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Abstract: Histopathology is the gold standard for disease diagnosis. The use of digital histology
on fresh samples can reduce processing time and potential image artifacts, as label-free samples
do not need to be fixed nor stained. This fact allows for a faster diagnosis, increasing the speed of
the process and the impact on patient prognosis. This work proposes, implements, and validates a
novel digital diagnosis procedure of fresh label-free histological samples. The procedure is based on
advanced phase-imaging microscopy parameters and artificial intelligence. Fresh human histological
samples of healthy and tumoral liver, kidney, ganglion, testicle and brain were collected and imaged
with phase-imaging microscopy. Advanced phase parameters were calculated from the images. The
statistical significance of each parameter for each tissue type was evaluated at different magnifications
of 10×, 20× and 40×. Several classification algorithms based on artificial intelligence were applied
and evaluated. Artificial Neural Network and Decision Tree approaches provided the best general
sensibility and specificity results, with values over 90% for the majority of biological tissues at
some magnifications. These results show the potential to provide a label-free automatic significant
diagnosis of fresh histological samples with advanced parameters of phase-imaging microscopy. This
approach can complement the present clinical procedures.

Keywords: digital histology; tumor discrimination; biomedical optical microscopy; phase-imaging;
machine learning; artificial intelligence

1. Introduction

The gold standard of present clinical diagnosis is based on histopathology [1,2]. Con-
ventional biopsy implies physical extraction of the tissue sample, fixation, inclusion, stain-
ing, and finally observation by an optical microscope. This process is time-consuming,
entails manipulation complexity, and remains pathologist-dependent. The artifacts that
can arise from the sample manipulation and the pathologist bias, reduce the diagnosis
accuracy [3]. It is possible to improve the outcome of the histopathological diagnostic
procedure by digital histology [4]. In digital histology, optical microscopy images of the
histological samples are digitalized. This fact allows for semiautomatic or automatic image
processing of conventional intensity microscopy images. Usual image processing tech-
niques employed on these images are de-noising, pattern recognition, edges identification,
or color enhancement, among others. If the sample presents markers, usually fluorophores,
then digital histology contributes to a better location of the emission sites. These sites are
correlated with otherwise low-contrast areas, such as cellular nuclei or tumoral tissue [5,6].
Digital histology can also provide a 3D reconstruction of the biological sample from the 2D
images of the tissue slices. This 3D image makes it easier for the pathologist to identify the
real spatial structure of the original sample [7]. Measurements of specific tissue structures
with diagnostic significance can be also made [8]. Digital histology can provide quantitative
parameters that contribute to semiautomatic or even automatic diagnosis [4]. Although
digital histology can improve histopathological diagnosis, it usually presents an intrinsic
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limitation. It is based on the same intensity microscopy images that the pathologists em-
ploy in the conventional procedure. This fact implies that the sample processing remains
unchanged, so the procedure is still time-consuming and with potential artifacts.

The diagnostic procedure would greatly benefit from a label-free diagnosis. Label-free
diagnosis employs biological samples without further manipulation. According to the pre-
viously described histopathological diagnostic procedure, the sample would not be fixated,
included, nor stained [2]. This approach presents the effect of dramatically reducing time
to diagnosis, and prevents processing artifacts from appearing in the images. On the other
hand, the intrinsic contrast of biological tissues, particularly of thin slices that are highly
transparent, is usually quite low [9]. Low contrast greatly complicates the identification of
areas of interest in the samples and, as a consequence, tissue diagnosis. Optical radiation-
tissue interaction can be increased by using thicker samples [10]. However, in this case the
effect of optical scattering increases, and this fact limits image resolution and depth in the
tissue [10]. This effect can be partially overcome by optical tomographic techniques, such
as Optical Coherence Tomography [11]. The problem is that image resolution is around
1 micron, and histopathology is greatly based on optical microscopy high resolution that
is diffraction-limited, or even below [12]. Some techniques for increasing contrast in thin
biological tissue slices have been proposed, either extrinsic, mainly fluorescence based [13],
or intrinsic for label-free diagnosis, based on spectroscopy [14] or polarimetry [15,16]. These
approaches are part of the so-called optical biopsy that tries to overcome the drawbacks of
conventional biopsy with optical techniques [17]. However, until now, no optical technique
has been able to provide better diagnostic results than conventional histology.

