstream lanes, and the downstream
lanes of the five lanes below the radar have opposite driving directions. The red track of the
fourth upstream lane and the blue track of the fourth downstream lane are the beginning
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of the data we selected, but the track of the target before that has not been selected by us.
The blue track of the fourth upstream lane and the red track of the third downstream lane
are the last stages of our data selection, after which the target track has not been selected.
Therefore, the discontinuous tracks in the figure are not the same target, only because some
target tracks are not completely presented in the process of intercepting data.

4.3. Curved Roads

In the curved road, the radar covers five upstream lanes and five downstream lanes.
Figure 10 represents the filtering results of the output trajectories. Track termination due to
lack of measurement point information in the blind zone and the extent of the radar’s blind
zone can be seen in the figure.
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Figure 11 shows the radar trajectory filtering results. Figure 11a shows the results of
the conventional track filtering, from which it can be seen that there are two lanes in the
radar blind zone where the trajectories deviate from the current lane, and once the target is
out of the radar blind zone, the trajectories that deviate from the current lane continue to
be filtered out normally due to the availability of measurement point information to correct
for the predicted trajectories. If the target trajectories deviate too much from the lane in
the radar blind zone, the trajectories will likely not be correlated with the measurement
points information at the junction of the radar blind zone and the radar illuminated zone,
resulting in tracks termination and restart. Figure 11b shows the results of the trajectory
filtering in radar blind zones combined with high-precision maps. It can be seen from the
figure that the trajectory prediction method combined with the high-precision map in the
radar blind zone can solve the problem of the trajectory deviating from the current lane
very well so that even if there is no measurement point information in multiple frames in
the radar blind zone, the trajectory can be filtered out well, and there is no problem where
the trajectory and the measurement point are not associated at the junction of the radar
blind zone and the radar illumination area.
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5. Discussion

This paper describes a tracking algorithm combined with a high-precision map in
detail. It solves the problem that the track filtering result deviates from the lane in the blind
area of radar because there is no measurement point information in multiple frames. The
smoothness of the track at the junction of the radar blind area and the radar irradiation
area is improved.

In this paper, the multi-target tracking algorithm combined with a high-precision map
has been verified in two scenes: a straight road and a curved road. The two selected radars
are installed in opposite directions, and the longest distance detected by a single radar can
reach 550 m. The blind zone of the two radars is about 90 m, and each radar covers five
upstream lanes and five downstream lanes.

In the straight road scene, the road in the radar blind zone is straight, and the driving
direction of the target is unchanged. Therefore, in the straight road scene, it is rare that the
target track deviates from the lane, but the track connection at the junction of the radar blind
zone and the radar irradiation area may not be smooth. Compared with the traditional
algorithm, the tracking algorithm proposed in this paper can make the track smoother in a
straight road scene.

In the curved road scene, the driving direction of the target will change with the road
direction. However, there is no measurement information in the radar blind area, so the
traditional tracking filtering method cannot track the target effectively, and it is easy for the
target track to deviate from the current lane line. Compared with the traditional algorithm,
the tracking algorithm proposed in this paper can reduce the drag effect on the lateral
distance of the target by changing the coordinate system in the course of track prediction.
Therefore, the target track can be accurately tracked in the curved road scene, the situation
that the track deviates from the lane line is reduced, and the track is smoother.

Compared with previous studies, the novelty of this paper lies in establishing a
complete set of target-tracking algorithms in traffic scenes. Considering the problem of
tracking the target in the blind area of radar, the target is tracked and filtered by combining
the method of a high-precision map. Compared with the existing methods, this method
can effectively track the targets in more complex road scenes and improve the smoothness
of the filtered track.



