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Abstract: Light Detection and Ranging (LiDAR) technology has the advantages of high detection
accuracy, a wide range of perception, and not being affected by light. The 3D LiDAR is placed at the
commanding height of the traffic scene, the overall situation can be grasped from the perspective
of top view, and the trajectory of each object in the traffic scene can be accurately perceived in real
time, and then the object information can be distributed to the surrounding vehicles or other roadside
LiDAR through advanced wireless communication equipment, which can significantly improve the
local perception ability of an autonomous vehicle. This paper first describes the characteristics of
roadside LiDAR and the challenges of object detection and then reviews in detail the current methods
of object detection based on a single roadside LiDAR and multi-LiDAR cooperatives. Then, some
studies for roadside LiDAR perception in adverse weather and datasets released in recent years are
introduced. Finally, some current open challenges and future works for roadside LiDAR perception
are discussed. To the best of our knowledge, this is the first work to systematically study roadside
LiDAR perception methods and datasets. It has an important guiding role in further promoting the
research of roadside LiDAR perception for practical applications.
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1. Introduction

In recent years, the emerging technologies represented by autonomous driving have
developed rapidly and become the key technologies to support the development of a
new generation of intelligent transportation in the future. In China’s Energy Saving and
New Energy Vehicle Technology Roadmap, it is expected that the market share of fully
autonomous vehicles in China will reach 10% by 2030 [1]. In 2021, ERTRAC released the
EU roadmap for autonomous driving, aiming to enter society by 2030 with autopilot as a
standard [2]. Autonomous driving has become the inevitable trend of future automobile
development. Object detection and motion prediction are the core of the perception system
of autonomous vehicles, and real-time, accurate, and blind-spot-free object detection is
the key to ensuring the safe driving of the autonomous vehicle. Currently, the maximum
sensing distance of the onboard sensors is less than 150 m, which is easily affected by
obstacles, adverse weather, and light, as well as the surface reflection intensity and motion
state of the perceived object. Therefore, it is urgently necessary to develop vehicle–road
collaboration technology to break through the technical bottleneck of insufficient aware-
ness of the autonomous driving environment and improve the safety and reliability of
autonomous vehicles [3]. The cooperative mode of intelligent cars and smart roads is
the most effective means to ensure the safe operation of autonomous vehicles. The re-
gional cooperative perception of intelligent roadside infrastructure makes up for the lack
of local perception ability of a single vehicle and provides a new strategy to solve the
over-the-horizon perception problem faced by autonomous vehicles [4].

At present, the intelligent roadside perception system mainly relies on traditional
traffic information collectors, such as radar [5,6], cameras [7–9], and their fusion [10–13].
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Radar can only capture moving objects in a certain area with low accuracy. The camera can
obtain the color, brightness, texture, and other information of the real world, but it is easily
affected by light and does not have good stability in extreme situations such as darkness
and illumination mutation. Therefore, it has a natural disadvantage in the all-weather
and high-precision perception of traffic information. LiDAR has the advantages of high
detection accuracy, a wide sensing range, and no influence of light [14]. It has been widely
used in object detection [15,16] and vehicle localization in autonomous vehicles [17,18], etc.
When the 3D LiDAR is placed at the commanding point of the traffic scene, the overall
situation can be viewed from the perspective of top view, and the high-precision motion
trajectory of each object in the traffic scene can be sensed in real time. The information can be
distributed to the surrounding vehicles or another roadside LiDAR through the advanced
“5G + Cellular Vehicle-to-Everything (C-V2X)” wireless communication technology, to
realize the vehicle–road cooperative regional perception. This can significantly improve
the local sensing ability of autonomous driving. In addition, the roadside sensors are in a
static state when working, so the perception accuracy and reliability of scene objects are
higher [19,20].

Roadside LiDAR has unique characteristics compared with onboard or airborne
LiDAR, such as the sparser distribution of the output point cloud and the lack of diversity
of the background point cloud. The goal of deploying LiDAR sensors on the roadside
for cooperative autonomous driving to achieve object detection and tracking is still in the
exploratory stage, and there are still many difficulties for practical application. At present,
there are some research reviews on object detection based on onboard LiDAR, as shown
in [21–23], but there are few reviews on roadside LiDAR perception. Recently, Bait et al. [24]
reviewed object detection and tracking based on roadside sensors. However, the detection
methods and datasets related to roadside LiDAR are less involved. Therefore, this paper
reviews the challenges, methods, and datasets involved in object detection using roadside
LiDAR in detail, aiming to establish an overall landscape for object detection based on
roadside LiDAR and accelerating the commercial application of roadside LiDAR-based
perception technology. To the best of our knowledge, this is the first work to provide an in-
depth survey of roadside LiDAR perception. The contribution of this paper is summarized
as follows:

G The characteristics of roadside LiDAR, the challenges in object detection tasks, and
methods of object detection based on roadside LiDAR in recent years are reviewed
in depth, including the methods based on a single roadside LiDAR and cooperative
detection of multiple LiDAR.

G The influence of adverse weather on LiDAR and methods of LiDAR perception
in adverse weather are reviewed. Moreover, this paper collects and analyzes the
currently published datasets related to roadside LiDAR perception.

G The existing problems, open challenges, and possible research directions of object
detection based on roadside LiDAR are discussed in depth to serve as a reference and
stimulate future works.

The remainder of this paper is organized as follows. Section 2 summarizes the charac-
teristics of roadside LiDAR and the challenges of object detection based on roadside LiDAR.
Section 3 reviews the object detection methods and datasets based on roadside LiDAR.
Section 4 presents some open challenges and possible research directions for future works,
and the last section concludes this paper.

2. Characteristics of Roadside LiDAR and Challenges in Object Detection Task

As a perception sensor with high precision, high sensitivity, and a short delay, roadside
LiDAR is generally deployed at urban intersections with a complex traffic flow, ramp
entrances and exits of expressways, and accident-prone areas on expressways. Through
the appropriate layout and networking of multiple roadside LiDARs, we can obtain the
traffic data of the road section or the whole intersection from the perspective of top view
without blind areas, and then reconstruct the scene of all objects and environments in
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the surrounding area, so as to accurately identify the vehicle status and vulnerable traffic
groups such as pedestrians and non-motor vehicles in real time, as shown in Figure 1c. On
the one hand, this can make up for the deficiency of perception of a single autonomous
vehicle, and, at the same time, it can improve the level of road intelligence, effectively
alleviate traffic congestion, and improve the capacity and efficiency of the road network.
To meet the requirements of roadside perception, roadside LiDAR needs to work for a
long time, even without interruption. In addition, due to the dynamic complexity of the
traffic environment, the roadside LiDAR needs to have a larger sensing range and higher
resolution. To cover a larger area, the roadside LiDAR is generally installed on the roadside
infrastructure with a height of more than meters. Figure 1a shows a roadside 3D LiDAR
with high-stability 32L-LiDAR-R, which was developed by China’s Wanji Technology for
roadside perception applications in an intelligent vehicle–road cooperation system. It has
32 scanning beams, with a vertical field of view of 37◦ and a horizontal field of view of
360◦. Its maximum coverage is 150 m. In addition, the difference between the roadside
LiDAR and the onboard LiDAR is that the vertical scanning field of the roadside LiDAR is
downward (−37~0◦), and the laser transmitter adopts a multi-level distribution mode with
different vertical angle resolutions (0.6◦, 1◦, 2◦, 3◦), which not only increases the density of
traffic object points but also improves the spatial distribution of point clouds. The input
point cloud is shown in Figure 1b.
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Figure 1. Roadside LiDAR and output point cloud. (a) 32L-LiDAR-R; (b) point clouds from a single
LiDAR output; (c) point clouds from multiple LiDAR outputs.