Low contrast thin biological tissues are usually observed by phase-contrast microscopy
(PCM), typical for cell cultures [18]. This technique exploits the variation of refractive index
in different parts of the biological tissues. This variation generates light scattering that
can interfere with a reference signal due to phase differences, in a procedure similar to
holography [19]. The usual diagnostic use of PCM is based on qualitative visual identifi-
cation of structures. Phase differences in biological tissues can be made quantitative by
advanced microscopy setups [20], such as Spatial Light Interference Microscopy (SLIM) [21],
or Digital Holographic Microscopy (DHM) [22]. These techniques provide highly accurate
quantitative phase information, usually with more complex setups [23], and even including
color information on the images [24]. This diagnostic information has proven to be signifi-
cant preferential in cells and, in some cases, in conventional histological tissues [25]. The
theory of light propagation in turbid media has been also applied to biological tissues [26],
but the complexity of propagation makes it difficult to find useful diagnostic parameters.
Several parameters that can be extracted from phase-contrast images have been proposed,
such as the scattering coefficient [27] or the refractive index variance. These parameters
have been applied mainly to isolated cells, or to conventional fixed histological tissues
with the advanced quantitative setups previously mentioned. These advanced setups, for
example SLIM or DHM, are able to provide accurate high-resolution phase information,
usually at an intracellular level [21]. However, they are usually complex and expensive
and need specific staff training. For these reasons, these devices are difficult to find at
a histopathology service of a general hospital. The interest of histopathology services is
mainly focused on the whole sample, in order to provide a positive or negative diagnosis,
and not necessarily at the cellular level. On the contrary to these complex devices, phase-
contrast microscopy is commonly available at these clinical services. The implementation of
advanced diagnostic label-free approaches would be much more feasible at histopathology
services if the phase-contrast parameters extracted from phase-contrast images would have
diagnostic potentiality. To this aim, several phase-contrast parameters have been previously
evaluated as potential intrinsic biomarkers on fresh histological samples of kidney, colon,
and liver [28]. The results show promising statistical potential in the discrimination of
healthy and tumoral samples. However, no automatic classification procedures based
on artificial intelligence were applied, and the results were limited to three biological
tissue types.



Sensors 2022, 22, 9295 3 of 19

The application of artificial intelligence, mainly deep learning, to digital histology
is greatly improving the diagnostic outcome [29]. Present approaches are based on con-
ventional fixed histological images that are first digitalized [30]. The application of deep
learning by neural networks has been demonstrated on whole slide images of conventional
histological samples for breast tumor detection [30,31], gastric and colonic tumors [32],
or prostate cancer [33]. The deep learning algorithms can then take advantage of the
additional contrast that staining introduces in the histological samples, including color
information, and other features that are sometimes hand-crafted [30]. The dependence
on the exact way the samples have been processed influences the classification results,
particularly when samples come from different services [34]. Most of the algorithms are
more or less complex convolutional networks based on a great variety of parameters, and
they are usually applied to the whole image on a pixel-basis. This makes the classifier more
difficult to train (something that should be made at the service due to the dependence on
processing protocols), and the classification process slower. These characteristics present
difficulties in the assumption of the technique by histopathology services. On the contrary,
the use of classification algorithms that are easier to train and implement and faster to get a
result, such as linear discriminants, k-nearest neighbors, or support vector machines, could
facilitate adoption if successful. Employing phase-contrast parameters from label-free
histological slides reduces the dimensionality of the input data and further contributes to
this aim. Label-free fresh histological samples reduce contrast in the images, but they make
the analysis more service-independent, as several processing steps (fixation and staining)
are not implemented, what also makes time to diagnosis shorter.

In this work, we propose, implement and evaluate classification systems based on
artificial intelligence for the automatic or semiautomatic healthy and tumoral tissue dis-
crimination based on fresh histological samples. Phase-contrast microscopy images of fresh
histological samples at three different magnifications, 10×, 20× and 40× were obtained.
Samples of liver, kidney, ganglion, testicle, and brain were employed. Advanced phase-
contrast parameters, such as refractive index variance, scattering coefficient, anisotropy of
scattering, fractal dimension and outer scale were calculated from the images. The poten-
tiality of discrimination of each parameter for each biological tissue type and magnification
was first evaluated by a statistical ANOVA approach. Several classification algorithms are
applied to the previously identified parameters, such as linear (LDA) and quadratic (QDA)
discriminant analysis, Naïve Bayes (NB) and kernel Naïve Bayes (kNB), k-nearest neighbors
(kNN), support vector machine (SVM), decision tree (DT), and artificial neural network
(ANN). The results of the classification for each biological tissue type, magnification and
classifier were analyzed. The potential clinical applicability of the results was evaluated,
based on the classification error metrics.

