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Abstract: Mobility impairments are a common symptom of age-related degenerative diseases. Gait
features can discriminate those with mobility disorders from healthy individuals, yet phenotyping
specific pathologies remains challenging. This study aims to identify if gait parameters derived from
two foot-mounted inertial measurement units (IMU) during the 6 min walk test (6MWT) can phe-
notype mobility impairment from different pathologies (Lumbar spinal stenosis (LSS)—neurogenic
diseases, and knee osteoarthritis (KOA)—structural joint disease). Bilateral foot-mounted IMU data
during the 6MWT were collected from patients with LSS and KOA and matched healthy controls
(N = 30, 10 for each group). Eleven gait parameters representing four domains (pace, rhythm, asym-
metry, variability) were derived for each minute of the 6MWT. In the entire 6MWT, gait parameters
in all four domains distinguished between controls and both disease groups; however, the disease
groups demonstrated no statistical differences, with a trend toward higher stride length variability in
the LSS group (p = 0.057). Additional minute-by-minute comparisons identified stride length variabil-
ity as a statistically significant marker between disease groups during the middle portion of 6WMT
(3rd min: p ≤ 0.05; 4th min: p = 0.06). These findings demonstrate that gait variability measures
are a potential biomarker to phenotype mobility impairment from different pathologies. Increased
gait variability indicates loss of gait rhythmicity, a common feature in neurologic impairment of
locomotor control, thus reflecting the underlying mechanism for the gait impairment in LSS. Findings
from this work also identify the middle portion of the 6MWT as a potential window to detect subtle
gait differences between individuals with different origins of gait impairment.

Keywords: lumbar spinal stenosis; knee osteoarthritis; wearable IMU sensor; gait variability; gait
impairment

1. Introduction

Mobility limitations are increasing with the aging of modern society [1,2]. Among
those suffering from mobility impairment, lumbar spinal stenosis (LSS) and knee os-
teoarthritis (KOA) are two of the most common causes worldwide [3–5], creating a sub-
stantial and increasing burden on society and the economy [6–8]. LSS has a neurogenic
disease mechanism characterized by claudication, described as pain and/or numbness in
the lower back and extremities that worsens with walking distance [9]. Alternatively, KOA
has a structural joint disease mechanism characterized by knee pain from the initiation of
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walking [10], often associated with a “gelling phenomenon” or a feeling of joint stiffness
that gradually mitigates with continuous movement [11]. Since the pathophysiology and
symptomatology of LSS differ from KOA, the manifestations of their respective gait distur-
bances may also differ. Our previous analysis of walking tests, including the 6 min walk
test (6MWT), identified significant differences between these two disorders and the healthy
controls [12]. However, a challenge remains to further phenotype and distinguish between
these two common causes of mobility impairment using gait measures.

Numerous parameters are used to characterize gait disturbances [13–15]. These gait
parameters can be classified into four domains: rhythm, pace, asymmetry, and variabil-
ity [16,17]. The rhythm domain represents measures of absolute timing. The pace domain
relates to walking speed and length measures in the sagittal plane. The asymmetry domain
links to differences between the right and left lower limb parameters, and the variability
domain reflects fluctuations in spatiotemporal characteristics between steps. These gait
parameters are often reported as mean values during the entire period of the test, how-
ever, recent work showed that the temporal change in gait performance over a period of
time may reveal additional subtle gait alterations that may be fatigue-induced and/or
disease-specific [18,19].

Traditionally, gait analysis has been conducted in well-equipped labs using 3D mo-
tion capture techniques, requiring the use of costly equipment and specialized facilities.
Newer technologies (including inertial measurement units (IMU), smartphones, low-cost
video/depth cameras, pressure sensors, ambient sensors, etc.), provide alternatives that
can efficiently capture and analyze movement data in various settings [20]. Among these
technologies, wearable IMUs are most commonly used as the most portable and flexible
option to measure mobility [21], allowing physicians, physical therapists, and researchers
to analyze gait in research laboratories, clinics, and in a patient’s home or community. IMU
sensors contain small 3D accelerometers (linear acceleration), gyroscopes (angular velocity),
and/or magnetometers (magnetic field) that can be used collectively to quantify move-
ment through various time- and frequency-domain parameters [20]. By securely attaching
wearable IMU sensors to various body segments, different kinematic and biomechanical
parameters can be obtained with similar validity and reliability to conventional lab-based
systems [22,23]. Gait features derived from wearable sensors have demonstrated potential
clinical utility in neurological diseases by distinguishing disease populations from healthy
controls and stratifying disease severity [16,18]. However, such clinical utility has yet to be
demonstrated in orthopedic research.

