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Abstract: Long range (LoRa) is one of the most successful low-power wide-area networking tech-
nologies because it is ideally suited for long-distance, low-bit rate, and low-power communications
in the unlicensed sub-GHz spectrum utilized for Internet of things (IoT) networks. The effectiveness
of LoRa depends on the link budget (i.e., spreading factor (SF), bandwidth (BW), and transmission
power (TX)). Due to the near–far effect, the allocation of a link budget to LoRa devices (LDs) in
large coverage regions is unfair between them depending on their distance to the GW. Thus, more
transmission opportunities are given to some LDs to the detriment of other LD’s opportunities.
Numerous studies have been conducted to address the prevalent near–far fairness problem. Due
to the absence of a tractable analytical model for fairness in the LoRa network, however, it is still
difficult to solve this problem completely. Thus, we propose an SF-partition-based clustering and
relaying (SFPCR) scheme to achieve enormous LD connectivity with fairness in IoT multihop LoRa
networks. For the SF partition, the SFPCR scheme determines the suitable partitioning threshold
point for bridging packet delivery success probability gaps between SF regions, namely, the lower SF
zone (LSFZ) and the higher SF zone (HSFZ). To avoid long-distance transmissions to the GW, the
HSFZ constructs a density-based subspace clustering that generates clusters of arbitrary shape for
adjacent LDs and selects cluster headers by using a binary score representation. To support reliable
data transmissions to the GW by multihop communications, the LSFZ offers a relay LD selection that
ideally chooses the best relay LD to extend uplink transmissions from LDs in the HSFZ. Through
simulations, we show that the proposed SFPCR scheme exhibits the highest success probability of
65.7%, followed by the FSRC scheme at 44.6%, the mesh scheme at 34.2%, and lastly the cluster-based
scheme at 29.4%, and it conserves the energy of LDs compared with the existing schemes.

Keywords: long range (LoRa); spreading factor (SF); lower spreading factor zone (LSFZ); higher
spreading factor zone (HSFZ)

1. Introduction

In the dawn of the new era of the Internet of things (IoT), the fast development of
wireless communications and device technologies enables the interconnection and exchange
of data among sensors. In the near future, the IoT will have an extraordinary impact on
humans as a result of an increase in the ubiquity of the Internet by integrating every object
with a motive of interaction via embedded systems in many fields such as asset tracking,
agriculture, smart homes, and smart cities [1].

There are numerous predictions being made about the growth of connected devices.
According to recent studies [2], every person will be expected to have at least six

IoT devices, with a monthly global mobile traffic of 77 exabytes. Usually, the devices are
expected to cover a large geographical area for a longer span of five to ten years and send
interesting data of small size, such as humidity, temperature, and other variables around
them, over a longer distance using wireless communications.
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For reflecting the above requirements, low-power wide area networking (LPWAN)
technologies with a low cost, low bandwidth, and a low per-unit consumption have
been developed for ubiquitous IoT connectivity of a large geographical area [3], different
from conventional IoT networking technologies such as ZigBee and Bluetooth based on a
shorter communication range. As representative protocols of LPWAN, LoRa, Sigfox, RPMA
(Random Phase Multiple Access), and the Weightless protocol have been developed for
LPWAN-based IoT implementation within the unlicensed ISM bands. Among them, LoRa
is one of the most successful LPWAN technologies because it is ideally suited for long-
distance, low-bit rate, and low power communications. LoRa communication technology
was first proposed by SemTech and is now being developed by LoRaTM Alliance [4]. LoRa is
a physical layer technology that uses a proprietary spread spectrum technique to modulate
signals in unlicensed sub-GHz ISM bands (868 MHZ in Europe, 915 MHZ in North America,
and 433 MHZ in Asia).

LoRa provides bidirectional communication via the chirp spread spectrum (CSS)
modulation, which spreads a narrow-band signal over a wider channel bandwidth, mak-
ing it more interference resistant [5]. LoRa primarily employs six spreading factors
(SF) ∈ {7, 8 . . . , 12} to adapt to the trade-off between the data rate and the communication
range. In fact, the greater the SF, the greater the range with a lower data rate, and vice
versa [6]. The data rates vary with the SF and channel bandwidth, ranging from 300 bps to
50 kbps. According to [7], LoRa technology is based on a star of stars topology, in which
GWs relay messages between end devices and a central network server. This model is
distinguished by the provision of a long-distance and reliable link via a special modulation
technique, in which a LoRa GW collects raw data directly from end devices by single-hop
communications and forwards it to a network server (NS) connected by a high-speed
backhaul network as shown in Figure 1 [8].

Figure 1. General network architecture for IoT LoRa networks.

LoRaWAN is a LoRa MAC layer that employs the ALOHA protocol [9], which is
managed by an NS [10]. Furthermore, LoRaWAN defines three types of devices with
capabilities (classes A, B, and C). Class A devices use pure ALOHA access for the uplink, are
battery limited, and can only receive an ACK in two receiving windows during downlink
transmission. Class B devices, in contrast to class A, are beacon-based and can open an
additional receiving window at predetermined times. Except when transmitting, class C
devices are always listening to a channel and consume a lot of energy [11]. The three classes
can coexist on the same network, and devices can switch between them. Because of the
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orthogonality of the sub-bands and the quasi-orthogonality of different SFs, a LoRa GW
can receive packets from multiple LoRa devices at the same time. The LoRa Alliance has
defined the higher layers and network architecture known as LoRaWAN, with the medium
access control protocol (MAC) layer essentially being an ALOHA variant of random access.

Generally, a massive number of LoRa devices may be connected to a GW because of
the vast coverage area factor, which creates a near–far fairness problem due to the heavy
route loss as the bottleneck in overall system performance in LoRa networks. Moreover,
LoRa networks also suffer from collisions of concurrent transmissions on the same channel
and SF in closely packed deployment situations. In this regard, the conventional protocol
for pure ALOHA in IoT LoRa networks is proven to be oversimplified because it fails to
account for channel fading, power control, and aggregate interference [12]. To overcome
this issue in LoRa, previous studies of [13–15] proposed multihop communication schemes
using relay devices and a programmed e-node that acted as a range extender to increase
the reliability of data forwarding from LoRa devices with duty-cycle constraints to a GW in
IoT LoRa networks. In this case, class C devices acted as relay devices, intercepting data
transmissions from LoRa devices by overhearing and relaying them to the GW. Furthermore,
each relay device alternated between overhearing the end devices’ transmissions during
the receive window and forwarding the contents of the overheard packets to the GW on
a regular basis. However, these studies focused on only increasing coverage extension
probability while ignoring fairness in terms of network area success probability.

1.1. Background and Motivation

To solve the shortcomings of the existing studies, we propose an SF-partition-based
clustering and relaying scheme to address the near–far unfairness problem caused by
the low success probability, long channel occupancy time (also known as time on air
(ToA)), redundancy, low coverage, capture effect challenge, and collisions in IoT LoRa
networks. For this, the proposed SFPCR scheme has three methods: SF-based network
partitioning, density-based subspace clustering, and relay LD selecting. The SF-based
network partitioning method is used to determine the appropriate partitioning threshold
point for bridging the packet delivery success probability gap between different SF regions
in an IoT LoRa network. Then, the packet delivery success probability is evaluated based
on the hop distance of each hop in multihop LoRa communications. By the partitioning
threshold point, the IoT LoRa network is separated into two SF zones: the lower SF
zone (LSFZ) and the higher SF zone (HSFZ). To avoid long-distance transmissions with
low reliability from individual LDs in the HSFZ of the GW, the density-based subspace
clustering method creates arbitrary-shaped clusters by grouping adjacent LDs in the HSFZ
and selects the CH of each cluster for gathering and transmitting data packets of cluster
members. For clustering the arbitrary-shaped clusters and choosing CHs based on the
CH conditional probability, a combination of the DBSCAN algorithm and the naive Bayes
classifier is used. To support reliable data transmissions from each CH in the HSFZ to the
GW by multihop communications, the relay LD selecting method chooses the best relay LD
in the LSFZ to extend uplink transmissions from the CH to the GW. Then, the best relay LD
is determined by the harmonic mean of the packet success probability and the remaining
energy selection strategy of all candidate LDs in the LSFZ.