At present, roadside LiDAR is mainly deployed on road sections of some pilot demon-
stration areas, and there are still many challenges in its deployment on a large scale for
cooperative autonomous vehicles to achieve the goal of over-the-horizon perception in
traffic scenes. This is manifested in the following:

(1) The best LiDAR sensor type for roadside perception remains an open question; except
for a few LiDAR models especially developed for roadside sensing (e.g., 32L-LiDAR-R),
most of the roadside collaborative projects directly deploy the onboard LiDAR at the
roadside. LiDAR can be divided into mechanical rotary and solid-state LiDAR ac-
cording to its structure. Mechanical rotary LiDAR changes faster and more accurately
from “line” to “surface” by continuously rotating the transmitting head and arranging
multiple beams of laser in the vertical direction to form multiple surfaces, to achieve
the purpose of dynamic scanning and dynamic information reception. Commercially
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available rotary LiDARs include 16, 32, 40, 64, 80, and 128-beam LiDARs, which can
perform 360-degree rotary scanning to achieve the three-dimensional reconstruction
of full-scene traffic objects; the detailed parameters of the typical LiDAR are shown in
Table 1. Hybrid solid-state LiDAR uses semiconductor “micro-motion” devices (such
as a MEMS scanning mirror) to replace the macro-mechanical scanner and changes the
emission angle of a single emitter through a micro-galvanometer, to achieve the effect
of scanning without the external rotating structure. Therefore, this type of LiDAR can
achieve a higher resolution and achieve image-level point cloud output. For example,
the Falcon-K LiDAR has a higher resolution equivalent to 300 beams, a horizontal
angle of view of 120 degrees, an angular resolution of 0.08 degrees, and an output of
3 million points per second in the double echo return mode.

Table 1. Overview of typical LiDAR sensors.

LiDAR LiDAR Beams FOV
(Vertical)

FOV
(Horizontal)

Resolution
(Vertical)

Resolution
(Horizontal) Range Range

Accuracy
Points

Per Second

VLP-16 [25] 16 30◦
(−15~+15) 360◦ 2◦ 0.1~0.4◦ 100 m ±3 cm 300,000

VLP-32C [26] 32 40◦
(−25~15) 360◦ ≥0.03◦ 0.1~0.4◦ 200 m ±3 cm

Single echo
mode:

600,000

Pandar40M [26] 40 40◦
(−25~15) 360◦ 0.33~6◦ 0.2◦ 120 m ±2 cm

Single echo
mode:

720,000

Pandar64 [27] 64 40◦
(−25~15◦) 360◦ 0.167~6◦ 0.2◦ 200 m ±2/5 cm

Single echo
mode:

1,152,000

HDL-64E [27] 64 26.8◦
(24.8~2◦) 360◦ 0.33~6◦ 0.08~0.35◦ 120 m ±2 cm

Single echo
mode:

1,300,000

RS-Ruby Lite [28] 80 40◦
(−25~15◦) 360◦ Up to 0.1◦ 0.1~0.4◦ 230 m ±3 cm

Single echo
mode:

1,440,000

RS-Ruby [29] 128 40◦
(−25~15◦) 360◦ Up to 0.1◦ 0.2~0.4◦ 200 m ±3 cm

Single echo
mode:

2,304,000

Falcon-K [30] Eq. to 300 25◦ 120◦ 0.16◦ 0.24◦ 250 m ±2 cm
Double echo

mode:
3,000,000

The number of LiDAR beams determines the resolution, detection range, and cost
of the LiDAR. Figure 2 shows the output point cloud of a typical LiDAR. There is a large
difference in the resolution and detection range of the object for LiDAR with different
laser beams. The more laser beams, the higher the resolution, the greater the density of
the laser point cloud, and the higher the cost. Because there is no uniform specification
to specify which sensor will dominate future roadside sensing applications, the LiDAR
sensing algorithms studied at present are all based on a certain beam of LiDAR, and the
algorithms developed based on a certain type of LiDAR cannot be directly applied to
another, different type of LiDAR. Therefore, it is still a great challenge to explore and
develop a sensing method that can be applied to different types of LiDAR sensors.

(2) In order to allow the roadside LiDAR to obtain a sufficiently large coverage area,
the deployment height of the roadside LiDAR is generally above 5 m. Therefore,
compared with the point cloud output by onboard LiDAR, the point cloud is more
widely distributed and sparser, which increases the difficulty of object detection. In
addition, the roadside LiDAR is installed at a fixed location, resulting in a high degree
of similarity and lack of diversity in the background point cloud. Moreover, the lack
of large-scale roadside LiDAR point cloud datasets limits the use of deep learning
methods, which causes the robustness and scene generalization ability to existing
detection algorithms to still face enormous challenges in practical applications.
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(3) Roadside LiDAR is fixed and deployed on the roadside, and it needs to work for a
long time and in all weather. It will inevitably encounter adverse weather conditions
such as rain, snow, and fog. Studies have shown that adverse weather has a greater
impact on the performance of LiDAR. Rain, snow, fog, and other adverse weather
will reduce the reflection intensity of the object point cloud and the number of object
points, while increasing noise and reducing the resolution of the object in the point
cloud, as shown in [31–34]. Therefore, the developed algorithm needs to maintain
high reliability and accuracy in adverse weather.

(4) Most of the roadside LiDAR detection methods proposed at present are based on a
single LiDAR, but the field of view of a single LiDAR is limited, and the point cloud
data obtained by a single LiDAR have certain defects. The accuracy of perception can
be significantly improved by fusing multiple LiDAR point clouds with the diversity
of the surrounding space to achieve collaborative perception.
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3. Object Detection Based on Roadside LiDAR

Three-dimensional object detection and motion prediction is a typical task of roadside
LiDAR, which is used to obtain the precise location, three-dimensional size, category, and
velocity of the object in the traffic scene. Object detection using roadside LiDAR can be
divided into a single LiDAR-based method and multi-LiDAR cooperation-based methods.
This section reviews the related challenges involved in the above tasks and the methods
and datasets proposed in recent years in detail. In addition, this section also analyzes
the impact of adverse weather on LiDAR and reviews the current work on LiDAR object
detection in adverse weather.

3.1. Object Detection Methods Based on a Single Roadside LiDAR

Compared with the regional sensing method based on multiple LiDAR cooperatives,
the perception system using a single roadside LiDAR does not require the performance of
complex spatio-temporal registration between multiple sensors and the requirements for
deployment scenarios are much lower. Currently, most of the proposed object detection
methods are based on a single roadside LiDAR, which can be divided into methods based
on traditional machine learning and deep learning, and the technical route is shown
in Figure 3.
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A. Detection Method Based on Traditional Machine
In recent years, the research results of roadside LiDAR object detection methods based

on traditional machine learning have been the most numerous. Usually, the object detection
task is divided into four main steps: background filtering, object point clustering, feature
extraction, and object classification [35–38]. When processing the point clouds captured
by roadside LiDAR, some reasonable clusters are generated by background filtering and
density-based spatial clustering methods, and then object detection is achieved by feature
extraction and the classification of each cluster.

(1) Background filtering: The purpose of background filtering is to retain the interest-
ing object points in the point cloud as much as possible while excluding other irrelevant
points (buildings, trees, ground points), to improve the efficiency and accuracy of sub-
sequent object segmentation. The principle of background filtering is mainly to model
the background by using the characteristic that the spatial position of the background
point in the time sequence point cloud changes little, and then judge whether the current
point is the background point or the foreground point according to the difference in the
depth, height, point density, and other characteristics between the current frame point
cloud and the background model. According to the expression of the point cloud, back-
ground filtering methods can be divided into point cloud mapping-based methods and
voxel-based methods.