Sensors 2022, 22, 9371 16 of 17

Author Contributions: Conceptualization, Q.A. and Y.C.; methodology, J.Z.; software, J.Z.; vali-
dation, Q.A., Y.C., J.Z., and S.W.; formal analysis, S.W.; writing—original draft preparation, Y.C.;
writing—review and editing, J.Z., S.W., and F.H.; supervision, J.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded in part by the High Technology Research Project of Xiangyang
Science and Technology Bureau under grant number 2020ABH001273, and in part by the Fundamental
Research Funds for the Central Universities under grant number 2022-5-YB-01. National Natural
Science Foundation of China under Grant 61936014, in part by the Shanghai Sailing Program under
Grant 21YF1450100, and in part by the Fundamental Research Funds for the Central Universities
under Grant 2022-5-YB-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maurin, B.; Masoud, O.; Papanikolopoulos, N.P. Tracking all traffic: Computer vision algorithms for monitoring vehicles,

individuals, and crowds. IEEE Robot. Autom. Mag. 2005, 12, 29–36. [CrossRef]
2. Robert, K. Video-based traffic monitoring at day and night vehicle features detection tracking. In Proceedings of the 2009 12th

International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009; pp. 1–6. [CrossRef]
3. Saunier, N.; Sayed, T.; Lim, C. Probabilistic Collision Prediction for Vision-Based Automated Road Safety Analysis. In Proceedings

of the 2007 IEEE Intelligent Transportation Systems Conference, Bellevue, WA, USA, 30 September–3 October 2007; pp. 872–878.
[CrossRef]

4. Saunier, N.; Sayed, T. A feature-based tracking algorithm for vehicles in intersections. In Proceedings of the 3rd Canadian
Conference on Computer and Robot Vision (CRV’06), Quebec, QC, Canada, 7–9 June 2006; p. 59. [CrossRef]

5. Rostamianfar, O.; Janabi-Sharifi, F.; Hassanzadeh, I. Visual Tracking System for Dense Traffic Intersections. In Proceedings of
the 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 2000–2004.
[CrossRef]

6. Alhuthali, S.A.H.; Zia, M.Y.I.; Rashid, M. A Simplified Traffic Flow Monitoring System Using Computer Vision Techniques. In
Proceedings of the 2022 2nd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia,
25–27 January 2022; pp. 167–170. [CrossRef]

7. Kaushik, S.; Raman, A.; Rao, K.V.S.R. Leveraging Computer Vision for Emergency Vehicle Detection-Implementation and
Analysis. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–6. [CrossRef]

8. Raj, V.S.; Sai, J.V.; Yogesh, N.L.; Preetha, S.K.; Lavanya, R. Smart Traffic Control for Emergency Vehicles Prioritization using Video
and Audio Processing. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems
(ICICCS), Madurai, India, 25–27 May 2022; pp. 1588–1593. [CrossRef]

9. Maligalig, K.C.; Amante, A.D.; Tejada, R.R.; Tamargo, R.S.; Santiago, A.F. Machine Vision System of Emergency Vehicle Detection
System Using Deep Transfer Learning. In Proceedings of the 2022 International Conference on Decision Aid Sciences and
Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 1464–1468. [CrossRef]

10. Ojha, A.; Sahu, S.P.; Dewangan, D.K. Vehicle Detection through Instance Segmentation using Mask R-CNN for Intelligent Vehicle
System. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS),
Madurai, India, 6–8 May 2021; pp. 954–959. [CrossRef]

11. Eslami, M.; Faez, K. Automatic traffic monitoring using neural networks from satellite images. In Proceedings of the 2010 11th
International Conference on Control Automation Robotics & Vision, Singapore, 7–10 December 2010; pp. 1616–1621. [CrossRef]

12. Ghandour, A.J.; Krayem, H.A.; Jezzini, A.A. Autonomous Vehicle Detection and Classification in High Resolution Satellite
Imagery. In Proceedings of the 2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon,
28–30 November 2018; pp. 1–5. [CrossRef]

13. Alghazo, J.; Bashar, A.; Latif, G.; Zikria, M. Maritime Ship Detection using Convolutional Neural Networks from Satellite Images.
In Proceedings of the 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT),
Bhopal, India, 18–19 June 2021; pp. 432–437. [CrossRef]

14. Hinz, S. Detection and counting of cars in aerial images. In Proceedings of the 2003 International Conference on Image Processing
(Cat. No.03CH37429), Barcelona, Spain, 14–17 September 2003; p. III-997. [CrossRef]