1.2. Contribution

In order to achieve massive scalability and connectivity, we aim to maximize the
minimum success probability of all distant LDs and optimize SF allocation in all SF zones
of the IoT LoRa network within a predetermined duty-cycle limitation.

The detailed contributions of this paper can be summarized as follows.

1. We provide an SF-based network partitioning method to determine the best partition-
ing threshold point for dividing SF zones of an IoT LoRa network into the LSFZ and
the HSFZ. To bridge the performance gap among the SF zones, an optimal SF division
method based on a heuristic algorithm is proposed.
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2. We provide a density-based subspace clustering method for grouping adjacent LDs in
the HSFZ. To construct clusters of arbitrary shape and to select CHs by a binary score
representation, a combination of the DBSCAN algorithm and naive Bayes classifier
is proposed.

3. We provide the relay LD selecting method to ideally choose the best relay LD only
in the LSFZ for extending transmissions of CHs in the HSFZ to the GW by multihop
communications. The harmonic mean based on the packet success probability and the
remaining energy is proposed to choose the best one among all candidate relay LDs.

4. We maximize the performance of packet success probability, scalability, and fairness
in the SF zones of an IoT LoRa network. To ensure the optimal zone allocation with
connection fairness, the packet success probability of each LD in a certain SF zone
is examined.

5. We conduct simulations in various environments for evaluating the performance
of the proposed SFPCR scheme. Simulation results demonstrate that the proposed
SFPCR scheme raises the packet success probability by bridging the packet delivery
success probability gap between SF zones while conserving more energy among LDs
by reducing the number of packets compared with existing schemes.

1.3. Organisation

The remainder of this paper is organized as follows. First, we provide the related
works on the proposed scheme in Section 2. The system model of the proposed scheme is
presented with the network, energy, and success probability models in Section 3. Our SF-
partition-based clustering and relaying scheme is described in Section 4. The performance
evaluation and numerical results are presented and discussed in Section 5. Finally, the
paper is concluded in Section 6.

2. Related Works

Recently, numerous overviews on LoRa technology and LoRaWAN networks have
been published [16,17]. They deal with various research fields such as network lifetime,
spreading factor allocation, energy conservation, coverage, connectivity, and performance
improvement. LoRa technology has grown in popularity in a variety of industries, including
smart metering [18], smart cities [19], fleet tracking [20], and energy management. IoT
applications necessitate devices transmitting over long distances, which exposes signals
to interference from various sources. Similarly, LoRaWAN coverage and scalability have
been studied both indoors and outdoors to achieve a coverage range of 5 to 15 km in an
open area with limited interference [16]. However, due to the changing environment, these
studies on interference have not fully mitigated the problem to improve the transmission
success probability. Unlike the Sigfox communication model, LoRa uses chip spread
spectrum (CSS) modulation, which allows for a higher receiver sensitivity and thus a
greater resistance to interference. However, there is still a lot of research being conducted
on how to reduce cospreading factor interference and collisions caused by two or more
LoRa devices transmitting their packets at the same SF [6]. Many other works assume that
the SFs are static and are assigned based on the distance between the LoRa devices and
their nearest GW, forming a kind of tiered ring structure around each GW. To solve the
CSS modulation problems of LoRa communications, there are three research areas: spread
factor allocation, clustering, and multihop communication. Thus, we examine the three
research areas in the next three subsections in detail, respectively.

2.1. Spread Factor Allocation in LoRa Networks

The performance of LoRa networks has been aided by appropriate resource allocation
strategies, one of which is SF, which defines the number of bits that can be encoded by a
symbol. SF assignment schemes include, but are not limited to, random, area-proportional,
and distance-based distribution schemes from the GW [10,21]. Furthermore, SF assignments
in the LoRa network are more attributable to the work in [22], which indicated that SF
allocation was primarily based on the power level of the signal that the GW receives from
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the end devices and the GW’s sensitivity without taking end device location into account.
Similarly, in [23], an efficient interference-aware SF allocation strategy was introduced.
In reality, SF can be assigned based on the signal-to-noise ratio (SNR) of the received
packets, and as a result, devices in a certain range can use the same SF [24]. However, the
challenge to optimize the SF assignment over each channel realization and high-density
building obstacles was ignored. In [25], the authors considered a fair SF clustering of
end devices in LoRa networks using k-means clustering. Their algorithm determined the
minimum cost function, which was defined as the distance between each point in the data
set and its nearest centroid. Furthermore, the k-means clustering method achieved robust
clustering with ease. However, this method of SF allocation did not take into account the
SF overlap of edge nodes at different annulus boundaries as well as the distance of the
end devices from the GW. Studies in [26] proposed an SF allocation algorithm based on
matching theory to maximize the minimum achievable average rate in LoRa networks to
improve network throughput and fairness. This theory classifies resource allocation as a
many-to-one matching problem with conventional externalities and peer effects. In this
case, a device prefers to be paired with the SF that provides the most utility. That algorithm,
however, performed better with only heterogeneous LoRa devices. Reynders et al. [27]
proposed a heuristic SF allocation scheme in which users with similar path losses were
simply assigned to the same channel, then to each SF based on their distance from the
GW. The work in [28] proposed a suboptimal SF allocation strategy to maximize packet
success probability. Inter-SF interferences, on the other hand, were ignored in that work. In
particular, the proposed SFPCR scheme allocates SF based on a combination of the device’s
distance and the SNR of the received packets. The SF allocation technique utilized in the
SFPCR scheme is modified by assuming that all LoRa devices inside the same contour lines
have the same SF.

2.2. Clustering in LoRa Networks

Clustering is one of the useful methods for enhancing network connectivity and
prolonging the network lifetime in wireless networks by managing nodes efficiently. In
clustering for IoT LoRa networks, LoRa devices are grouped into clusters, and the cluster
head (CH) in each cluster acts as the mediator for data transmissions between LoRa
devices and a GW. Clustering not only reduces packet redundancy but also manages
efficient data routing, resulting in improved efficiency, scalability, and the avoidance of
redundant message exchange. Clustering protocols enable end devices to reduce data
packets on networks through data aggregation, which improves network lifetime and
energy consumption. As a result, several studies based on clustering algorithms have been
proposed for IoT LoRa networks. In [29], the authors proposed a two-stage energy-efficient
cluster-based solution for data collection by a mobile sink in a robot network by considering
the first stage as a travelling salesman problem and the second stage as the removal of
some CH robots from the path to reduce the UAV’s energy consumption. In [30], the
cluster-based layering approach for uplink multihop communication was analysed. In
that paper, the authors presented a multihop uplink communication scheme that took
advantage of LoRa’s ability to customize its transmission parameters and combines them
with a novel routing protocol to solve network coverage and high energy consumption
problems. Clusters were used in that scheme to associate an end device with exactly one
GW, and once an end device was associated with a GW, the end device communicated
through the GW. This type of scheme, however, limited the ability of end devices closer
to the GW to transmit directly to the main GW. In [21], an SF-based clustering scheme
was proposed to improve the multihop capacity of the LoRa network. Based on network
clustering, each subnet rooted at a sink node was assigned a specific SF. The procedure
focused on balancing airtime between subnets while maintaining connectivity.

However, end device extraction from a higher SF subnet has an impact on network
maintenance and appears to be an unrealistic scenario. Based on this clustering, Ref. [31]
described a method for logically partitioning end devices into several clusters. End devices
in nearby clusters served as relay devices for end devices in the next more distant zone.
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As a result, clustering with relaying provided an appealing solution to this problem by
focusing on distant end devices one at a time. Clusters formed in that case were either the
same or different widths. The clustering style in that approach considered clusters of the
entire network but ignored the transmission capability of end devices closer to the GW.

As examined above, the existing studies concentrate on clustering techniques that par-
tition the entire network in order to reduce energy consumption and improve connectivity
between LoRa devices. However, these approaches deprive LoRa devices with a high link
quality of directly connecting to the GW and acting as relay LoRa devices of distant devices.
As a result of only forming subspace clusters in the designated HSFZ, among the benefits
of the proposed density-based subspace clustering are a reduced energy consumption,
communication overhead, and increased connectivity.