This study aims to analyze data from foot-mounted IMUs worn by patients with
LSS and KOA during the 6MWT to investigate gait characteristics in each of the four
gait domains (rhythm, pace, asymmetry, and variability). Specifically, our primary goal
is to extract gait features by each minute of the walking test to compare LSS and KOA
and determine whether time series data reveals phenotypic differences between the two
disease groups.

2. Materials and Methods
2.1. Participants

A total of 30 participants were enrolled in the study, with 10 in each of the 3 groups:
LSS, KOA, and matched healthy controls (HC). The full study inclusion/exclusion criteria
are detailed in a previous paper summarizing the overall results from multiple walking
tests [12]. The study was HIPAA compliant and approved by the ethical committee for Hu-
man Subjects Research at Stanford University. Each participant provided written informed
consent and completed the 36-Item Short-Form health survey (SF-36) [24].

2.2. Gait Analysis

Each participant underwent a series of gait assessments, including the 40 m fast-paced
walk test [25], the self-paced walk test [26], and the 6MWT [25]. In this study, we fo-
cus on the 6MWT for its ability to assess endurance and change in gait parameters over
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time [25,27,28]. A minute-by-minute analysis of the 6MWT provides a unique opportu-
nity to evaluate dynamic changes that occur during walking and investigate time series
differences between the two disease groups [18,19].

During the entire 6MWT, participants wore two Shimmer 3 IMU sensors (Shimmer
Sensing, Dublin, Ireland) on the dorsal surface of both feet. We used previously validated
algorithms to extract spatial–temporal gait parameters that reflect steady-state walking
(after excluding all turning episodes) [21]. For details on gait parameter extraction, please
see Supplementary File S6. Eleven gait parameters were extracted representing the four
different gait domains as described in previous research [16,17], including the rhythm
domain (cadence, double support duration, and swing phase duration), the pace domain
(stride length and speed), the asymmetry domain (asymmetry index for stride length and
swing duration), and the variability domain (coefficient of variation for double support
duration, swing duration, stride length, and gait cycle duration). Detailed descriptions
of the extracted parameters are listed in Table 1. Among the extracted parameters, the
asymmetry index was calculated using the difference ratio of the parameters derived from
each limb [21]. A greater asymmetry index indicates a higher gait asymmetry [21]. In
contrast, the coefficient of variation (CV) is a measure of variability, which refers to the
ratio between the standard deviation and the mean of each parameter, expressed as a
percentage [29]. A higher gait variability (more outstanding CV) indicates a worsening gait
consistency [30]. To avoid redundancy, we did not present parameters that demonstrated
similar results within the same domain. This approach for gait analysis was used previously
in multiple studies [18,30–34]. The extracted gait parameters were further divided into 1
min segments to analyze minute-by-minute changes over the entire 6MWT.

Table 1. Descriptions of the extracted spatiotemporal parameters.

Domain Parameter Unit Description

Rhythm Cadence steps/min Number of steps per minute

Double support ratio % Percentage of the cycle where both feet are on the ground

Swing Ratio % Percentage of the cycle during which the foot is in the air
and does not touch the ground

Pace Stride Length meter Distance between two successive heel strides.

Speed m/s Forward stride speed of one cycle

Asymmetry Stride length asymmetry % Symmetry index of stride length

Swing asymmetry % Symmetry index of swing

Variability CV for double support % Coefficient of variation for double support

CV for swing % Coefficient of variation for swing

CV for stride length % Coefficient of variation for stride length

CV for cycle duration % Coefficient of variation for cycle duration

CV: coefficient of variation.