The background filtering method based on point cloud mapping aims to encode the
temporal point cloud according to the azimuth angle and the ID of the laser beam, as
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shown in Figure 4a. The background modeling and filtering are performed on the point
cloud at the same beam and azimuth [39–44]. Zhao et al. [40] proposed an azimuth–height
background filtering method. The main idea is to manually select the frame without
a foreground point cloud as the background, and distinguish background points and
foreground points by comparing the height of each point in the current point cloud with
the background point in the background frame at the same beam and the same azimuth
angle. Lee et al. [41] encoded the output point cloud according to the vertical angle and
horizontal azimuth angle of the LiDAR, assumed that the background depth value at a
given vertical angle and horizontal azimuth angle was constant, and took the median value
of consecutive multi-frame sampling points at the same azimuth angle as the background
depth value. Zhang et al. [43] used the same method to encode the multi-frame point
cloud and construct the background model using the maximum distance according to
the principle that the static environment is impenetrable. The above methods have high
real-time performance, but, in urban scenes, it is difficult to ensure that only background
points are obtained in the point cloud when the background frame is acquired. When the
roadside LiDAR is deployed in crowded traffic scenes, object point clouds such as vehicles
will be misjudged as background points, thus affecting the accuracy of the background
model. Liu et al. [44] optimized the construction method of the background point cloud
based on the maximum distance. By assuming that the vehicles and another object point
only appear in the peer area, they introduced the filtering of the passing region to eliminate
the object points introduced in the background point cloud. When the roadside LiDAR
swings in the wind, the background model established by coding the LiDAR beams and
azimuth angles may also be offset.
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The background modeling method based on a three-dimensional voxel aims to divide
the laser point cloud into three-dimensional voxels according to the spatial coordinates
of the points, as shown in Figure 4b, and establish a background model based on density
statistics using multiple point cloud frames, and then discriminate the background voxels
and the foreground voxels according to the point density changes in each voxel [46–49].
In addition, Wu et al. [50] proposed a variable-dimension background filtering method,
which uses a dynamic matrix to store the locations of background points, and identifies
background points according to the number of neighboring points and the distance between
the points in the current frame and the aggregation frames. This method uses a frame-
by-frame update instead of multi-frame spatial aggregation to construct and update the
background, which greatly reduces the amount of calculation for background point cloud
extraction. Zheng et al. [37] used the background difference method in image processing
to filter the background of the roadside LiDAR point cloud data. The above methods
generally use multi-frame aggregation to filter background points by summarizing the
farthest distance value, average value, point density, and other features. Because the
threshold parameters mainly depend on the experience of engineers, most methods lack
transferability. In addition, none of the above methods can handle scenes in which the
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foreground object is stationary for a period of time. Wang et al. [51] established a Gaussian
background model with the average height and number of points as parameters for each
three-dimensional voxel by considering the density and height distribution characteristics
of the laser point cloud in three-dimensional space. These background modeling methods
are based on a cubic grid. However, in the case of traffic congestion, it is difficult to choose
the grid with the appropriate size to create the background model. Therefore, an adaptive
polar grid Gaussian mixture model (APG-GMM) was proposed, which divides the three-
dimensional grid based on the vertical angle and horizontal angle resolution of the roadside
LiDAR, and a Gaussian mixture background model with the maximum distance value as
the hyperparameter for the point cloud in each three-dimensional grid was established [52].
This method improves the accuracy of foreground and background segmentation. To
further improve the accuracy of dynamic background modeling, Xia et al. [53] divided the
points in the same scan line into multiple sectors and developed a new density background
representation model (DBRM) to detect static and dynamic backgrounds (such as leaves)
based on the assumption that the background objects are static in space and time. The static
background is represented by density statistics, while the dynamic background is modeled
by Gaussian mixture probability distribution.

Since LiDAR intensity is not as discriminative as the camera, most detection meth-
ods based on roadside LiDAR mainly use range information, while intensity values are
often ignored. The intensity of laser radar is mainly affected by the surface reflectivity
of obstacles, which is usually used for the detection of road signs, traffic signs, build-
ings, and other infrastructure, and is suitable for the background detection of roadside
LiDAR. Zhang et al. [54] first encoded the 3D point cloud according to the LiDAR beam
and azimuth angle where the point is located and used the hash function to store the
depth value, intensity, and azimuth angle of the point in a beam–azimuth tensor with three
channels. They decomposed the intensity channels based on the dynamic mode decom-
position method to decompose the LiDAR data into the low-rank background and sparse
foreground. Considering that the static infrastructure is the farthest object illuminated by
LiDAR, the dynamic clustering method based on distance histogram analysis is used to
separate the moving object from the static background. More details on the background
modeling methods for roadside LiDAR are shown in Table 2. The accuracy of these methods
varies from one scenario to another; thus, the accuracy is not listed in Table 2.

In summary, the above methods focus on the pre-modeling of the background point
clouds, and it is difficult to achieve real-time background updates in changeable scenes.

(2) Object point cloud segmentation and recognition: After filtering the background
point cloud, it is necessary to further identify vehicles, pedestrians, and other objects from
the filtered foreground point cloud. Firstly, a three-dimensional object point cloud cluster-
ing algorithm, such as the point cloud clustering method based on Euler distance [55–58],
point density, and its variants [36,43,44,59–62], is used to accurately segment the foreground
object point cloud into independent objects. Then, according to the prior knowledge of
the object, several handcrafted features, such as the standard deviation and clustering di-
mension of the cluster point cloud, are extracted from the cluster. Finally, some traditional
classifiers, such as SVM, decision trees, and artificial neural networks, are used to realize
object recognition. Zhang et al. [55,56] used the Euclidean distance method to cluster the
object point cloud after filtering the roadside background point cloud based on the farthest
point; extracted 28-dimensional features, such as the vertical distribution histogram, 3D
size, and 2D minimum bounding box of the cluster points; and used the SVM classifier for
vehicle detection. Upon finishing clustering based on Euclidean distance, Zhang et al. [54]
estimated the bounding box to each cluster in which the total number of points is greater
than the given threshold and used it as a candidate vehicle target for trajectory tracking.
Table 3 shows a more detailed description of the proposed method.

Since the shape of point cloud objects is mostly irregular, the clustering method based
on point cloud density can detect objects with arbitrary shapes, so it is also applied to
the segmentation of roadside laser radar object point clouds. Among them, the Density-
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Based Spatial Clustering of Applications with Noise (DBSCAN) method is the most widely
used [43,44,59–62].

Table 2. Summary of background modeling for roadside LiDAR.

References Data
Description Initial Frames Criteria of

Background/Foreground Merit Limitation

Zhao et al. [40] Azimuth–height table
Manually select the
frame without
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the background frame High real-time performance.

Manually select the
initial frame and poor
environmental
adaptability.

Lee et al. [41] Range image Multi-frame point cloud

The median value and
the average height of
the sampling points in
the accumulated frame.

High real-time performance,
low complexity.

Ineffective background
modeling for scenes
with more dynamic
targets in consecutive
frames.

Zhang et al. [43] Spherical range image 954-point cloud frames
with few vehicle points
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and mean distance of
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Liu et al. [44] Spherical range image 315-point cloud frames
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fewer point cloud frames
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levels of traffic scenarios.

Decrease in background
modeling accuracy
when LiDAR swings
due to wind.

Wu et al. [46–49] Voxel/3D cube 2500-point cloud frames
The density of each
cube is learned from
accumulated frames.

High background modeling
accuracy in areas with high
point density at close range.

The size of the cube
largely influences
accuracy and
computational cost.

Wu et al. [50] Dynamic matrix Randomly select
a frame

The number of
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distance between the
points in the current
frame and the
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background points under
different scenarios.

The value parameter
mainly depends on
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Wang et.al [51] Voxel/cubes
Multiple point cloud
frames from
different periods
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background model with
average height and
number of points
as parameters.

The robustness of the
algorithm is good, and it still
achieves good performance
in the case of
LiDAR shaking.

Different voxel sizes
need to be set for
different scenes, and it
is difficult to select the
appropriate size.

Wang et al. [52] An adaptive grid One frame of the
LiDAR data

Established a Gaussian
mixture background
model with the
maximum distance as
the hyper-parameter.

No manual selection of
background frames and high
background extraction
accuracy for sparse
point clouds.

The algorithm has high
time complexity.

Zhang et al. [54] Elevation azimuth matrix Successive frames

Established a
background model by
regressing the intensity
features of continuous
frames based on the
DMD algorithm.

The algorithm process is
applied directly on the
scattered and discrete point
clouds and has
strong robustness.

Reflection intensity is
attenuated in adverse
weather, resulting in
reduced algorithm
performance.