2.3. Multihop Communication in LoRa Networks

Multihop communications are used to extend the connection distance over the com-
munication range of single-hop communications. To enable coverage extension in IoT LoRa
Networks based on single-hop communications, many studies have been published in IoT
LoRa networks. The first multihop LoRa network was investigated in [32]. As a result,
when a data packet was broadcast, all neighbouring end devices checked its origin in terms
of hop distance and relayed the messages if they were closer to the sink. The algorithm
allowed the use of beacons for time synchronization as well as for the communication dis-
tance between each end device and the GW. However, it caused a lot of packet redundancy
and delay, which slowed down network performance. Aslam et al. [19] investigated the use
of multihop LoRa topologies to enable energy-efficient connectivity in smart city applica-
tions. In this study, packet reception rates for various source-to-destination distances, SFs,
and transmission powers were used to evaluate single-hop and multihop LoRa topologies.
Then, the results of the study demonstrated that two-hop networks could significantly
outperform single-hop networks in terms of range. However, that study did not go into
detail about the best relay placement to influence range extension for distant end devices
and the powerful impact. In [33], the authors proposed a multihop communication scheme
called FSRC based on a selective relay operation. By controlling communication param-
eters, the relay control strategy of the FSRC maximized both coverage probability and
minimum success probability for all SF regions. Like other similar schemes [34,35], they
introduced a programmed e-node and an implicit relay node to act as a transparent range
extender with an overhearing operation, respectively. With the primary goal of replicating
the same packet sent by distant end devices, they received it and relayed it to the GW by
overhearing. However, these implementations generated a large amount of network traffic
from broadcasts, resulting in performance degradation.

In [36,37], an energy-efficient multihop communication scheme called e2MCH and a
LoRa mesh networking system for large-area monitoring of IoT applications were studied.
The research presented in these papers introduced multiple relay devices for collecting
data from IoT sensors spread across a large geographical area and forwarding them to a
GW in close proximity. The research, however, was vulnerable to packet collisions, which
reduced the reliability and energy efficiency of LoRa networks. The proposed SFPCR
scheme employs a centralized optimum relay assignment scheme that iteratively chooses
the best relay LoRa device from the candidate set of devices in the LSFZ based on both
packet success probability and residual energy, to transmit a data packet from the subspace
clusters in the HSFZ. Consequently, the proposed multihop approach offers a practical
framework for reducing the transmission distance and transmission power required by
distant nodes with large spreading factor values.

3. System Model

In this section, we provide a detailed description of the system model in the proposed
scheme. We first present the network model for deploying an IoT LoRa network. Next, we
derive the energy model and the success probability model for LoRa devices in various
spreading factor zones based on the network model, respectively.
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3.1. Network Model

As the IoT LoRa network shown in Figure 2, we considered a classic uplink LoRa
system with a single GW at the centre of a network field of radius R = 6 km and a set of a
lot of LoRa devices (LDs), which was defined by LD = ni|I ∈ {1, . . . , N}, N = |LD|. LoRa
devices were allocated in Gaussian distribution within the network field. For the proposed
SFPCR scheme, we divided the IoT LoRa network into two regions: a low spreading factor
zone (LSFZ) and a high spreading factor zone (HSFZ). In our network model, a LoRa device
located in the HSFZ joins the CH in a cluster through a single hop communication and
sends its data packet to the CH. Then, the CH forwards data packets from LoRa devices in
its cluster to a selected relay LoRa device in the LSFZ, which transmits these data packets
in a single-hop communication to the GW, as shown in Figure 2.

Figure 2. Model of the relay and cluster process in the proposed SFPCR scheme.

The performance of LoRaWAN is restricted by a duty cycle in a sub-band for the
amount of time spent transmitting packets, which is referred to as the time on air (ToA). As
a consequence of this, we took into consideration a duty cycle (δi) of 1% [4], operating at
a certain frequency (Fc) in the 868 MHz band with a code rate (CR) of 4/5 and a variable
bandwidth (BW) ranging from 125 kHz to 500 kHz. We explicitly deployed class A and B
LoRa devices, with LoRa devices always initiating transmission. During a time slot, each
LoRa device ni with matching SF ∈ {7, 8, . . . , 12} and values for signal-to-noise ratio (SNR),
receiver sensitivity for a specific bandwidth, and bit rate, as shown in Table 1, transmits a
packet. The LoRa devices use different SFs for transmission to ensure orthogonality and
multiple detections at the receiver.

In [38], the authors alluded that different SFs caused significantly different times on air
for symbol transmission. A symbol can encode k information bits into a chirp with SF = k,
and the bit rate Rb, so the symbol period is evaluated by Tsymbol =

2k

BW , where BW is the

bandwidth. When SF = k + 1, one symbol period is 2n+1

BW , which doubles the transmission
time by sending only one more bit. However, a higher SF indicates a greater resistance to
interference and noise, resulting in a greater communication range.

According to recent research, we assumed that an IoT LoRa network was divided into
multiple annular rings of the same width. Thus, the width of the annulus was defined
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here as the Euclidean distance between the two closest points on the inner boundary Cin
and the outer boundary Cout, respectively. Recent work has shown a spreading factor
distribution scheme based on a certain range of distances to the GW. According to [22,39],
the spreading allocation is primarily based on the power level of the signal that the GW
receives from the devices and the GW sensitivity without taking the device location into
account. Consequently, it is not trivial to consider a general coverage contour metric to
determine the degree of coverage at any point within the IoT LoRa network while avoiding
interference from obstacles. In contrast, the proposed SFPCR scheme determines and
allocates the appropriate SF based on the transmission distance and SNR of the received
packets, as described in [24]. In addition, the SF allocation technique utilized in the SFPCR
scheme was modified by assuming that all LoRa devices inside the same contour lines had
the same SF. Due to obstructions and interference, LoRa devices may be the same distance
apart but have different SNR values. Therefore, these devices cannot share an SF.

Table 1. LoRa parameters based on SF.

SF SNR Receiver Sensitivity Bit Rates
(i) (dB) qs (dBm) (kbps)

7 −6 −123 5.47
8 −9 −126 3.13
9 −12 −129 1.76
10 −15 −132 0.98
11 −17.5 −135.5 0.54
12 −20 −137 0.29

3.2. Energy Model

For the energy model of LoRa devices in the proposed scheme, we employed the
same energy model as [38,40]. Unlike class C LoRa devices, which are usually mains-
powered, the energy consumption of each LoRa device must be precisely stated. The energy
consumption Etx,i for transmitting a β-bit LoRa packet from a LoRa device LD(i) to the
GW can be categorized as follows: the LoRa device waking up, low-power listening, radio
preparation, signal transmission, radio off, and processing. Furthermore, the consumed
energy for signal transmission is affected by the transmission power as well as the varying
transmission time caused by the spreading factor. It is precisely defined as (1) [41],

Etx,i = Ptx × TSF(i) (1)

where Ptx denotes the transmit power with time on air for a LoRa device with SF(i), and
TSF(i) denotes the time on air for LD(i) expressed as (2) and (5) [38].

TSF(i) = Tsymbol × (Npr + Npl) (2)

Npr = (npreamble+4.25)×
2SFi

BW
(3)

Npl = 8 + max(
[

8L− 4SFi + 44
4(SFi − 2DE)

]
CR, 0))× 2SFi

BW
(4)

TSF(i) = (20.25 + max(
[

8L− 4SFi + 44
4(SFi − 2DE)

]
CR, 0))× 2SFi

BW
(5)

In Equation (2), Npr and Npl represent the number of symbols in the packet preamble
and payload, respectively. Substituting for Tsymbol , Npr, and Npl in (2), we get (5), if low
data rate optimization is enabled, DE = 1, otherwise DE = 0, CR = 4/5 represents the
code rate, and npreamble = 8 is the preamble length. It is worth noting that the energy
consumption of a LoRa device in the annulus (j) is proportional to airtime (τ j), with large
values for a high SF.
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Subsequently, we evaluated the energy consumption En−hops(SF, Ptx) using the multi-
hop communication from a LoRa source device(i) to the GW through n hops. Then, the
energy consumption for sending a packet was computed as follows:

En−hops(SF, Ptx) =
n

∑
i=1

(Etx,i + Erx,i) (6)

where Ptx is the consumed power according to the supply current and supply voltage for
the transmitter, Etx,i and Erx,i are the energy consumption of the transmitter and receiver
in the ith hop according to its current configuration on the transmitted power, spreading
factor, and bandwidth, respectively.