2. Materials and Methods

The materials and methods involved in this article are phase-contrast microscopy
setup, advanced phase-contrast parameters definition calculation, fresh histological sam-
ples, statistical analysis, and classification algorithms. Each of these elements is described
in the following subsections.

2.1. Phase-Contrast Microscopy

Phase-contrast microscopy images were obtained from fresh histological samples by
an advanced setup, including motorized sample movement [28]. Samples were placed on
the motorized stage, and phase-contrast was produced by a combination of a phase ring
and specific objectives. The objectives used for the different magnifications were Nikon 10×
Plan Fluor 0.30NA Ph1 DLL, 20× SPlan Fluor ELWD 0.45 NA ph1 ADM, and 40× SPlan
Fluor ELWD 0.60 NA ph2 ADM. The motorized stage gave the possibility to automatically
obtain large images composed of several microscope fields. Images were recorded by a
12-bit gray-scale CCD camera (Orca-R2, Hamamatsu). Samples are scanned at several
locations, avoiding fields in which pure glass slide was dominant against biological tissue.
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Figure 1a shows the phase-contrast microscope, and a schematic representation of the
phase-contrast microscopy main elements is included in Figure 1b.
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Figure 1. (a) Phase-contrast microscope employed for imaging the fresh samples; (b) Schematic
representation of the phase-contrast microscope, with the non-scattered (in red) and scattered (in
blue) optical fields: 1, optical source; 2, condenser annulus; 3, condenser; 4, sample; 5: collimating
lens; 6, phase and attenuation filter; 7: imaging lens; 8: image plane.

2.2. Fresh Histological Samples

Biological samples were obtained from a specific biobank belonging to the Marqués de
Valdecilla University Hospital (Santander, Spain). The biobank is focused on the collection
and maintenance of different biological samples of patients that underwent diagnostic
procedures or make donations of samples. The aim of the samples stored in the biobank is
to employ the collected samples in research activities. Informed consent of the patients was
asked before including each sample in the biobank, following biobank ethical guidelines.

Fresh histological samples of less than 6 µm were sliced by a cryo-microtome from
frozen biological tissues. No conventional histological procedures were applied, such as
fixation, inclusion or staining. Samples were positioned on treated microscope slides to
maximize adherence and remain frozen. Samples were located at 4 ºC three hours before
starting measurements. Healthy and tumoral biological tissues of liver, kidney, ganglion,
testicle and brain were extracted, with a total of 37 samples.

2.3. Advanced Phase-Contrast Parameters

Phase-contrast parameters were derived from the refractive index changes in the
biological tissue, which are associated to the intensity variations of the phase-contrast
image [20,25,28]. Refractive index variation can be considered as a random process, in
which there is no temporal variation of the samples. In this sense, the samples are turbid
according to light propagation [26]. The first moment of the refractive index of the sample
is its mean n0. As the sample thickness is low, it can be assumed that the sample is a weakly
scattering medium. In this case, the dispersion relation can be written as:

〈k2〉 = n2
0β2

0

(
1 +

σ2
n

n2
0

)
(1)

In this equation, 〈k2〉 is the second order moment of the wavevector k, β0 = ω/c is
the wavenumber in vacuum, and σ2

n is the refractive index spatial variance. From this
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expression it is possible to find an equation that relates phase variation with refractive index
variance [25], in terms of the mean gradient intensity of the phase-contrast image ∇φ:

σ2
n =

1
β2

0
〈|∇φ|2〉 (2)

The refractive index variance will be the first phase-contrast parameter to be employed
in the system. As the phase-contrast is based on an interferogram built with the scattered by
the sample and non-scattered optical signals, scattering parameters can also be estimated
from phase-contrast images [27]. The scattering-phase theorem states that the scattering
coefficient µs can be estimated from the phase spatial variance 〈∆∅2(r)〉r and the sample
thickness L:

µs =
〈∆∅2(r)〉r

L
(3)

The same theorem allows to calculate the anisotropy of scattering g. This parameter is
quite relevant in biological tissues, as the usual structural sizes of internal heterogeneities
give values near 1, indicating strongly forward scattering. The expression as a function of
the incident wavevector k0 is:

g = 1− 1
2k2

0

〈|∇[∅(r)]|2〉r
〈∆∅2(r)〉2r

, (4)