15. Shi, F.; Zhang, T.; Zhang, T. Orientation-Aware Vehicle Detection in Aerial Images via an Anchor-Free Object Detection Approach.
IEEE Trans. Geosci. Remote Sens. 2021, 59, 5221–5233. [CrossRef]

http://doi.org/10.1109/MRA.2005.1411416
http://doi.org/10.1109/ITSC.2009.5309837
http://doi.org/10.1109/ITSC.2007.4357793
http://doi.org/10.1109/CRV.2006.3
http://doi.org/10.1109/CCECE.2006.277838
http://doi.org/10.1109/ICCIT52419.2022.9711550
http://doi.org/10.1109/ICCCNT49239.2020.9225331
http://doi.org/10.1109/ICICCS53718.2022.9788119
http://doi.org/10.1109/DASA54658.2022.9765002
http://doi.org/10.1109/ICICCS51141.2021.9432374
http://doi.org/10.1109/ICARCV.2010.5707784
http://doi.org/10.1109/ACIT.2018.8672712
http://doi.org/10.1109/CSNT51715.2021.9509628
http://doi.org/10.1109/ICIP.2003.1247415
http://doi.org/10.1109/TGRS.2020.3011418


Sensors 2022, 22, 9371 17 of 17

16. Holla, A.; Verma, U.; Pai, R.M. Efficient Vehicle Counting by Eliminating Identical Vehicles in UAV aerial videos. In Proceedings
of the 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Udupi,
India, 30–31 October 2020; pp. 246–251. [CrossRef]

17. Bar, D.E.; Raboy, S. Moving Car Detection and Spectral Restoration in a Single Satellite WorldView-2 Imagery. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2013, 6, 2077–2087. [CrossRef]

18. Zhu, J.; Sun, K.; Jia, S.; Li, Q.; Hou, X.; Lin, W.; Liu, B.; Qiu, G. Urban Traffic Density Estimation Based on Ultrahigh-Resolution
UAV Video and Deep Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4968–4981. [CrossRef]

19. Zhou, H.; Wei, L.; Lim, C.P.; Nahavandi, S. Robust Vehicle Detection in Aerial Images Using Bag-of-Words and Orientation Aware
Scanning. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7074–7085. [CrossRef]

20. Yu, Y.; Gu, T.; Guan, H.; Li, D.; Jin, S. Vehicle Detection From High-Resolution Remote Sensing Imagery Using Convolutional
Capsule Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1894–1898. [CrossRef]

21. ElMikaty, M.; Stathaki, T. Car Detection in Aerial Images of Dense Urban Areas. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 51–63.
[CrossRef]

22. ElMikaty, M.; Stathaki, T. Detection of Cars in High-Resolution Aerial Images of Complex Urban Environments. IEEE Trans.
Geosci. Remote Sens. 2017, 55, 5913–5924. [CrossRef]

23. Chen, Z.; Wang, C.; Luo, H.; Wang, H.; Chen, Y.; Wen, C.; Yu, Y.; Cao, L.; Li, J. Vehicle Detection in High-Resolution Aerial Images
Based on Fast Sparse Representation Classification and Multiorder Feature. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2296–2309.
[CrossRef]

24. Chen, Z.; Wang, C.; Wen, C.; Teng, X.; Chen, Y.; Guan, H.; Luo, H.; Cao, L.; Li, J. Vehicle Detection in High-Resolution Aerial
Images via Sparse Representation and Superpixels. IEEE Trans. Geosci. Remote Sens. 2016, 54, 103–116. [CrossRef]

25. Moranduzzo, T.; Melgani, F. Car speed estimation method for UAV images. In Proceedings of the 2014 IEEE Geoscience and
Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4942–4945. [CrossRef]

26. Chen, X.; Xiang, S.; Liu, C.-L.; Pan, C.-H. Vehicle Detection in Satellite Images by Parallel Deep Convolutional Neural Networks.
In Proceedings of the 2013 2nd IAPR Asian Conference on Pattern Recognition, Naha, Japan, 5–8 November 2013; pp. 181–185.
[CrossRef]

27. Nguyen, T.T.; Grabner, H.; Bischof, H.; Gruber, B. On-line Boosting for Car Detection from Aerial Images. In Proceedings of
the 2007 IEEE International Conference on Research, Innovation and Vision for the Future, Hanoi, Vietnam, 5–9 March 2007;
pp. 87–95. [CrossRef]