Classs A and B LoRa devices on the LoRa network typically spend the bulk of their time
in light-sleep mode due to their low energy consumption and battery power. Meanwhile, in
order to calculate the total dissipated energy consumption Etotal_Ni

(t) of a LoRa device Ni at
a specific time (t), we considered two states, active and inactive modes, given as (7) and (8)
and thus derived Etotal_Ni

(t) as follows.

Etotal_Ni
(t) = Einactive_Ni (t) + Eactive_Ni (t) (7)

Here, Einactive_Ni (t) is the dissipated energies in the state where devices are in sleep
mode (Esleep_Ni

(t)) relative to 1.8 µA [42] and Eactive_Ni is the dissipated energies by the
LoRa device during the transmission mode, reception mode, data measurement, processing,
and wake up. Thus, Eactive_Ni can be calculated as follows:

Eactive_Ni (t) = EWu + Eproc + EWut +
n

∑
j=1

Es(i) (8)

where EWu is the energy consumption when a device wakes up, Eproc is the energy con-
sumption of data processing, and EWut is the amount of energy to move the transceiver
from sleep mode to active mode, respectively. In particular, Es(i) is the energy consump-
tion of a LoRa device in terms of data rate to transmit Lpacket with n-hop communication
evaluated as (9) [43] and is calculated as follows:

Es(i) =
Lpacket

Rb
× (Ptx + Prx) (9)

where Lpacket is the size of the transmitted packet in bits, Ptx and Prx are the consumed
power according to the supply current and supply voltage for transmitter and receiver,
respectively, and Rb is the bit rate defined in Equation (10).

Rb =
CR× SF

2SF

BW

(10)

Here, SF is the spreading factor, BW is the bandwidth, and CR is the code rate defined
as 4

(ι+4) with ι ∈ {1, 2, 3, 4}, respectively.
Ultimately, to understand the LoRa device’s energy consumption, it is essential to

efficiently utilize the LoRa devices’ residual energy Ere_Ni (t) at a given time (t) for the
effective selection of CHs and also prevent the untimely demise of devices to ensure that
the energy of each LoRa device in the network is consumed in a relatively balanced manner.
Thus, Ere_Ni (t) can be computed as (11),

Ere_Ni (t) = E0 − Etotal_Ni
(t) (11)

where E0 is the initial energy of LoRa devices.
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3.3. Success Probability Model

In this section, we examine the success probability of a signal in LoRa’s respective
spreading factor regions under intra- and inter-SF interference. In this paper, we investi-
gated the average success probability of LoRa devices in random locations in the field of an
IoT LoRa network in order to determine the optimal number and positions of relay LoRa
devices (LDs) in relation to the distance between a source LD and the GW. The proposed
SFPCR scheme considers the evaluation of a source LD’s packet success probability using a
varying SF to be dependent on the distance from the receiving LoRa device (i.e., the source
LD (S) to the CH, the CH to the relay LD (R), and R to the GW). The collision of packets in
a LoRa network is classified into two types: intra-SF collision and inter-SF collision [44]. If
a transmission collides, the LoRa device becomes backlogged and slows down, resulting in
excessive delay and packet loss. As a result, it is critical for the LoRa link to have a high
data reliability.

Transmission from LDs located within a distance ≤ r to the GW is considered suc-
cessful in a LoRa network with a uniform distribution of N nodes over the disk of density
λ = N

πr2 if and only if a source LD (S) transmits a packet at distance x from the GW that is
not affected by either intra-SF or inter-SF collisions. Furthermore, we assumed that LoRa
devices released packets within predetermined time slots within a deployment radius of
r, and that packet transmission intensity was θ = pkt

τ (bits per second), where pkt is the
number of packets and τ is the time interval in seconds.

Intra-SF interference occurs when LDs in the same spreading factor region and BW
collide when the distance from the GW is less than xR. Here, x is a location of a LoRA node
and R = e

6
10γ > 1 [45], and the density of the LDs within the same spreading factor region

SF(i) is represented by ρi =
αi N
πr2 [44]. Subsequently, the number of potential interferers

ISF(i) within the same spreading factor region (intra-SF) is represented by Equation (12).

ISF(i) = αi N
(min(xR, r))2

r2 (12)

Here, N is the number of LoRa devices in the disk, αi is the percentage of LDs in a
particular SF with ∑12

7 αi = 1. Assuming that none of the potential interfering LDs initiate
a transmission during the vulnerable period of 2Ti duration, Pi

suc(loc(x)) is the probability
of successful transmission of a LoRa device at location x in an IoT network area and is
represented by the Equation (13),

Pi
suc(loc(x)) := e−2TSF(i)θ ISF(i) (13)

where TSF(i) is the time on air evaluated in Equation (2).
Consequently, the combined success probability Psuc(S, GW) from the source LD (S)

to the GW in the proposed SFPCR scheme takes advantage of the varying SF as defined
in (14):

Psuc(S, GW) = PSF(i)
suc (S, CH)× PSF(j)

suc (CH, R)× PSF(k)
suc (R, GW) (14)

Here, S represents the source LoRa device ni, CH is the cluster head represented as
CHi, R is the relay LoRa device also represented as N∗i , and GW is the gateway, respectively.

Then, PSF(i)
suc (S, CH) is the success probability from S to CH, PSF(j)

suc (CH, R) from CH to
R, and PSF(k)

suc (R, GW) from R to GW. SF(i), SF(j), and SF(k) are the spreading factors
assigned to each of them.

4. SF-Partition-Based Clustering and Relaying (SFPCR) Scheme

In this section, we explain the proposed SF-partition-based clustering and relaying
(SFPCR) scheme in detail, which has three methods. First, we provide a detailed explanation
of SF partitioning, followed by the density-based subspace clustering in the HSFZ and relay
LoRa device selection mechanism, respectively.
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4.1. SF-Based IoT Network Partitioning

In the SFPCR scheme, we divided an IoT LoRa network field into two zones, the low
spreading factor zone (LSFZ) and the higher spreading factor zone (HSFZ), to resolve the
near–far fairness problem in the packet success ratio. In the HSFZ, the LoRa nodes were
clustered to enhance data collection ability and transmission reliability, and the cluster
head (CH) in each cluster used a LoRa node in the LSFZ as a relay node to forward data to
the GW. Algorithm 1 shows an SF partitioning algorithm to find an optimal partitioning
threshold point (Popt) for dividing an IoT LoRa network field into an LSFZ and an HSFZ.
Then, a virtual partition threshold point (Θth) is used for making the LSFZ and the HSFZ.
The algorithm employs a heuristic process with (0 ≤ Θth ≤ 100) until no packet success
probability gaps exist. At each iteration, the algorithm evaluates the modified packet
success probability of all the LoRa devices in the respective zones until Popt = Θth. Moreover,
if Pi

suc(loc(x)) < Θth, the packet success probability of LDs in the HSFZ is being improved
and the reverse is true for the packet success probability in the LSFZ.

Algorithm 1: Pseudocode for boundary cut-off point of LSFZ and HSFZ.