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside
foreground point cloud and realized vehicle recognition based on six features: target length,
height, distance from LiDAR, number of points, length–height ratio, and height profile
of each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud;
they adopted a different search radius according to the number of pedestrians and vehicles
and filtered out the clusters belonging to noise points according to the total number of
points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features such
as the center point of the cluster, the farthest distance between the cluster and the LiDAR
center, the length and width of the minimum bounding box of the cluster, and the height
difference, and classified the target based on SVM. Zhang et al. [62] also used DBSCAN
to cluster the target point clouds. Five features were extracted and a probabilistic neural
network (PNN) was used to achieve target classification. The performance of the DBSCAN
algorithm depends on two parameters, the minimum number of points and the search
radius, but the density of points decreases with the increase in the distance from the
roadside LiDAR, which may affect the accuracy of density statistics, and the detection of
distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et al. [44] used



Sensors 2022, 22, 9316 10 of 25

the DBSCAN method to identify near-range traffic objects such as vehicles and road users.
For far-range traffic object detection, they extracted the trajectory of the object according
to the distance and moving direction, filtered out the noise by a fast Fourier transform
(FFT), and identified the points of the object. Zhao et al. [36] improved the DBSCAN
method for the roadside object point cloud segmentation task, divided the detection range
into sub-regions based on the sensor distance, generated an ellipsoid search space with
different radii in the vertical and horizontal directions, and estimated the point density
according to the maximum number of points collected by the search ellipsoid, which
improved the clustering accuracy of the target point cloud. In the target classification, the
2D distance, the total number of clusters, and the direction distribution characteristics of
clusters are collected, and the backpropagation artificial neural network is used to realize
the classification of pedestrians and vehicles. Both the Euclidean cluster and DBSCAN
work directly in the 3D world, thus suffering from the large time costs of querying every
point. To improve the clustering efficiency, researchers worked on the spherical range
image representation of the LiDAR point cloud. This makes it convenient to borrow image
processing techniques (e.g., region growing [63], connected-component labeling [64–67])
for faster clustering. Zhang et al. [63] coded the laser points filtered out of the background
into a spherical range image according to the number of LiDAR beams and horizon angle
resolution of the LiDAR and then used a counted region-growing method based on the
distance threshold criterion to achieve object clustering. In [64,65], the angle formed by
two adjacent laser beams in the range image is used as a criterion to separate the adjacent
points belonging to different clusters. Both the distance threshold and the angle threshold
are empirically based, and this empirical condition does not guarantee that it always works
for all pairs of points. Therefore, Zhao et al. [67] proposed a divide-and-merge point cloud
clustering algorithm, which first clusters the point cloud into many local components,
and then merges the locally clustered components by voting on edge point pairs. The
results show that the method outperforms all published methods on the SemanticKITTI [68]
panoptic leaderboard. In addition, in view of the over-segmentation phenomenon in point
cloud clustering, Li et al. [69] utilized connected-component labeling to quickly group
points into initial clusters based on the distance difference and merge overlapping regions
or neighboring parts based on the minimum mutual point Cartesian distance, thereby
reducing the over-segmentation problem in the initial clusters. Shin et al. [70] combined a
two-dimensional grid and undirected graph structure to cluster non-ground points first,
and then used the Gaussian process regression method to merge the over-segmented parts
to improve the segmentation accuracy of the object. The experimental results show that
the method achieves real-time processing speed and high segmentation accuracy in most
evaluation indicators.

The above research methods all use the traditional perception pipeline, which can
produce stable results for the roadside LiDAR used in the research but suffer from general-
ity. Some challenges and problems due to the handcrafted features may arise in practical
applications when the LiDAR beam is changed. In addition, the threshold selection of
background filtering and clustering is also subjective, feature selection depends on experi-
ence and professional skills, and the performance of the algorithm will decline in changing
scenarios. These problems and challenges may limit the applicability of most of the above
research methods in practical situations.

B. Detection method based on deep learning
Compared with the method based on traditional machine learning, the method based

on deep learning can learn object features autonomously from a large number of data
samples to achieve end-to-end object detection.

Deep learning methods have achieved remarkable results in the field of object detection
based on vehicle-mounted LiDAR point clouds and images. On the one hand, the object
detection method based on vehicle LiDAR is inspired by the image object detection method.
Point clouds are mapped into a bird’s-eye view (such as BirdNet [71], BirdNet + [72],
PIXOR [73], and YOLO3D [74]) or projected to a front view based on the horizontal and
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vertical angles of the points (such as LaserNet [75], FVNet [76], RangeDet [77]) to obtain
a structured data representation, which is then fed into a feedforward convolutional
neural network for 3D object detection. Although the projection-based method benefits
from the mature 2D detector, it inevitably loses 3D spatial information due to the spatial
quantization coding. To solve this problem, object detection methods based on voxels and
LiDAR point clouds have been proposed. Representative networks include VoxelNet [78],
PointPillars [79], Voxel-FPN [80], IPV-RCNN [81], etc. Since the resolution of the grid is
much lower than the accuracy of the three-dimensional LiDAR point cloud, the accuracy
of the object detection results is slightly reduced. The method based on the point cloud
aims to directly process the LiDAR point cloud without any transformation and apply the
multi-layer perceptron to directly extract the features of the points from the point cloud.
Along this direction, many frameworks have been proposed for object detection [82] and
semantic segmentation [83].

Although the deep learning method has achieved remarkable results in the processing
of vehicle LiDAR point clouds, few studies have applied deep learning-based perception
algorithms to roadside LiDAR systems. Because of the similarity and lack of diversity of
the background point cloud output by the roadside LiDAR, it easily leads to the overfitting
of the deep learning model. When the deployment location of the roadside LiDAR changes,
the performance of the algorithm will be significantly reduced, which seriously limits
the application of powerful deep learning methods in the roadside environment. To
solve this issue, [51] first proposed to use the background filtering method to filter the
background points, so as to increase the diversity of the roadside LiDAR point cloud.
Then, the non-background point cloud is used as the input of the object detection network
(e.g., PointPillars [79], SECOND [84], TANet [85]) for the training and testing of the model.
Zhang et al. [57] adopted a similar approach for roadside LiDAR object detection and
utilized PointVoxel-RCNN [86] (PV-RCNN) to detect vehicles and pedestrians from the
extracted moving points. The experimental results show that the generalization ability of
the above detection methods for target detection in different scenes has been improved.
However, due to the lack of publicly available roadside LiDAR datasets for network
training and testing, the detection accuracy of the algorithm is still lower than that of the
vehicle LiDAR.

Recently, Zhou et al. [87] explored and studied the training of a convolutional neural
network (CNN) by utilizing a large-scale autonomous driving dataset and reusing it for
vehicle detection from roadside LiDAR data. The proposed CNN model was modified from
the PointPillars network [79], as shown in Figure 5, by adding dense connections to achieve
more comprehensive feature extraction. It is worth noting that there are great differences
between roadside LiDAR and onboard LiDAR in terms of installation height, output point
cloud density distribution, data occlusion, and background point cloud. To empower the
model with the capability of training on onboard datasets while inferencing on the roadside,
Bai et al. [88] propose a Roadside Point-Cloud Encoder and Decoder (RPEaD) to transform
roadside point clouds into a space in which the model trained on the onboard datasets can
work. In order to reduce the shifting in Z-axis coordinates between the onboard LiDAR
point cloud and the roadside LiDAR point cloud, the feature extraction network also adopts
a structure similar to [79,87]; that is, the point cloud feature extraction network is based
on pillars. Moreover, Zimmer et al. [89] designed a model, DASE-ProPillars, for 3D object
detection using roadside LiDAR. They created a semi-synthetic infrastructure dataset with
6000 frames of the point cloud using the CARLA simulator, to make up for the deficiency of
existing publicly available roadside LiDAR datasets. The comparison of the above methods
is shown in Table 4.
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Table 3. Summary of the features used for LiDAR data classification.

References Object Clustering Selected Features Classifier Applicability

Zhang et al. [55,56] Euclidean cluster
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height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Area of the 2D minimum
bounding box of the cluster.