All participants identified the side with more/most pain. However, since our pre-
liminary analysis revealed no significant differences between limbs for all extract gait
parameters, we reported averaged data for both limbs in this work. For data comparisons
between limbs, please refer to Supplementary Files S3–S5.

2.3. Statistical Methods

All derived gait parameters were checked for normal distribution using the Shapiro–
Wilk test. Gait variables that were not normally distributed (variability and asymmetry
domain measures) were log-transformed. Differences in parameters among the three groups
from the entire 6MWT were analyzed by a one-way ANOVA test followed by Tukey’s test.
Next, differences in parameters among three groups in each minute of the 6MWT were
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analyzed by two-way ANOVA with group and minute as factors. In addition, differences
in parameters between the LSS and KOA groups were analyzed for each minute of the
6MWT using the Student T-test. A p-value < 0.05 was defined as statistically significant.
All sensor data processing and gait feature extractions were performed using customized
MATLAB (MathWorks, Inc., Natick, MA, USA) programs, and data visualization and
statistical analyses were performed using customized Python programs.

3. Results
3.1. Participants’ Characteristics

Participants’ demographic characteristics are presented in Supplementary File S1. The
average age of all study participants was 65 years, with a range of 46–86 and an average
BMI of 30.3. Additional details on the participants’ demographic and clinical characteristics
were provided in the previous summary paper [12].

3.2. Analysis of the Entire 6MWT

Figure 1 and Table 2 summarize the gait parameters extracted from the analysis of
the entire 6MWT. In the rhythm domain, LSS and KOA groups showed a significantly
lower cadence and swing ratio and a significantly higher double support ratio than the
HC group (HC-LSS: p < 0.05, HC-KOA: p < 0.05), indicating decreased gait rhythm. In
the pace domain, LSS and KOA showed significantly lower speed than HC (HC-LSS:
p < 0.05, HC-KOA: p < 0.05). While both disease groups showed lower stride length, the
difference between LSS and HC did not reach statistical significance (HC-LSS: p = 0.057,
HC-KOA: p < 0.05). In the asymmetry domain, all three groups showed similar stride
length asymmetry, while both LSS and KOA showed significantly higher swing asymmetry
relative to HC (HC-LSS: p < 0.05, HC-KOA: p < 0.05). Finally, in the variability domain,
both LSS and KOA showed significantly higher CV of cycle duration, and swing (HC-LSS:
p < 0.05, HC-KOA: p < 0.05), indicating an increase in gait variance compared to HC. LSS
showed a significantly higher stride length CV than HC (p < 0.05), while KOA’s stride
length CV was similar to HC (p = 0.47). Although there were no significant differences
between the LSS group and the KOA group for any parameter, stride length variability
demonstrated a strong trend toward a difference between the two disease groups (stride
length CV; LSS 4.7 ± 0.8, KOA 4.0 ± 0.8, p = 0.057) with greater variability in the LSS group.

Table 2. Gait parameters extracted from the analysis of the entire 6MWT.

p Value
Domain Parameter HC LSS KOA HC-LSS HC-KOA LSS-KOA

Rhythm Cadence (steps/min) 120.3 (8.2) 106.1 (10.2) 104.6 (7.1) 0.003 0.001 0.900
Double Support (%) 21.9 (4.0) 29.7 (5.2) 28.5 (5.9) 0.005 0.019 0.861

Swing (%) 39.1 (2.0) 35.1 (2.6) 35.7 (2.9) 0.005 0.019 0.851
Pace Speed (m/s) 1.5 (0.3) 1.1 (0.3) 1.0 (0.2) 0.010 0.003 0.878

Stride Length (m) 1.4 (0.2) 1.2 (0.3) 1.2 (0.2) 0.057 0.022 0.900
Asymmetry Stride Length Asymmetry (%) 4.5 (0.4) 4.6 (0.5) 4.3 (0.5) 0.900 0.416 0.340