Input: Pi
suc(loc(x)): LoRa device success probability

Input: N: number of IoT LoRa devices
Input: x: LoRa device’s location
Input: BW: bandwidth
Input: SF: spreading factor of a LoRa device
Output: Boundary point LSFZ and HSFZ, Pth

1: Initialization
2: Sum← 0
3: Pmax ← 0
4: Popt ← 0
5: for Θth = 0 : 100 do
6: for i =1 : N do
7: Calculate Pi

suc(loc(x)) in Equation (13)
8: Calculate Pi

∆suc(Pi
suc(loc(x)), Θth)

9: Sum+ = Pi
∆suc(Pi

suc(loc(x)), Θth)
10: end for
11: Calculate Pavg(Θth) = Sum

N
12: if Pmax <Pavg(Θth) then
13: Pmax = Pavg(Θth)
14: Popt = Θth
15: end if
16: end for
17: return Popt

Subsequently, the GW was placed at the network’s midpoint, and its location was
used as a reference point to define the network’s zones. It should be noted that the optimal
coverage range of each zone determined the LoRa devices density deployed in each zone.
The initialization and beaconing processes provided the GW with global knowledge of
the entire network. Thence, we deduced the average success probability Pavg(Θth) for
all LoRa devices, necessitating the determination of the partition threshold point Θth for
the SF zones. Specifically, distinct virtual zones could be formed based on the network
reliability deduced from the average success probability Pavg(Θth) for all the LoRa devices
at a particular distance from the GW as shown in Equation (15) for respective SF among
all nodes.

Pavg(loc(x), Θth) =
1
N

N

∑
i=1

(Pi
suc(loc(x)), Θth) (15)
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In Equation (15), N is the number of LoRa devices whose packet success probability
has already been registered at the GW. Under the condition that Pi

suc(loc(x)) > Popt, LDs in
the LSFZ have a success probability greater than the calculated threshold value. Here, Popt
is based on the average success probability (Pavg) of all the LDs that take up the SF regions
with faster chirps. Any LoRa device in the LSFZ, in particular, is a potential relay candidate
for CHs. Otherwise, the remaining SF zone is referred to as the HSFZ. LoRa devices in the
HSFZ have a lower success probability than the computed threshold if Pi

suc(loc(x)) < Popt,
which includes all LDs far from the GW and within the transmission radio range (Tr) that
suffer from near–far effect due to the fading channel and path loss caused by obstacles.

4.2. Density-Based Subspace Clustering in the HSFZ

Clustering is one of the main methods used to divide a network into a number of
groups (clusters), with one node designated as the cluster head (CH) for each cluster [46].
Intuitively, a cluster in the SFPCR scheme is precisely defined as a set of density-connected
LoRa devices in a particular region. Usually, the expected type of cluster is determined by
the clustering criterion. The SFPCR scheme constructs LoRa nodes in the HSFZ as clusters.
For clustering of the HSFZ, we used a combination of the DBSCAN algorithm [47] and
naive Bayes classifier, a density-based subspace clustering algorithm that created arbitrary-
shaped clusters and eliminated outliers, as shown in Figure 3. The naive Bayes classifier [48]
was used for the CH selection based on the CH’s conditional probability. The DBSCAN
clustering algorithm was suitable for the discovery of subspace clusters of arbitrary shape
with a high efficiency in the network. The SFPCR scheme employs a centralized clustering
strategy in which the network exerts complete control over the clustering procedure via
the GW. In this method, the GW always selects which LD will function as CHs in the
HSFZ, requiring periodic information on all LoRa devices to select the most suitable
nodes. Moreover, there are eight standardized message types for LoRaWAN. We used the
proprietary message type to encode a collection of messages necessary for network layering,
cluster formation, and multihop message relaying. To facilitate proper cluster formation,
we also defined a control message called the “HELLO” message. The GW periodically
broadcasted the control message to all LDs within the cluster. The centralized clustering
algorithm was dissected into two main phases: an initial setup phase and a steady-state
phase for the subspace cluster formation and the CH’s selection criteria, respectively. We
explain each of them in detail.

Figure 3. Arbitrary subspace clusters in the HSFZ: (a) Node density-reachability, (b) Node density-
connected arbitrary subspace clusters.
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• Initial setup phase: During this phase, the GW applies global knowledge from all
the LoRa devices to build density-based subspace clusters based on the LoRa devices’
distribution and information. The SFPCR scheme generates density-based subspace
clusters of LoRa devices whose neighbourhood contains a minimum number (LDmin)
of other devices within a given radius (d0). In this case, d0 is calculated using the
k-nearest neighbour to its immediate neighbours [49]. Meanwhile, given the value k is
represented as LDmin, we chose 4 as the k value, and the 4-nearest distance from LD(i)
was the Euclidean distance from LD(i) to its 4-nearest neighbours, independent of the
transmission range.
Without loss of generality, three types of LoRa devices were defined: core LoRa devices,
which contained at least LDmin ≥ 4 LoRa devices [50] in their d0 neighbourhood.
Border LoRa devices did not have enough devices in their neighbourhood, but they
were close to some core LoRa devices. Finally, other devices were considered outliers.
Assuming a set of LoRa devices N = {N1, N2, . . . Nn} in the HSFZ made up of ψ

subspaces {Ci}
ψ
i=1(i = 1, . . . ψ), let Ni be the set of Si LoRa devices belonging to

subspace Ci and n = ∑
ψ
i=1 Si. Starting with an arbitrary LoRa device ni, the method

returned all LoRa devices that were density-reachable from ni using d0 and LDmin.
As illustrated in Figure 3a, LoRa device nj is directly density-reachable from LoRa
device ni if ni is a core LoRa device and nj is in its d0 neighbourhood. A LoRa device
nj is defined as density-reachable from a core LoRa device ni if there exists a chain of
devices from ni to nj, with each device being directly density-reachable from the prior
LD. However, if ni is a border device, no devices are density-reachable from ni and
then the algorithm visits the next LoRa device.
To deduce the parameter d0, we first computed the Euclidean distances with Equation (16)
of all the k(ni)-nearest neighbours from Equation (17), and selected the maximum 4th
-nearest neighbour distance d0 as shown in the Equation (18).

dist(ni, nj) =
√
(Xni − Xnj)

2 + (Yni −Ynj)
2 (16)

where dist(ni, nj) is the Euclidean distance from the core LD ni to device nj.

k = min(LDmax, LDmin) (17)

In this case, LDmax is the number of neighbours within an arbitrary subspace cluster
distance (dmax), and LDmin is the minimum number of LoRa devices to make a local
subcluster, respectively.

d0 = argmax
i

(dist(ni, nj)) (18)

for nj ∈ Ji, where Ji represents ni’s nearest neighbours such that the number of LoRa
devices in (Ji) is equivalent to k. As a result, the algorithm merges all the local sub-
clusters to form the arbitrary density-based subspace cluster based on (k(ni) = LDmin)
as shown in Figure 3b. However, if (k(ni) < LDmin), no cluster is formed. A density
connection can also refer to the relationship that exists between border LDs that are
part of the same cluster but do not have a core LD in common with which they share
any density reachability. A local subcluster is formed by a core LD and all of its
retrieved nearby LDs within a predefined d0 distance, and it expands using the two
fundamental concepts of density-reachable and density-connected, as long as the
conditions are met [51]:

– nj is a member of a cluster Ci if ni is a member of Ci and nj is density-reachable
from ni.

– ni and nj are density-connected if both of them are members of a cluster Ci.

Assume the distance in the HSFZ between two sets S1 and S2 of LDs is defined as
dist(S1, S2) = min{dist(ni, nj) | ni ∈ S1, nj ∈ S2}. Two sets with at least the density
of the thinnest cluster will be separated only if the distance between them is greater
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than d0. The LoRa device density connection determines the maximum number of
LDs (LDmax) in an arbitrary cluster. Furthermore, in the steady-state phase, the GW is
critical in computing the CHs of clusters by using network information from the IoT
LoRa devices during network initialization.

• Steady-state phase: In this phase, the cluster head selection is performed using a
naive Bayes classifier [48]. The GW plays a crucial role in generating the score value
needed to categorize normal LoRa devices as CHs or cluster members. Based on
the Bayes classifier, the GW determines the κ best LoRa devices to become CHs
based on their binary score. The value of κ indicates the appropriate number of CHs.
In [52], the authors explained what clustering algorithms were and how they worked.
Moreover, there were three types of algorithms for choosing CHs: predetermined,
random, and attribute-based. In the SFPCR scheme, we adopted attribute-based
algorithms to select CHs. The GW constitutes the vector metric attributes A(i) for a
LoRa device LD(i) to become the CH. A(i) = {A(i)

1 , A(i)
2 , . . . A(i)

j }, where j is the vector’s
dimension. The attributes of an LD(i) include, but are not limited to, the residual
energy (Ere_Ni (t)), the link quality (L(i)) between LD(i) and its neighbour, and the
distance ratio (Dratio(ni, Ni)) evaluated as the minimum distance of a source node
ni to the relay LoRa device Ni in the LSFZ. As a result, a vector of attributes can be
expressed as Equation (19).