28. Lim, H.-S.; Park, H.-M.; Lee, J.-E.; Kim, Y.-H.; Lee, S. Lane-by-Lane Traffic Monitoring Using 24.1 GHz FMCW Radar System.
IEEE Access 2021, 9, 14677–14687. [CrossRef]

29. Zhang, Z.; Wang, X.; Huang, D.; Fang, X.; Zhou, M.; Zhang, Y. MRPT: Millimeter-Wave Radar-Based Pedestrian Trajectory
Tracking for Autonomous Urban Driving. IEEE Trans. Instrum. Meas. 2022, 71, 8000117. [CrossRef]

30. Fatseas, K.; Bekooij, M.J.G. Neural Network Based Multiple Object Tracking for Automotive FMCW Radar. In Proceedings of the
2019 International Radar Conference (RADAR), Toulon, France, 23–27 September 2019; pp. 1–5. [CrossRef]

31. Ikram, M.Z.; Ali, M. 3-D object tracking in millimeter-wave radar for advanced driver assistance systems. In Proceedings of
the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 723–726.
[CrossRef]

32. Hussain, M.I.; Azam, S.; Munir, F.; Khan, Z.; Jeon, M. Multiple Objects Tracking using Radar for Autonomous Driving. In
Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC,
Canada, 9–12 September 2020; pp. 1–4. [CrossRef]

33. Manjunath, A.; Liu, Y.; Henriques, B.; Engstle, A. Radar Based Object Detection and Tracking for Autonomous Driving. In
Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany,
15–17 April 2018; pp. 1–4. [CrossRef]

34. Otto, C.; Gerber, W.; León, F.P.; Wirnitzer, J. A Joint Integrated Probabilistic Data Association Filter for pedestrian tracking across
blind regions using monocular camera and radar. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Alcala de
Henares, Spain, 3–7 June 2012; pp. 636–641. [CrossRef]

35. Xu, G.; Shan, G.; Duan, X. Sensor scheduling for ground maneuvering target tracking in presence of detection blind zone. J. Syst.
Eng. Electron. 2020, 31, 692–702. [CrossRef]

http://doi.org/10.1109/DISCOVER50404.2020.9278095
http://doi.org/10.1109/JSTARS.2013.2253088
http://doi.org/10.1109/JSTARS.2018.2879368
http://doi.org/10.1109/TGRS.2018.2848243
http://doi.org/10.1109/LGRS.2019.2912582
http://doi.org/10.1109/TAES.2017.2732832
http://doi.org/10.1109/TGRS.2017.2716984
http://doi.org/10.1109/TITS.2016.2517826
http://doi.org/10.1109/TGRS.2015.2451002
http://doi.org/10.1109/IGARSS.2014.6947604
http://doi.org/10.1109/ACPR.2013.33
http://doi.org/10.1109/RIVF.2007.369140
http://doi.org/10.1109/ACCESS.2021.3052876
http://doi.org/10.1109/TIM.2021.3139658
http://doi.org/10.1109/RADAR41533.2019.171248
http://doi.org/10.1109/GlobalSIP.2013.6736993
http://doi.org/10.1109/IEMTRONICS51293.2020.9216363
http://doi.org/10.1109/ICMIM.2018.8443497
http://doi.org/10.1109/IVS.2012.6232228
http://doi.org/10.23919/JSEE.2020.000044

	Introduction 
	Relevant Theory 
	Coordinate System Conversion 
	LLA Coordinate System Converted to ENU Coordinate System 
	LLA Coordinate System Converted to Radar Coordinate System 
	LLA Coordinate System Converted to Vehicle Coordinate System 

	System Model 
	Equation of State 
	Measurement Equation 

	Filtering Model 

	System Overview 
	Main Technologies 
	High-Precision Map Lane Line Fitting 
	Data Association Algorithm 
	Track Prediction Combined with High-Precision Map 

	Tracking Master Process 

	Results 
	Parameters 
	Straight Roads 
	Curved Roads 

	Discussion 
	References