Swing Asymmetry (%) 4.0 (2.1) 8.1 (4.9) 9.7 (6.8) 0.043 0.010 0.797
Variability Stride Length CV (%) 3.6 (0.3) 4.7 (0.8) 4.0 (0.8) 0.003 0.470 0.057

Cycle Duration CV (%) 1.9 (0.7) 3.1 (0.9) 2.8 (0.8) 0.003 0.025 0.678
Swing CV (%) 1.9 (0.5) 3.1 (1.1) 2.7 (0.7) 0.003 0.025 0.628

Double Support CV (%) 7.1 (2.9) 7.2 (1.2) 7.2 (2.8) 0.898 0.900 0.900

Significant p values (p < 0.05) are shown in bold. (HC; healthy control, LSS; lumbar spinal stenosis, KOA; knee
osteoarthritis, CV; coefficient of variation).
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Figure 1. Radar plot illustrating the gait parameters extracted from the analysis of the entire 6MWT.
The central black dots with connecting dashed lines represent HC data. This is compared to LSS (blue
squares and lines) and KOA (red triangles and lines) with deviation along the axis radiating from the
center of the plot representing the standard deviations (range; from −3 SD to +6 SD) from HC. (HC;
healthy control, LSS; lumbar spinal stenosis, KOA; knee osteoarthritis, CV; coefficient of variation,
SD; standard deviations).

3.3. Minute-by-Minute Analysis of the 6MWT

Next, we performed a minute-by-minute analysis to further assess changes over time
during the 6MWT. Firstly, we conducted a two-way ANOVA (three groups by 6 min) and,
as expected, observed that HC had significantly different gait parameters (lower double
support ratio, swing asymmetry, stride length CV, cycle duration CV, swing CV, and higher
cadence, swing ratio, speed, stride length) compared to the disease groups for every minute
of the 6MWT (p < 0.05). Only stride length asymmetry and double support CV failed to
show a difference between HC and the disease groups. On a minute-by-minute basis, we
observed no significant temporal change within any group.

We performed additional comparisons to evaluate the two disease groups further.
Representative graphs for each domain are shown in Figure 2, and other graphs are shown
in Supplementary File S2. Focusing solely on the observed difference between the LSS and
KOA groups, a significant between-group difference appeared in the middle portion of
the 6MWT for stride length variability. Specifically, during the 3rd minute of the 6MWT,
the stride length CV of the LSS group was significantly higher than that of the KOA group
(4.29 ± 0.94 in the LSS group, 3.40 ± 0.45 in the KOA group, p < 0.05). In addition, the
LSS group showed a trend toward higher stride length variability during the 4th minute
of the 6MWT (3.94 ± 0.54 in the LSS group, 3.47 ± 0.50 in the KOA group, p = 0.06). This
increased stride length variability in LSS indicates a worsening of gait rhythmicity.
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Figure 2. Changes in representative parameters from the minute-by-minute analysis of the 6MWT.
The * identifies a significant difference between LSS and KOA (p < 0.05). (HC; healthy control, LSS;
lumbar spinal stenosis, KOA; knee osteoarthritis, CV; coefficient of variation).

4. Discussion

In this study, we derive gait parameters from foot-mounted IMU sensors worn during
the 6MWT by people with LSS and KOA, compared to each other and HC for the entire
6MWT and during each minute. We characterize the findings based on four gait domains
(rhythm, pace, asymmetry, and variability). When the entire 6MWT is considered, multiple
gait parameters in all four domains distinguish between HC and LSS or KOA, while no
statistical differences are observed between the two disease groups. Yet, the LSS group
did show a trend toward higher stride length variability compared to the KOA group
(p = 0.057). Further minute-by-minute analysis comparing gait characteristics between
LSS and KOA revealed that LSS individuals displayed significantly greater stride length
variability than KOA individuals during the middle portion of the walk test.