SVM classifier with
RBF kernel Vehicle detection

Zhang et al. [54] Distance-based
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Vehicle detection 
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 3D bounding box to each cluster. 
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[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

3D bounding box to each cluster.
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Vehicle detection 
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 3D bounding box to each cluster. 
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[59,60] 
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 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-
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cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 
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detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

The number of points. - Vehicle detection

Wu et al. [59,60] DBSCAN
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 3D bounding box to each cluster. 
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 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-
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and SVM 
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Zhang et al. 
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DBSCAN 

 Compare the distances between objects and LiDAR 
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- 
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detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Object length, height.
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[54] 

Distance-

based 

 3D bounding box to each cluster. 
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 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 
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Zhang et al. 
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DBSCAN 
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- 
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Chen et al. 
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 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 
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 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Difference between height
and length.
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 3D bounding box to each cluster. 
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 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 
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est neighbor classifi-

cation, decision tree, 

and SVM 
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Zhang et al. 
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DBSCAN 
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Vehicle and pedestrian 
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Chen et al. 

[61] 
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 The nearest distance between the points and the Li-

DAR. 
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 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

10D object height profile.
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 3D bounding box to each cluster. 
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 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 
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and SVM 
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Zhang et al. 
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DBSCAN 

 Compare the distances between objects and LiDAR 
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Zhang et al. 
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 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 
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track classification 

Zhao et al. 
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Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Distance between object and
the LiDAR.
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 3D bounding box to each cluster. 
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- Vehicle detection 
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 10D object height profile. 

 Distance between object and the LiDAR. 
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Zhang et al. 
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DBSCAN 
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SVM classifier Vehicle detection 

Zhang et al. 
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 Maximum intensity change. 
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network (PNN) 
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track classification 

Zhao et al. 
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Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

The number of points.

Naïve Bayes, K-nearest
neighbor classification,
decision tree, and SVM

Vehicle classification

Zhang et al. [43] DBSCAN
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track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Compare the distances between
objects and LiDAR and the
distances between ground
and LiDAR.

- Vehicle and
pedestrian detection

Chen et al. [61] DBSCAN
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Zhang et al. 
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cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Average X, Y, Z of the points.
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Zhang et al. 
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cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

The nearest distance between the
points and the LiDAR.
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cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Object length and width.
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Zhang et al. 

[55,56] 

Euclidean 

cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Difference between the height of
the object and length.

SVM classifier Vehicle detection

Zhang et al. [62] DBSCAN
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cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

The number of points.
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Zhang et al. 

[55,56] 
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cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 
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 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 
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based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Maximum intensity change.
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Zhang et al. 

[55,56] 

Euclidean 

cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Distance between tracking point
and LiDAR.
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Zhang et al. 

[55,56] 

Euclidean 

cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 
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Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 
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[59,60] 
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 Object length, height. 
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 10D object height profile. 

 Distance between object and the LiDAR. 
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from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

Maximum distance in the XY
plane and maximum distance
in Z-axis

Probabilistic neural
network (PNN)

Pedestrian, bicycle, passenger
car, and track classification

Zhao et al. [30,36] Improved DBSCAN

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25 
 

 

Table 3. Summary of the features used for LiDAR data classification. 

References 
Object Clus-

tering 
Selected Features Classifier Applicability 

Zhang et al. 

[55,56] 

Euclidean 

cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

The number of points.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25 
 

 

Table 3. Summary of the features used for LiDAR data classification. 

References 
Object Clus-

tering 
Selected Features Classifier Applicability 

Zhang et al. 

[55,56] 

Euclidean 

cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

2D distance.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25 
 

 

Table 3. Summary of the features used for LiDAR data classification. 

References 
Object Clus-

tering 
Selected Features Classifier Applicability 

Zhang et al. 

[55,56] 

Euclidean 

cluster  

 20D vertical point distribution histogram of the 

cluster. 

 The standard deviation of points in X, Y, Z. 

 Volume size of the cluster: length, width, maximum 

height, and minimum height. 

 Area of the 2D minimum bounding box of the clus-

ter. 

SVM classifier with 

RBF kernel 
Vehicle detection 

Zhang et al. 

[54] 

Distance-

based 

 3D bounding box to each cluster. 

 The number of points. 
- Vehicle detection 

Wu et al. 

[59,60] 
DBSCAN 

 Object length, height. 

 Difference between height and length. 

 10D object height profile. 

 Distance between object and the LiDAR. 

 The number of points. 

Naïve Bayes, K-near-

est neighbor classifi-

cation, decision tree, 

and SVM 

Vehicle classification 

Zhang et al. 

[43] 
DBSCAN 

 Compare the distances between objects and LiDAR 

and the distances between ground and LiDAR. 
- 

Vehicle and pedestrian 

detection 

Chen et al. 

[61] 
DBSCAN 

 Average X, Y, Z of the points. 

 The nearest distance between the points and the Li-

DAR. 

 Object length and width. 

 Difference between the height of the object and 

length. 

SVM classifier Vehicle detection 

Zhang et al. 

[62] 
DBSCAN 

 The number of points. 

 Maximum intensity change. 

 Distance between tracking point and LiDAR.  

 Maximum distance in the XY plane and maximum 

distance in Z-axis 

Probabilistic neural 

network (PNN) 

Pedestrian, bicycle, 

passenger car, and 

track classification 

Zhao et al. 

[30,36] 

Improved 

DBSCAN 

 The number of points. 

 2D distance. 

 The direction of the clustered points’ distribution. 

Backpropagation ar-

tificial neural net-

work (BP-ANN) 

Pedestrian and vehicle 

classification 

Wu et al. [59,60] used the DBSCAN method to cluster and segment the roadside fore-

ground point cloud and realized vehicle recognition based on six features: target length, 

height, distance from LiDAR, number of points, length–height ratio, and height profile of 

each cluster. Zhang et al. [43] used DBSCAN to cluster the roadside target point cloud; 

they adopted a different search radius according to the number of pedestrians and vehi-

cles and filtered out the clusters belonging to noise points according to the total number 

of points after clustering. After DBSCAN clustering, Chen et al. [61] extracted features 

such as the center point of the cluster, the farthest distance between the cluster and the 

LiDAR center, the length and width of the minimum bounding box of the cluster, and the 

height difference, and classified the target based on SVM. Zhang et al. [62] also used 

DBSCAN to cluster the target point clouds. Five features were extracted and a probabilis-

tic neural network (PNN) was used to achieve target classification. The performance of 

the DBSCAN algorithm depends on two parameters, the minimum number of points and 

the search radius, but the density of points decreases with the increase in the distance 

from the roadside LiDAR, which may affect the accuracy of density statistics, and the de-

tection of distant vehicles and pedestrians becomes a major challenge. Therefore, Liu et 

al. [44] used the DBSCAN method to identify near-range traffic objects such as vehicles 

and road users. For far-range traffic object detection, they extracted the trajectory of the 

object according to the distance and moving direction, filtered out the noise by a fast Fou-

rier transform (FFT), and identified the points of the object. Zhao et al. [36] improved the 

DBSCAN method for the roadside object point cloud segmentation task, divided the 

The direction of the clustered
points’ distribution.

Backpropagation artificial
neural network (BP-ANN)

Pedestrian and
vehicle classification

Sensors 2022, 22, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 5. PointPillars 3D object detection model architecture [79]. 

Table 4. Comparison of object detection methods for roadside LiDAR based on deep learning. 

References Year Architecture Dataset Strategy 

Wang et al. 

[51] 
2021 

Background filtering 

module + 3D CNN de-

tectors 

Training: collected using roadside Li-

DAR (800 frames). 

Testing: collected using roadside Li-

DAR (100 frames). 

⚫ Filtering out the background points before 

training model to improve the generaliza-

tion ability and performance of 3D detec-

tors. 

Zhang et al. 

[57]  
2022 

Background filtering, 

clustering, tracker 

module + PointVoxel-

RCNN detector 

Training: collected using a RS-LiDAR-

32 roadside LiDAR (700 frames). 

Testing: collected using a RS-LiDAR-

32 roadside LiDAR (63 frames). 

⚫ Candidate objects are generated by back-

ground filtering, moving point clustering, 

and UKF tracker before detection. 

Zhou et al. 