A(i) = {Ere_Ni (t), L(i), Dratio(ni, Ni)} (19)

Here, Ere_Ni (t) (24) and L(i) (13) are considered as the primary parameters, and
Dratio(ni, Ni) is considered as the secondary parameter and is calculated using Equation (20).

Dratio(ni, Ni) =

 di

∑N
i=1

[
di
N

]
min

(20)

In Equation (20), ni is the source LD in the ith cluster, Ni is the selected relay LD at a
time (t), and di is the distance from the source LD to the relay LD, respectively. Then,
the goal of the CH selection is to find an appropriate mapping relationship between C
and A(i), where C is the binary score of attributes to which the LD belongs, either a
cluster member (CM) or a cluster head (CH), and is expressed as C = {b0, b1}.

P(C = b1|A(i)) =
P(A(i)|C = b1)P(C = b1)

P(A(i))
(21)

P(C = b1|A(i)) expresses the probability of LD(i) becoming the CH with the classifi-
cation A(i) using the Bayesian theorem expressed in Equation (21). Finally, the GW
selects the LoRa device with the highest probability of becoming a CH within the
clustered region based on Equation (22), which is also represented in Algorithm 2.

C ← argmax
b1

(P(A(i)|C = b1)) (22)

In order to create connectivity between LoRa devices LD(i) in the HSFZ, each CH
communicates with cluster members within a transmission radio range (Tr) shown as
CHi|d(LD(i), CHi < Tr. In addition, after a certain number of rounds at a time (t), the
network carries out the clustering procedure again for reclustering. Once reclustering is
complete, the GW continuously monitors the residual energy and link quality of LoRa
devices in the HSFZ to choose new CHs based on the updated parameter values to ensure
network continuity. The energy threshold (Eth) is established to prevent the early death
of some LoRa devices owing to their uneven energy decrease. In the SFPCR scheme, the
energy threshold was assessed using the average energy of all LDs.
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Algorithm 2: Pseudocode to select cluster heads in the HSFZ.
Input: X = X1, X2, . . . , Xn: set of LoRa Devices (LDs)
Input: A(i): LoRa Device metric attributes
Input: N: number of LoRa Devices
Input: κ: optimal number of CHs
Output: Clusters of all LDs in HSFZ, CH allocation

1: Network initialization
2: All C(i) = b0
3: for i← 1 : N do
4: Calculate the Ere_Ni (t), L(i), Dratio(ni, Ni)

5: if L(i) ≥ Lth && Ere_Ni (t) ≥ Eth then
6: Add LD(i) to CH candidate set
7: else
8: Add LD(i) to cluster member (CM)
9: end if

10: end for
11: for All LDs ∈ CH candidate set do
12: Calculate the P(C = b1|A(i))
13: if P(C = b1|A(i)) = max{P(C = b1|A(i))} then
14: C(i) = {b1}// LD(i) is set as a CH
15: else
16: C(i) = {b0} // LD(i) is set as a CM
17: end if
18: end for
19: return CH

4.3. Relay LoRa Device Selection in the LSFZ

In this paper, we considered exploiting LDs in the LSFZ as relay devices to support
reliable data transmissions from source LoRa devices in the HSFZ to the GW. To achieve a
reliable relay device selection policy, the SFPCR scheme uses a centralized optimal relay
assignment method that iteratively allows a single best relay LoRa device (LD) among the
relay candidate set of LoRa devices R = {N1, N2, N3, . . . , Ni} in the LSFZ, to access the
channel and assist the bidirectional transmissions of all the distant LDs (represented as
CMs) through the CH in the HSFZ.

The goal of our method was to devise a way to randomly select the best relay device
to aid bidirectional communication between the source LDs (represented as CHs) and the
GW, while taking into account two important performance parameters, namely, the link
quality in terms of packet success probability and residual energy Ere_Ni (t) of the candidate
relay LoRa devices. The CHi sends the relay a wake-on-radio (WOR) frame. This WOR
frame wakes up the selected relay and sends packet information. The system model with
CHi in the HSFZ acting on behalf of the source LDs is shown schematically in Figure 4.
Meanwhile, the set R of potential candidate relays in the LSFZ includes LoRa devices, that
is, R = {N1, N2, N3, . . . , Ni}. Our method compares the metrics to determine the best relay
N∗i εR. The packets collected by the CHi are transmitted to N∗i as the best relay from the
candidate set because it meets the packet success probability as the primary evaluation
parameter and residual energy threshold conditions for our relay device selection method.
However, if any LD in the LSFZ does not meet the predefined threshold conditions, it
cannot become a potential relay device.
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Figure 4. The relay selection model.

We present four main phases to specify our centralized optimal relay assignment
method. With the four main phases, our method iteratively selects an optimal relay LoRa
device and uses it to achieve cooperative transmission by jointly considering a LoRa
device’s link quality (LNi ) in terms of packet success probability and remaining energy
information Ere_Ni (t). Initially, the residual energy of each LoRa device is critical in the
relay selection process to avert excessive use of a single relay device on the appropriate
channel. Thus, the concept of network fairness is not jeopardized in this way. Here, we
explain the four phases in detail, respectively.

Phase 1: To create a set of potential relay devices, we employed the harmonic mean
criterion to assess the link quality [24]. According to two-hop channel information, each
LoRa device estimates the integrated link quality L(Ni) in terms of the packet success
probability (Pi

suc(loc(x)) based on the distance between them, the SNR, and the receiver
sensitivity of the device. Then, L(Ni) can be shown in Equation (23).

L(Ni) = 2(P(S,Ni)
suc (loc(x)) + P(Ni ,GW)

suc (loc(x)))−1 (23)

For all LoRa devices that pass the first criteria, a candidate set of relay devices is
constituted for further scrutiny in the succeeding phases in a bid to select the best relay LD.

Phase 2: The GW evaluates the residual energy Ere_Ni (t) of each candidate relay device
Ni at a given time (t) since its deployment in an IoT LoRa network. Assuming the total
energy consumption Etotal_Ni

(t) used by a LoRa device Ni during inactive and active modes
at a particular time (t), E0 is the initial energy of the LD. Then, the residual energy Ere_Ni (t)
of the ith relay device is represented in Equation (24).

Ere_Ni (t) = E0 − Etotal_Ni
(t) (24)

where E0 is the initial energy of the LoRa device at the initial time (t0), Etotal_Ni
(t) is the

energy dissipated by the LoRa device during inactive mode at time (t) and active mode.
Phase 3: We used a positive weight factor (0 ≤ α ≤ 1) that indicated the preference

between the integrated link quality α and the residual energy weight (1− α) for all NiεN
LoRa devices. Equation (25) indicates the combined relay parameters W(Ni).

W(Ni) = α(Ere_Ni (t)) + (1− α)L(Ni) (25)

L(Ni) is the integrated link quality in terms of the LoRa device’s packet success
probability, Eth is the threshold energy considered to be the average residual energy and Lth



Sensors 2022, 22, 9332 17 of 27

represents the threshold link quality. Given, the following conditions, Eth ≤ Ere_Ni (t) ≤ 1
and Lth ≤ L(Ni) ≤ 1 hold true.

Phase 4: By the ranking method, when a candidate LoRa device Ni has the highest
rank as R∗Ni

among all the candidate LDs by evaluating with the formula depicted as the
Equation (26), it becomes the best relay device.

R∗Ni
= arg max

i∈N
W(Ni) (26)

where R∗Ni
means the candidate Ni LoRa device with the highest rank that becomes the

best relay device to transmit data from the source LD to the GW. Since the relay selection
process is iterative, the rest of the devices back off and wait for the next transmission round.

5. Performance Evaluation

In this section, we evaluate the performance of the proposed SFPCR scheme through
simulations. We compare the SFPCR scheme with three existing schemes: the FSRC
scheme [33], the cluster-based scheme [21], and the mesh scheme [37] for performance
evaluation. To do this, we first describe our simulation environments and scenarios and
next present their performance evaluation metrics. Last, we explain the performance
comparison of the FSRC and the three existing schemes by simulation results.