Stride length variability refers to the ratio between the standard deviation and the
mean of the stride length, expressed as a percentage. Gait variability, stride-to-stride
fluctuations during walking, is a potential biomarker for gait impairment and loss of gait
rhythmicity [29,35,36]. An increase in variability indicates worsening gait consistency.
Previous research demonstrates that maintaining gait consistency is a complex process
dependent on diverse neurological structures from the cerebral cortex to the peripheral
nerves and muscles [37]. Therefore, damage to any neuromuscular structure that governs
locomotor control can influence gait variability [37]. Accordingly, many studies report
altered gait variability (including increased CV of stride length) in various neurological
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disorders such as Alzheimer’s disease, amyotrophic lateral sclerosis, cerebellar ataxia,
Huntington’s disease, multiple sclerosis, and Parkinson’s disease [38–43].

Similarly, LSS has a neurologic disease mechanism caused by the positional compres-
sion of the cauda equina or nerve roots, resulting in intermittent motor and/or sensory
nerve dysfunction [9]. In agreement with our study findings, recent research [44] using
a self-paced walking test with a chest-mounted IMU sensor also observed increased step
length variability in LSS patients compared to the healthy controls. Previous research also
suggested that gait irregularity can be attributed to neurogenic claudication and radicular
pain, common clinical symptoms in LSS patients [44,45]. Previous research theorized that
radicular pain, with its unpredictable ectopic discharge, may cause irregular walking and
contribute to high gait variability [45]. Conversely, gait impairment in KOA originates from
structural joint deformation that does not involve motor control mechanisms. This study’s
minute-by-minute analysis for 6MWT revealed a significant difference between the LSS
and KOA groups in the middle portion of the 6MWT for stride length variability. There-
fore, findings from this work suggest that the stride length variability may be a potential
sensitive mobility biomarker to distinguish between gait impairment from a neurological
origin (LSS) and gait impairment from joint structural disease (KOA).

Findings from this work also highlighted that the middle portion of the 6MWT may
be a potential window to detect subtle gait differences between individuals with different
origins of gait impairment. In contrast, the first and last minutes of the 6MWT were not
found to be informative for disease phenotyping. The middle portion of another long-
duration gait test (400 m walking test, which is comparable with 6MWT for test duration)
was recently reported to be more representative of an individual’s gait characteristics since
it may provide better resolution for fatigue quantification as participants often increase gait
speed during the initial and ending stages of the assessment [46–48]. However, previous
research also demonstrated that the 6MWT could elicit a more significant fatigue effect in
individuals with neurological gait impairments (multiple sclerosis) toward the end of the
test [18]. Therefore, the most sensitive portion of a gait test for disease phenotyping may be
disease-specific, and further investigation is needed.

There are several limitations to this study. The sample size is small, as is typical of an
early investigation. More extensive studies are warranted to confirm our results. There
were few minute-by-minute fluctuations during the 6MWT in any group, including healthy
controls, suggesting that a six-minute walk may not provide sufficient time to detect the
gait changes induced by LSS and KOA.

5. Conclusions

By examining gait parameters derived from foot-mounted IMU sensors worn during
a 6MWT, we identified multiple parameters (in all four domains: rhythm, pace, asymmetry,
and variability) that can distinguish between HC and patients with mobility limitations.
Additional temporal analysis of the 6MWT on a minute-by-minute basis revealed a signifi-
cantly higher stride length variability for LSS than KOA during the middle portion of the
walk test. Gait variability may be a potential biomarker to distinguish gait impairment
from neurological and structural joint diseases. The middle portion of the walk test may be
a unique window to reveal the subtle differences observed between these conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22239301/s1, Supplementary File S1: Participants’ demographic
characteristics. Supplementary File S2: Changes in parameters from minute-to-minute analysis of
6MWT. Supplementary File S3: Radar plot illustrating the gait parameters extracted from analysis
of the entire 6MWT (Data comparison between limbs). Supplementary File S4: The gait parameters
extracted from analysis of the entire 6MWT (Data comparison between limbs). Supplementary File
S5: Changes in parameters from minute-by-minute analysis of 6MWT (Data comparison between
limbs). Supplementary File S6: Details on gait parameter extraction [21,49–52].
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