[87] 
2022 Modified PointPillars  

Training: a large-scale autonomous 

driving LiDAR dataset, PandaSet, cap-

tured through a Panda 64 LiDAR 

(11200 frames). 

Testing: Roadside LiDAR data col-

lected using a Velodyne VLP-32C. 

(1000 frames). 

⚫ Reusing CNNs pre-trained on autono-

mous driving data to detect vehicles from 

roadside LiDAR data. 

⚫ Dense connections between convolutional 

layers are introduced on the basis of 

PointPillar to achieve more effective fea-

tures. 

Bai et al. [88] 2022 
RPEaD + PointPillars + 

FPN 

Training: large-scale autonomous driv-

ing LiDAR dataset, Nuscenes. 

Testing: 130 frames manually labelled 

based on the drone’s view. 

⚫ Transform roadside point clouds into co-

ordinates suitable for training on the 

onboard dataset by RPEaD. 

⚫ To further reduce the sensitivity of the 

model to the difference point clouds in 

height, they voxelized the point cloud to 

generate point cloud pillars. 

⚫ Designed feature pyramid network to 

generate predicted bounding boxes. 

Zimmer et al. 

[89] 
2022 

DASE-ProPillars, an 

improved version of 

the PointPillars model 

Training: a semi-synthetic dataset with 

6000 frames generated by a OSI-64 

simulated LiDAR sensor. A9 dataset, 

Regensburg. 

Testing: A9 dataset, Regensburg Next 

Project. 

⚫ Introduce five extensions to improve 

PointPillars. 

⚫ Create a semi-synthetic roadside LiDAR 

dataset to train the proposed model. 

⚫ 50 LiDAR frames collected from roadside 

LiDARs were manually labeled to fine-

tune the detector. 

⚫ Perform transfer learning from the A9 da-

taset to the dataset from the Regensburg 

Next project. 

3.2. Multi-LiDAR Cooperative Detection Method 

Due to the limited field of view of a single LiDAR, the acquired point cloud data have 

certain defects. The fusion of multiple LiDAR point clouds with spatial diversity charac-

teristics to achieve regional cooperative perception can significantly improve the accuracy 

of scene perception. Cooperative perception can fuse data from multiple LiDAR sensors 

Figure 5. PointPillars 3D object detection model architecture [79].



Sensors 2022, 22, 9316 13 of 25

Table 4. Comparison of object detection methods for roadside LiDAR based on deep learning.

References Year Architecture Dataset Strategy

Wang et al. [51] 2021 Background filtering module
+ 3D CNN detectors

Training: collected using roadside
LiDAR (800 frames).
Testing: collected using roadside
LiDAR (100 frames).

• Filtering out the background
points before training model to
improve the generalization ability
and performance of 3D detectors.

Zhang et al. [57] 2022
Background filtering,
clustering, tracker module +
PointVoxel-RCNN detector

Training: collected using a
RS-LiDAR-32 roadside LiDAR
(700 frames).
Testing: collected using a
RS-LiDAR-32 roadside LiDAR
(63 frames).

• Candidate objects are generated by
background filtering, moving
point clustering, and UKF tracker
before detection.

Zhou et al. [87] 2022 Modified PointPillars

Training: a large-scale autonomous
driving LiDAR dataset, PandaSet,
captured through a Panda 64 LiDAR
(11200 frames).
Testing: Roadside LiDAR data
collected using a Velodyne VLP-32C.
(1000 frames).

• Reusing CNNs pre-trained on
autonomous driving data to detect
vehicles from roadside
LiDAR data.

• Dense connections between
convolutional layers are
introduced on the basis of
PointPillar to achieve more
effective features.

Bai et al. [88] 2022 RPEaD + PointPillars + FPN

Training: large-scale autonomous
driving LiDAR dataset, Nuscenes.
Testing: 130 frames manually
labelled based on the drone’s view.

• Transform roadside point clouds
into coordinates suitable for
training on the onboard dataset
by RPEaD.

• To further reduce the sensitivity of
the model to the difference point
clouds in height, they voxelized
the point cloud to generate point
cloud pillars.

• Designed feature pyramid
network to generate predicted
bounding boxes.

Zimmer et al. [89] 2022
DASE-ProPillars, an
improved version of the
PointPillars model

Training: a semi-synthetic dataset
with 6000 frames generated by a
OSI-64 simulated LiDAR sensor. A9
dataset, Regensburg.
Testing: A9 dataset, Regensburg
Next Project.

• Introduce five extensions to
improve PointPillars.

• Create a semi-synthetic roadside
LiDAR dataset to train the
proposed model.

• 50 LiDAR frames collected from
roadside LiDARs were manually
labeled to fine-tune the detector.

• Perform transfer learning from the
A9 dataset to the dataset from the
Regensburg Next project.

3.2. Multi-LiDAR Cooperative Detection Method

Due to the limited field of view of a single LiDAR, the acquired point cloud data
have certain defects. The fusion of multiple LiDAR point clouds with spatial diversity
characteristics to achieve regional cooperative perception can significantly improve the
accuracy of scene perception. Cooperative perception can fuse data from multiple LiDAR
sensors through V2I [90–92] or I2I [19,93,94], to realize information sharing and reduce
sensor deployment costs. Based on the general procedure of 3D object detection, cooperative
perception can be classified into three categories depending on the sensing information
to be shared between LiDAR: raw, feature, and object-level cooperative perception [95].
Raw point cloud cooperative perception seeks to fuse LiDAR point clouds with different
spatial distributions into point clouds with more comprehensive object information after
alignment, and then apply the fused point clouds to object detection, as shown in Figure 6.
Since the most abundant information of the same object is maintained after point cloud
fusion, the object detection has the highest accuracy. However, a large amount of data
needs to be exchanged between different sensors. The issue of how to realize real-time
and distortion-free point cloud sharing under limited communication bandwidth is a huge
challenge [96].
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Figure 6. Logical illustration of raw-level and object-level schemes for cooperative object detection.

The object-level cooperative perception method first performs 3D object detection
based on the point cloud output by each LiDAR to obtain information such as the position,
bounding box, and confidence score of the object from different perspectives, and shares
them to obtain more accurate object information [19,88,97], as shown in Figure 6. Since
the scheme only needs to exchange the information of the object detected by LiDARs, the
real-time cooperative perception among multiple LiDARs can be realized with a small
communication bandwidth. However, when an object is missed in a laser radar due to
occlusion of the perspective or low point density, it will be missed based on the object-level
cooperative perception system. Therefore, the effect of cooperative perception based on the
object level is worse than that based on point clouds and point cloud features [19].

To overcome the shortcomings of raw and object-level cooperative perception, the
feature-level cooperative perception method needs to be further explored to achieve a
trade-off between detection precision and bandwidth requirements. The feature-level
cooperative perception first uses the feature coding layer based on voxel [98], pillar [90], or
BEV [99] to generate feature maps from the point clouds output by each LiDAR, and then
fuses them for object detection. Bai et al. [90] proposed a novel feature-level cooperative
perception method from multiple 3D LiDARs. To avoid the extremely time-consuming
3D convolution, they first extracted the pillar features from the point cloud voxelized into
pillars, and used a grid-wise feature fusion strategy to fuse multi-LiDAR data with high
expandability; the architecture is shown in Figure 7. Chen et al. [98] extended their previous
work [96] by fusing voxel features and using deep neural networks to learn deep features to
achieve cooperative perception. Two sequence frames in the KITTI Vision Benchmark Suit
(KITTI) dataset [100] were used to simulate the collaborative dataset to test the proposed
method. However, KITTI only contains a limited number of traffic scenarios and is not
specifically designed for cooperative perception. It is expensive to obtain a real dataset
dedicated to multi-LiDAR cooperative perception, and it takes a great deal of time to
manually label. Therefore, many methods proposed in recent years, such as [90,99,101],
are based on synthetic data for more comprehensive cooperative perception experiments.
Data generators and simulation tools such as CARLA [102] and SUMO [103] can not
only generate a large amount of high-fidelity data for cooperative perception research
under various traffic conditions but also provide accurate truth data. Marvasti et al. [99]
used CARLA to generate simulated point cloud datasets to compare different data fusion
strategies. The results show that both raw data ad deep feature fusion are significantly
better than object-oriented fusion, especially when vehicle positioning errors are introduced.
In addition, Wang et al. [104] also confirmed that, on the simulated dataset LiDARsim [101],
the shared compressed depth feature map can achieve high-precision object detection while
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meeting the communication bandwidth requirements. However, due to the down-sampling
of the raw point cloud data, the resolution of the shared feature map is low, so the strategy
is not robust in high-precision object bounding box prediction.
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In summary, deep feature fusion has achieved initial success, but there is still too much
redundancy due to the sparsity of the shared feature map. These deep features are highly ab-
stract and difficult to select, compress, and fuse through neural networks. For autonomous
driving with real-time communication requirements, high-precision data sharing and low
communication overhead are still huge challenges for cooperative perception technology.