5.1. Simulation Environments and Scenario

To validate the SFPCR scheme’s performance, an NS-3-based simulation environment
was used to model multihop communications in the LoRa network. The performance of
the FSRC scheme, the cluster-based scheme, and the mesh scheme were compared to the
SFPCR scheme based on the relay installation and selection procedure. The NS-3 simulation
tool is suitable for large networks anchored on discrete event simulation models of a system
that changes to its state occurrence at discrete points in the simulation time [53].

Except for the GW, all the devices had the same communication needs. Each LoRa
device sent out data packets on a regular basis, and transmissions only happened during
certain time slots to avoid collisions. LoRa devices always kept their duty cycle below 1%,
which is the minimum amount allowed by regulations [4]. Different spreading factors were
spread out evenly based on how far away the devices were from the GW.

Table 2 lists the simulation parameters used in our model. We considered a circular net-
work region with a cell radius of R = 6 km and a GW in its centre to handle communication.
The LoRa devices’ distance from the GW was based on a Gaussian distribution. The pa-
rameters bandwidth, spreading factor, transmission power, and code rate were assigned
to each device. In addition, each device transmitted an average of 20 bytes every packet.
The estimated transmit power could be set from 2 dBm to 14 dBm, the channel bandwidth
was 125 ≤ BW ≤ 250 kHz, and the channel code rate was 4/5. It is hard to say how many
data the GW can handle, but it is safe to presume that more data provided more often
will limit how many devices it can interface with. We compared the performance of two
existing schemes to see which one was better. We also investigated the differences between
them to see if our SFPCR scheme would be better based on the performance metrics.

Table 2. Simulation parameters.

Parameter Values

Cell radius (R) 6 km
Number of LDs (N) 100–1000

Spreading factor (SF) 7–12
Bandwidth 125,250 (kHz)

Payload length 10–250 (Bytes)
Transmission power 14 dBm

Data rate 0.25–5.47 (kbps)
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Table 2. Cont.

Parameter Values

Coding Rate 4/5
Simulation time 3600 s

Payload CRC ON
Duty cycle regulation 1 %

Channel frequency 868 (MHz)
Header (H) 0

Preamble symbol 8
Packet interval rate 10–15 (min)

Low data rate optimization (DE) 1
Path loss exponent (γ) 4

5.2. Performance Evaluation Metrics

The metrics used for the performance evaluation of the proposed SFPCR scheme and
the existing schemes [21,33,37] were: packet success probability, energy consumption, and
the number of packets. In simple terms:

• Packet success probability
A frame transmission is considered successful when no collisions occur and all the bits
in the frame are accurately decoded despite interference [54]. The harsh environment
and capture effects are two factors that can have an impact on the success of data
transmissions between LDs and GWs. It is critical to consider both the likelihood
of the GW receiving an uplink from the source LD and the likelihood of the device
successfully receiving a downlink.

• Energy consumption
We considered the energy consumption among LoRa devices, which refers to the
number of delivered data bits per unit of energy consumed by a LoRa device [39].
The SFPCR scheme aimed to balance the HSFZ’s energy efficiency by shortening the
ToA of the LDs.

• Number of Packets
When analysing traffic behaviour in a LoRa network, the number of packets passing
through the network to the GW is critical. In the LoRaWAN network, packets are sent
infrequently and are affected by a variety of factors. As a result, the primary objective
here was to ensure an effective transmission that limited duplicate packets, collisions,
and retransmissions, all of which produce large quantities of network congestion and
thus impede overall network performance.

5.3. Simulation Results

In this section, we present the IoT LoRa performance evaluation using the metrics
from Table 2. We compared the proposed SFPCR scheme to the FSRC scheme, also called
the relay scheme, the mesh scheme, and the cluster-Based scheme. We focused on three
factors: transmission probability, packets sent by a given number of LoRa nodes, and
energy consumption. The number of nodes, payload size, and gateway distance were
compared. This study validated the suggested technique for multihop LoRa networks by
using relay and clustering approaches in corresponding spreading factor zones.

Figures 5–7 illustrate how the packet success probability of LoRa devices varied with
the number of nodes, payload size (B), and node distance from the GW (m). All the schemes
exhibited an inverse proportionality between the success probability and the variables of
number of nodes, payload size, and node distance from the GW. Figure 5 indicates that
increasing the number of nodes decreased the chance of packets successfully reaching the
GW for the FSRC, cluster-based, and mesh schemes. This was due to the capture effect as
nodes competed for the channel and collisions arising from blind transmissions as these
nodes transmitted data packets as soon as they were ready to transmit [55], which hindered
the successful delivery of packets to the GW. In contrast, the proposed SFPCR scheme
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employed collision-free transmission [45]. Due to this regulated access to the medium, each
LoRa device transmitted its packets directly to the selected recipient. The SFPCR scheme
deployed, among other things, density-based subspace clusters in the HSFZ and relay nodes
in the LSFZ in order to boost and improve the performance of remote nodes so that data
packets could be successfully sent to the GW with no transmission errors. Consequently,
the SFPCR scheme outperformed the other schemes with the highest number of LDs by
approximately 47.6% packet success probability, followed by the FSRC scheme at 24.7%, as
shown in Table 3. However, as the number of LDs increased, the performance degraded
because an increase in the number of nodes caused an automatic increase in the probability
of packet error and interference [56].

Figure 6 depicts an inverse proportionality between success probability and payload
size (B) for the SFPCR scheme and other comparative schemes. Because the LoRa network
is utilized for long-distance transmission, an increase in packet size has a detrimental
impact on the network’s performance. Therefore, the smaller the size of a data packet, the
greater the possibility of success. The success probability of the SFPCR scheme was roughly
65.7% with a default payload size of 20 bytes, as shown in Table 3. It provided a superior
method for reducing the quantity of traffic delivered to the GW by using data aggregation
for all nodes clustered in the HSFZ, in contrast to previous techniques.

Table 3. Simulation results.

Success Probability (%)

Scheme FSRC Cluster Based Mesh Proposed SFPCR

Number of nodes (1000) 24.7 20.1 23.3 47.6
Default payload size (20 bytes) 44.6 29.4 34.2 65.7
Distance from the GW (6000 m) 1.12 0.036 0.67 29.1
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Figure 5. Plots variation in Success Probability according to the number of nodes in the network with
a comparison between the SFPCR scheme and other protocols.
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Figure 6. Plots variation in Success Probability according to the Payload Size (B) with a comparison
between the SFPCR scheme and other protocols.

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Su
cce

ss 
Pro

ba
bili

ty 
(%

)

D i s t a n c e  f r o m  t h e  G a t e w a y  ( m )

 F S R C  S c h e m e
 C l u s t e r  B a s e d  S c h e m e
 M e s h  S c h e m e
 S F P C R  S c h e m e

Figure 7. Plots variation in Success Probability according to the Distance of LoRa devices from the
GW with a comparison between the SFPCR scheme and other protocols.

Figure 7 demonstrates a correlation between the distance of LoRa devices from the
GW and their success probability. The success probability of all schemes diminished expo-
nentially with rising average distances. However, at a distance between 3000 m and 3500 m,
the SFPCR scheme and the FSRC scheme improved the success probability marginally
due to the use of relays to extend packets from far LoRa devices to the GW. Moreover, the
SFPCR scheme outperformed the other schemes in terms of success probability by more
than 29.1% as the transmission distance from the GW increased. The usage of subspace
clusters in the HSFZ and relays with success probabilities above the threshold in the LSFZ
to transfer packets from far LDs to the GW mitigated the near–far fairness issue. The other
schemes, on the other hand, demonstrated a negative decrease in success probability as the
distance between the LDs and the GW increased due to poor link quality, noise, collision
among the nodes, and other interference from obstacles such as buildings and vegetation
encountered by nodes located far from the GW [55].