These three parameters describe the refractive index variability and scattering proper-
ties of the sample, extracted from the phase-contrast images. Another parameter of interest
can be calculated from the theory of turbulent media [26]. Although, as previously stated,
this theory comprises general media with temporal variations of the properties, it can
be applied to turbid tissue as well. Media under this model present parameters called
turbulent eddies. Eddies in the context of phase-contrast images are irregularities in the
refractive index. According to the particular medium, the largest possible eddy is called
the outer scale of turbulence L0, and the smallest is the inner scale. The outer scale can be
obtained from the spectrum of refractive index heterogeneities. In the case of biological
tissues, this spectrum can be usually approximated by a Von Kármán expression with an
exponent m [35]:

Φ(κ) =
4πσ2

n L2
0(m− 1)(

1 + κ2L2
0
)m (5)

Finally, the fractal dimension is another parameter of potential interest. It can be
estimated from the exponent m of the previous expression by d f = 4− m, or it can be
calculated by different numerical approaches, such as box-counting, correlation, sandbox,
or Fourier spectrum [36].

The proposed phase-contrast parameters are strongly related with refractive index
distribution in the tissue (refractive index variation, scattering coefficient, anisotropy
of scattering, fractal dimension or outer scale). As they are calculated for the whole
microscope image, a reasonable estimation of this distribution is expected from phase-
contrast images. All these parameters have shown already statistical potential for tumoral
tissue discrimination as stated previously [28].

2.4. Statistical Analysis

Mean and standard deviation were calculated for the measurements of each param-
eter made on each biological tissue type, distinguishing healthy or tumoral state, and
magnification. The quantification of the potential capability of each parameter was made
quantitatively by an ANOVA analysis. The statistical ANOVA analysis tests the hypotheses
of the average values of several variables of interest being equal or not. In our case, we have
two groups, healthy and tumoral, for each tissue type that we would like to distinguish.
ANOVA analysis will calculate the Snedecor F and the p-value for each case. If the Snedecor
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F is high, or equivalently if the p-value is sufficiently low, then the hypothesis of the average
values being equal is false. This result is an indication of differentiation in the average
values of both cases, and as a consequence a higher potentiality to be a discrimination
parameter. A p-value below 0.005, or 95% confidence, is usually employed as a reference
for statistical significance.

2.5. Classification Algorithms

Several classification algorithms were employed to implement and evaluate the au-
tomatic diagnostic capabilities of the previous parameters. These algorithms are based
on artificial intelligence and machine learning [37,38]. Similar approaches have been
previously applied to other classification problems for diagnosis, for instance in diffuse
reflectance spectroscopy [39]. In this work, generative algorithms, such as linear (LDA) and
quadratic (QDA) discriminant analysis, and normal (NB) and kernel Naïve-Bayes (kNB), as
long as discriminative algorithms, such as k-nearest neighbors (kNN), decision tree (DT),
artificial neuronal networks (ANN) or support vector machines (SVM), are implemented.
LDA and QDA employ a null threshold for the linear coefficient, and prior probabilities
defined as the relative frequencies. kNB uses a kernel smoothing density estimate. kNN
is based on the Euclidian distance with a number of neighbors k = 5. SVM employs a
multi-class error-correcting output codes model based on binary support vector machine
by a one-versus-one coding design. DT is based on binary classification, with a minimum
size of parent nodes equal to 10. ANN is implemented by 10 hidden layers, trained with a
scaled conjugate gradient back propagation function, and a cross-entropy loss function.

The evaluation of the classifiers was made by means of mainly two parameters: re-
substitution and cross validation errors. The re-substitution error was calculated by first
training the classifier with all available data, and afterwards employing the same data
as input to be classified by the system. This approach, although interesting for a first
evaluation of the classifier, is not realistic, as in the final application samples that were
not used for training will have to be classified. For this reason, the cross-validation error,
that employs a dataset for training the classifier and a different dataset for testing, was
also calculated. This process was repeated for several combinations of training and testing
datasets to prevent any bias in the selection of groups.

3. Results
3.1. Phase-Contrast Microscopy Images

Phase-contrast microscopy images were obtained from the fresh histological samples.
A total of 1734 images are obtained (516 for liver, 516 for kidney, 324 for ganglion, 216 for
testicle, and 162 for brain). The unequal number of images is due mainly to the different
size of each sample on the microscope slide, motivated by the original size of the biological
tissue from which the sample was extracted. Microscopic images in which tissue was
not present in the vast majority of the field of view were discarded, in order to avoid
classification alterations by empty areas. Three different magnifications are used, with the
following scales: 866 µm × 660 µm, pixel size 0.64 µm for 10x; 433 µm × 330 µm, pixel size
0.3225 µm for 20x; and 219 µm × 167 µm, pixel size 0.1632 µm for 40x. Some images of
each tissue type appear in Figure 2.