3.3. Object Detection under Adverse Weather Conditions

At present, the roadside LiDAR perception algorithm is mainly oriented toward
normal weather conditions, while roadside LiDAR deployed on the road infrastructure
will withstand various adverse weather types (such as rain, snow, fog, etc.). Nevertheless,
the performance of LiDAR will be degraded to some extent in adverse weather, as shown
in [25,31–34,105]. In foggy or snowy weather, the backscattering of light from water droplets
or snowflakes received by LiDAR will produce a number of incorrect detection points,
which also reduces the number of object points in the output point cloud and increases
the difficulty of object detection, as shown in Figure 8. In addition, the effective detection
distance and the reflection intensity of the object surface of the laser radar in adverse
weather such as rain, fog, or snowfall will also be reduced. Therefore, to improve the target
recognition accuracy of laser radar in adverse weather, the laser point cloud processing
algorithm must deal with these influences.
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In recent years, some work related to LiDAR point cloud enhancement in adverse
weather has been carried out, mainly through the filtering algorithm to preprocess the
LiDAR point cloud output to improve the accuracy of object detection in adverse weather.
Park et al. [106] proposed a filter based on the point cloud reflection intensity, which
uses point cloud reflection intensity characteristics to filter snow particles and retain
important environmental characteristics based on the analysis of laser and snow particle
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characteristics. Robin et al. [107] proposed a CNN-based method to understand and filter
noise in point clouds, and the results showed a significant improvement in performance
compared with the latest geometry-based filtering. Roriz et al. [108] proposed a method
of Dynamic Intensity Outlier Removal (DIOR), which combines the Dynamic Radius
Outlier Removal (DROR) and Low-Intensity Outlier Removal (LIOR) algorithms to achieve
higher accuracy while ensuring real-time performance. To improve the all-weather ability
of roadside LiDAR, based on the analysis of the shortcomings of the existing filters, a
combined denoising algorithm is proposed by combining the methods of crop box filter,
ray ground filter, voxel filter, and statistical outlier filter [109]. Moreover, Wu et al. [110,111]
studied the characteristics of roadside LiDAR data in rain and snow, proposed an improved
density clustering method—3D-SDBSCAN—to distinguish vehicle points and snowflakes
in LiDAR data, and used adaptive parameters to detect vehicles at different distances from
roadside LiDAR sensors. The above methods are also mainly based on prior information
and have poor adaptability to changeable scenes.

The rapid construction of an optimized detection network for large-scale LiDAR point
cloud datasets in adverse weather provides a new idea for improving the performance
of object detection in severe weather. Collecting and labeling sufficient training data in
a diverse range of adverse weather conditions is laborious and prohibitively expensive.
To address this issue, Yang et al. [112] modeled the performance of LiDAR under various
fog conditions based on a 30-m artificial fog chamber established in Europe, and then
loaded the pre-trained noise model on the LiDAR data recorded under clear weather condi-
tions to quickly construct a large-scale LiDAR point cloud dataset under fog conditions.
Kilic et al. [113] proposed a physics-based approach to simulate the LiDAR point clouds
of scenarios in adverse weather conditions on existing datasets collected under normal
weather conditions. Through the method, the accuracy and reliability of the 3D object
detector can be improved by using the abundant existing real datasets collected in clear
weather. Recently, Hahner et al. [114,115] proposed a physical method dedicated to fog and
snowfall simulation, applicable to any LiDAR dataset. These partially synthetic data can be
used to improve the robustness of the LiDAR point cloud perception algorithm in real fog
and snowfall environments.

To summarize, there is a lack of large-scale roadside LiDAR point cloud datasets in
poor weather. At present, the main method to improve the detection performance of LiDAR
in adverse weather focuses on point cloud denoising. Although the roadside LiDAR point
cloud collected in normal weather can be transformed to adverse weather through the
physical modeling of LiDAR, there is still a lack of quantitative performance parameters
of LiDAR in adverse weather such as rain and snow, which leads to a lack of confidence
in the established LiDAR model. It is impossible to rely on the existing model to generate
high-fidelity roadside LiDAR point clouds in adverse weather.

3.4. Datasets

High-quality roadside datasets have significant industrial value, which can accel-
erate the iterative optimization of roadside perception models in vehicle–infrastructure
collaboration and play a positive role in promoting innovative research in academia. In
recent years, many object detection and tracking datasets collected by LiDAR and cameras
have been published, such as KITTI [100], H3D [116], ApolloScape [117], Waymo [118],
NuScenes [119], PandaSet [120], and Panoptic Nuscenes [121]. However, these are based
on data from onboard sensors; there are relatively few public roadside datasets, especially
3D point cloud datasets, which cannot meet the current needs for the iterative optimization
of roadside perception models. Since last year, some datasets collected by roadside LiDAR
and cameras have been released one after another. We have summarized the released
datasets, and the data samples are shown in Figure 9.
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BAAI-VANJEE: In 2021, Deng et al. [122] released a roadside perception dataset,
called the BAAI-VANJEE dataset, to support the Connected Automated Vehicle Highway
technologies. This dataset provides 2500 frames of point cloud data and 5000 frames of
RGB images collected from a complex urban intersection and highway scenes in China,
covering different weather conditions (sun, cloud, rain) and times (day, night). It was
collected by a 32-beam roadside LiDAR sensor and two cameras placed on the roadside at
approximately 4.5 m. More detailed parameters are shown in Table 5.

Table 5. Survey of datasets recorded by infrastructure sensors.

Dataset Year LiDAR Cameras
Annotated

LiDAR
Frames

3D
Boxes

2D
Boxes Classes Traffic

Scenario
Weather

and Times
Sensor
Height

BAAI-
VANJEE

[122]
2021 1 32L-LiDAR-R

32-beam LiDAR
2 RGB

cameras
2500

frames 74 k 105 k 12 Urban Sunny/cloudy/rainy,
day/night 4.5 m

IPS300+
[28] 2022

1 Robosense
Ruby-Lite

80-beam LiDAR

2 color
cameras

14,198
frames 454 M - 7 Urban Day/night 5.5 m

DAIR-
X2X_I

[30]
2022 1 300-beam

LiDAR
1 RGB
camera

10,084
frames 493 k - 10 Urban

highway
Sunny/rainy/fogy,

day/night -

A9-Dataset
[123] 2022 1 Ouster-OS1

64-beam LIDAR
1 RGB
camera

1098
frames 14 k - 7 Autobahn

highway daylight 7 m

LUMPI
[27] 2022

1 VLP-16,
1 HDL-64,

1 Pandar64,
1 PandarQT

1 PiCam
1ATOM
1YiCam

145 min - - 6 Urban Sunny/cloudy/hazy/ -

IPS300+: In order to promote the research on roadside multi-modal perception in
cooperative vehicle infrastructure systems, Wang et al. [28] published a bimodal dataset
in 2022 with a band of roadside LiDAR and cameras. The collection scene is an urban
intersection covering an area of 3000 square meters, covering a radius of 300 m. Two
perception units (IPU) are installed on the diagonal of the intersection at a distance of
5.5 m from the ground for data collection. Each perception unit consists of an 80-beam
RoboSense Ruby-Lite LiDAR and two Sensing-SG5 color cameras. The proposed dataset
includes 14,198 frames of data covering different times. The point clouds registered by the
two IPUs are stored as a single PCD file in one frame for annotation, and each frame has an
average of 319.84 tags, including seven categories of pedestrians, cyclists, tricycles, cars,
buses, trucks, and engineering vehicles.