Figure 8 illustrates the variation in the number of nodes as a function of the energy
consumption for the SFPCR scheme and the three other schemes under consideration. In
contrast to the SFPCR scheme, the results for all three comparative schemes demonstrated
a slightly direct correlation between energy use and number of nodes. The FSRC scheme
utilized the most energy, exceeding 29 µJ, as a result of using more LDs with a higher SF
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and broadcasting packets sent throughout the network, which introduced considerable
routing overhead and used a great deal of energy. Similar to the cluster-based scheme,
which had huge cluster sizes, the cluster member nodes had to connect with other nodes
located at great distances, resulting in increased energy consumption owing to intracluster
distance communication. In addition, the mesh scheme consumed 22.2% more energy
than the SFPCR scheme because of the unnecessary multihops to send a signal strong
enough to reach the GW. However, the SFPCR scheme consumed approximately 67.4%
less energy than the comparative schemes because it primarily utilized short hops with
a lower SF, controlled redundant transmission by data fusion from CHs in the HSFZ and
also managed the number of transmissions and retransmissions to the GW by employing
slotted ALOHA [45]. Consequently, the network’s lifespan was increased.
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Figure 8. Plots variation of energy consumption (µJ) as a function of number of nodes with a
comparison between the proposed SFPCR scheme and other protocols.

Figure 9 shows a direct proportionality between payload sizes and energy consump-
tion for all schemes. As packet size increases, so does energy consumption, limiting the
lifespan of an IoT network that is energy constrained. This is due to the broadcast storm
problem caused by source nodes and relay nodes deployed in the network; in comparison,
the cluster-based, mesh, and proposed SFPCR schemes consumed relatively little energy,
limiting the use of distant nodes with higher SF to transmit directly to the GW, which
consumes a great deal of energy. In addition, the SFPCR scheme transmitted small packets
with short hops and a lower spreading factor in order to save transmission power. This
implied that the source node in the HSFZ transmitted to the closest CH and relay node,
thereby reducing the amount of time spent in the air. Consequently, the amount of energy
lost was restricted.

In Figure 10, all schemes demonstrated a low quantity of energy consumption between
the GW and approximately 3000 m, where direct transmission occurred; nevertheless, the
FSRC scheme lost significantly more energy than the other schemes because of broadcasts
made by relays and source nodes. The results demonstrated that the proposed SFPCR
scheme consumed the least amount of energy as the distance increased, and the number
of transmissions was regulated because all distant nodes in the HSFZ coordinated their
transmission through the CHs rather than a direct transmission of data packets to the GW
and because of the use of relay nodes in the LSFZ with a low SF to transmit packets of
nodes with a success probability below the threshold.
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Figure 9. Energy consumption as a function of payload size (B) with a comparison between the
proposed SFPCR scheme and other protocols.
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Figure 10. Energy consumption as a function of LoRa devices’ distance from the GW (m) with a
comparison between the proposed SFPCR scheme and other protocols.

As the number of nodes in the network increased, Figure 11 shows that the variation
in the number of packets remained essentially constant across all the different schemes.
Following the cluster-based and mesh schemes in terms of the number of packets used for
varying numbers of nodes in the IoT sensor area comes the newly proposed SFPCR scheme,
which used the fewest packets overall. The FSRC Scheme, on the other hand, had the most
packets since it broadcast packets from the source nodes, relay nodes, and normal nodes.
This caused a redundancy in the network as a result of the increased number of duplicate
packets that were broadcast.

Similarly, Figure 12 demonstrates that the SFPCR scheme forwarded the fewest data
packets to the GW. Furthermore, in the SFPCR scheme, the number of sent packets was
more important than their size. Consequently, there was always a limit at which increasing
the packet size would no longer increase performance and may instead decrease it. Cluster-
based and mesh schemes had roughly the same number of packets as the payload size
grew because their topologies were nearly identical. In contrast to the SFPCR scheme, the
broadcast phase of the FSRC scheme resulted in a large number of duplicate packets in
the network.

As depicted in Figure 13, the SFPCR scheme demonstrated a single packet transmission
at near ranges from the GW to approximately 3000 m, beyond which the number of packets
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increased modestly due to the employment of relay nodes in the LSFZ. In contrast, the CHs
in the HSFZ aggregated data packets from all remote source nodes within the HSFZ, hence
lowering network traffic flow. Similarly, the FSRC scheme from the GW to a distance of
approximately 3000 m demonstrated a single packet transfer because no relay nodes were
utilized in that zone. Beyond this stage, relay nodes that duplicated the sent packets were
deployed. In the mesh and cluster-based schemes, each node obtained data from one node
while passing data to the next node, resulting in an increase in packets. Consequently, as
the distance from the GW rose, so did the number of node connections and hops.
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Figure 11. Variation in the number of packets according to the number of nodes in the network with
a comparison between the proposed SFPCR scheme and other protocols.
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Figure 12. Variation in the number of packets according to the payload size (B) with a comparison
between the proposed SFPCR scheme and other protocols.
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Figure 13. Variation in the number of packets according to the the distance of LoRa devices from the
GW with a comparison between the proposed SFPCR scheme and other protocols.

6. Conclusions and Discussion

In this paper, a novel SF-partition-based clustering and relaying scheme was proposed
to solve the near–far fairness problem in IoT LoRa networks. The proposed SFPCR scheme
utilized clustering and a multi-hop relay approach with the aid of low-SF LDs to increase
the minimum success probability of distant nodes with a high SF. In the proposed scheme,
the SF-based network partitioning method was used to determine the best partitioning
threshold point for dividing SF zones into an LSFZ and an HSFZ to bridge the performance
gap among SF zones by using an optimal SF division based on a heuristic algorithm. Then,
by a combination of the DBSCAN algorithm and naive Bayes classifier, the density-based
subspace clustering method constructed clusters of arbitrary shape for adjacent LDs in
the HSFZ and selected CHs by a binary score representation. To extend the transmissions
of CHs in the HSFZ by multihop communications, the relay LD selecting method chose
the best relay LD in the LSFZ by using the harmonic mean based on the packet success
probability and the remaining energy. The packet success probability of each LD in a certain
SF zone was examined based on the hop distance of each hop to provide the optimal zone
allocation with connection fairness. Through comprehensive simulations, we revealed that
the SFPCR scheme exhibited the highest packet success probability of 29.1% for distant LDs
at 6000 m, followed by the FSRC scheme at 1.12%, the mesh scheme at 0.67%, and lastly
the cluster-based scheme at a negligible value of 0.036%. Using the default payload size
of 20 bytes, the proposed SFPCR scheme also exhibited the highest success probability of
65.7%, followed by the FSRC scheme at 44.6%, the mesh scheme at 34.2%, and lastly the
cluster-based scheme at 29.4%. The SFPCR conserved more energy for the LDs in order
to prolong the lifetime of IoT LoRa networks in comparison to previous LoRa multihop
schemes. Future work will include the development of intelligent clustering algorithms that
can maintain up-to-date information on the link quality between LDs and their neighbours
and react to sudden topological changes, as well as the responsiveness to changing network
conditions through the use of lightweight reinforcement learning techniques.
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Nomenclature
Symbol Description
LD(i) LoRa device i
CH Cluster head
Npr Number of symbols in a packet preamble
Npl Number of symbols in a payload
Lpacket Size of the transmitted packet
ρi Density of LDs in a particular SF
λ Density of LoRa devices
Θ Virtual partition threshold point
Rb Bit rate
A(i) LDs metric attribute
TSF(i) Time on air for single transmission of LD(i)
Tsymbol Time for transmitting a symbol
ISF(i) Interferers in SF region
Popt Optimal partition point
Pi

suc(loc(x)) Success probability
Pavg(loc(x), Θth) Average success probability
LNi Link quality
Esleep_Ni

(t) Energy dissipated in light-sleep mode
Es(i) Energy consumption
Etotal_Ni

(t) Total amount of consumed energy
EreNi(t) Residual energy of a LoRa node
LDmax Maximum number of LoRa devices
LDmin Minimum number of LoRa devices
W(Ni) Combined relay parameters with weights
R∗Ni

Optimal rank
dist(ni, nj) Euclidean distance
Dratio(ni, Ni) Minimum distance ratio between nodes
P(C|A(i)) Probability of LD(i) becoming the CH
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