DAIR-V2X-I: To accelerate computer vision research and innovation for vehicle–infrastructure
cooperative autonomous driving, Yu et al. [30] released the DAIR-V2X dataset in 2022. The
dataset was collected from 10 km of urban roads, 10 km of expressways, and 28 intersec-
tions in Beijing’s high-level automatic driving demonstration area. Four pairs of 300-beam
roadside LiDAR and high-resolution cameras were deployed at each of the 28 intersections.
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DAIR-V2X-I is a subset of DAIR-V2X, which is dedicated to roadside cooperative per-
ception, and contains 10,084 frames of jointly annotated images and roadside LiDAR
point cloud data, respectively. The annotator exhaustively labels each of the 10 object
classes in each image and point cloud frame, including different vehicles, pedestrians, and
different cyclists.

A9 Dataset: In 2022, Christian et al. [123] presented the A9 dataset based on roadside
sensors from the 3-km-long Providentia++ test field near Munich in Germany. Sensors
include a camera, radar, and 64-beam Ouster LiDAR, and are mounted on the gantry
bridges and masts and provide vistas of the road. The dataset offers labeled images and
LiDAR point clouds of multiple road segments and from different angle recordings of dense
traffic on the A9 autobahn during daylight. The release R0 consists of 1098 labeled frames
and 14,459 labeled 3D objects, including nine categories of objects, such as car, trailer, truck,
van, pedestrian, bus, motorcycle, bicycle, and others.

LUMPI: Recently, Bush et al. [27] published a multi-view dataset; they used three
different configurations of cameras and LiDAR to collect data, and all LiDARs were syn-
chronized by GPS, covering the intersection area through different combinations of LiDAR
and installation methods. They collected 145 min of data over three different days with
varying weather conditions and labeled six categories of objects, including person, car,
bicycle, motorcycle, bus, and truck. The detailed information is shown in Table 5.

4. Discussion and Future Works

Although the research on traffic object detection based on roadside LiDAR is still in
the exploratory stage, it plays an increasingly important role in the realization of non-blind
areas and the over-the-horizon perception ability of cooperative automatic driving vehicles.
At present, many solutions have been put forward for this problem, but there are still
many difficulties for commercial applications. This section will discuss in detail some very
important but rarely studied open problems in object detection based on roadside LiDAR,
as well as future work directions.

(1) Towards Scene-Adaptive High-Precision Perception: Due to the homogeneity and
lack of diversity of the background point clouds output by the roadside LiDAR, the
existing detection methods mainly use traditional background filtering, clustering
segmentation, feature extraction, and classification methods. This cascade method is
easily affected by any changes and errors in the upstream model. The reliability and
accuracy of the algorithm are greatly affected by the LiDAR deployment environment.
These problems will limit the application of traditional perception methods in real
scenes. Therefore, it is necessary to use the powerful learning ability of deep learning
to develop an integrated object detection network with scene adaptability to improve
the accuracy and reliability of object detection based on roadside LiDAR. Therefore,
on the one hand, we can try to collect and annotate a large number of roadside LiDAR
data from the simulation environment or the real scene to promote the research
of roadside LiDAR perception methods based on data-driven considerations. On
the other hand, based on the existing small number of labeled roadside point cloud
datasets, we can attempt to carry out research on the deep learning method of roadside
LiDAR based on few-shot learning [124].

(2) Adaptation in Different Roadside LiDARs: According to the research review in this
paper, the roadside LiDAR used in the existing methods or published datasets has
great differences in the scanning mode and the number of scanning lines; specifically,
the number of scanning lines of LiDAR ranges from 16 to 300. The observation angle
of the object, sparsity of the output point cloud, and regional occlusion are different for
the roadside LiDAR with a different number of scanning lines and different installation
height, which makes it difficult for the existing perception methods to be applied
to different roadside LiDARs. Thus far, there is no uniform standard specification
for which type of LiDAR will dominate the roadside perception application in the
future. Therefore, it is very important to promote research on the common perception
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algorithm of different roadside LiDARs, which can mine the characteristics of LiDAR
point cloud data and try to build a domain-invariant data representation, so that
the detection model trained based on existing LiDAR data can be reused for new
LiDARs [125].

(3) Adaptation in Different Weather Scenarios: The existing perception algorithms
based on roadside LiDAR are usually developed for scenes under normal weather, and
do not perform well in adverse weather conditions such as rain and snow. However,
the construction of roadside LiDAR point cloud datasets under adverse weather is
time-consuming and costly. Therefore, we can try to establish a physical model of
LiDAR with high confidence under adverse weather based on the study of the impact
of adverse weather on LiDAR parameters, and then use the existing roadside LiDAR
point cloud collected under normal weather to quickly construct a large-scale LiDAR
point cloud dataset under adverse weather. This will promote the research of roadside
LiDAR perception algorithms for weather domain adaptation.

(4) Towards Multiple Roadside LiDAR Cooperation: Through a review of the roadside
LiDAR perception approach in recent years, most of the studies above are based on a
single LiDAR sensor, while few of them use multiple roadside LiDARs to enhance
perception. However, the field of view of a single laser radar is limited, and the point
cloud data obtained have some defects. The accuracy of scene perception can be
significantly improved by integrating multiple laser radar point clouds from different
perspectives in the surrounding space to achieve cooperative perception. At present,
high-precision data sharing and low communication overhead are major challenges
for multi-side LiDAR cooperative perception. If we can explore the fusion strategy of
object information and key point features based on the output of multiple LiDARs,
and construct the object detection model of multiple roadside LiDARs based on the
fusion of key point depth features, it will provide a new idea for the realization of the
enhanced perception of traffic objects under low communication bandwidth.

(5) Towards Multi-Model Cooperation: The perception system based on multi-modal
sensor information fusion can significantly improve the perceived performance of a
single modal sensor through the complementarity of different types of modal informa-
tion (such as LiDAR point clouds and images) and appropriate fusion technology [126].
However, the performance of multi-modal fusion has been limited due to the spatiotem-
poral asynchrony between sensors, domain bias, and noise in different modal data.
Future work can explore more effective spatiotemporal registration and data fusion
strategies for different modal sensors, and thus achieve better perception performance.

5. Conclusions

This paper reviewed several current issues and trends of object detection based on
roadside LiDAR. This review mainly includes the following parts: the characteristics of
roadside LiDAR and the challenges of object detection, object detection based on a single
roadside LiDAR, object detection based on multiple roadside LiDARs, the challenges of
roadside LiDAR in adverse weather and related work, the roadside LiDAR dataset, and
some open problems and future work directions. The major findings in the above studies
are as follows.

(1) Due to the particularity of the deployment location of roadside LiDAR, most of
the current object detection methods based on roadside LiDAR mainly adopt the
traditional point cloud processing method, which has low accuracy compared with the
existing object detection method based on onboard LiDAR and has poor adaptability
to changing scenes and LiDAR with different beams.

(2) The roadside LiDAR is deployed on the roadside infrastructure for a long time, and
the developed algorithm must consider the impact of adverse weather on the LiDAR.
At present, there is a lack of roadside LiDAR point cloud datasets in adverse weather,
and the work of roadside LiDAR detection in adverse weather is mainly focused on
point cloud denoising.
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(3) Most of the algorithms are based on the data of a single roadside LiDAR, and the
cooperativity of the LiDAR can better exploit the advantages of the roadside LiDAR,
so it is necessary to continue to promote research on the cooperative perception of
multiple roadside LiDAR.

(4) Since last year, some roadside LiDAR and image datasets have been released, but the
coverage of the scene is limited, the data collected in adverse weather are sparse, and
the number of LiDAR lines used in each dataset is also very different.

Roadside LiDAR will play an important role in the future cooperative perception
system. There are still many challenges in the practical application of the existing perception
methods based on roadside LiDAR. It is hoped that the review in this paper will play a
guiding role in further promoting the research of roadside LiDAR perception methods.
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