As it can be seen in the images of Figure 2, which includes examples of the pairs of
images that showed more visual differences, these differences between healthy and tumoral
tissues are not generally obvious from the direct visual inspection of the images. Phase-
contrast parameters were calculated from the whole pool of images in the next section.
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Figure 2. Phase-contrast images examples of the different tissue types, state and magnification:
(a) Healthy liver at 10×; (b) Tumoral liver at 10×; (c) Healthy kidney at 20×; (d) Tumoral kidney at
20×; (e) Healthy ganglion at 40×; (f) Tumoral ganglion at 40×; (g) Healthy testicle at 10×; (h) Tumoral
testicle at 10×; (i) Healthy brain at 20×; (j) Tumoral brain at 20×.

3.2. Phase-Contrast Parameters

Phase-contrast parameters were calculated for each of the images, according to the
procedures described in the previous sections. Average and standard deviation values were
calculated for each tissue type, state and magnification. The results appear in Table 1.

Table 1. Results of average and standard deviation of each of the phase-contrast parameters for the
tissue type, state and magnification shown.

Sample 1 RIV 2 SC 3 [rad2/mm] AF 4 FD 5 OS 6 [µm]

10x liver H 0.0244 ± 0.0059 18.15 ± 20.30 0.98087 ± 0.05989 2.707 ± 0.250 81.56 ± 8.65
10x liver T 0.0267 ± 0.0041 32.17 ± 30.34 0.88799 ± 0.52312 2.525 ± 0.363 80.18 ± 14.84
20x liver H 0.0217 ± 0.0049 36.57 ± 29.09 0.99653 ± 0.00472 2.670 ± 0.285 40.90 ± 3.45
20x liver T 0.0169 ± 0.0080 20.81 ± 19.99 0.99802 ± 0.00324 2.485 ± 0.405 39.10 ± 5.57
40x liver H 0.0124 ± 0.0050 23.29 ± 14.78 0.99932 ± 0.00030 3.194 ± 0.207 25.40 ± 2.54
40x liver T 0.0128 ± 0.0067 25.99 ± 26.17 0.99924 ± 0.00038 3.129 ± 0.309 24.60 ± 3.77

10x kidney H 0.0278 ± 0.0058 25.77 ± 26.86 0.95906 ± 0.14489 2.402 ± 0.357 81.18 ± 26.20
10x kidney T 0.0246 ± 0.0065 19.53 ± 25.48 0.99178 ± 0.01074 2.529 ± 0.372 81.32 ± 13.49
20x kidney H 0.0168 ± 0.0051 23.94 ± 17.52 0.99856 ± 0.00147 2.553 ± 0.487 41.38 ± 7.87
20x kidney T 0.0194 ± 0.0040 41.66 ± 19.09 0.99897 ± 0.00083 2.647 ± 0.384 41.44 ± 6.16
40x kidney H 0.0104 ± 0.0041 14.50 ± 16.04 0.99871 ± 0.00252 3.215 ± 0.273 26.69 ± 4.87
40x kidney T 0.0136 ± 0.0037 30.45 ± 16.89 0.99937 ± 0.00030 3.172 ± 0.320 25.67 ± 4.62

10x ganglion H 0.0223 ± 0.0042 11.10 ± 15.23 0.99132 ± 0.00988 2.615 ± 0.163 78.76 ± 4.83
10x ganglion T 0.0290 ± 0.0043 16.37 ± 26.96 0.96354 ± 0.04785 2.218 ± 0.255 71.32 ± 5.31
20x ganglion H 0.0206 ± 0.0021 43.46 ± 12.91 0.99913 ± 0.00017 2.629 ± 0.132 39.54 ± 2.45
20x ganglion T 0.0144 ± 0.0063 18.07 ± 15.31 0.99884 ± 0.00036 2.665 ± 0.416 41.05 ± 6.36
40x ganglion H 0.0108 ± 0.0042 18.39 ± 11.12 0.99938 ± 0.00013 3.275 ± 0.233 26.26 ± 4.62
40x ganglion T 0.0126 ± 0.0035 22.74 ± 16.10 0.99930 ± 0.00020 3.166 ± 0.222 24.51 ± 2.75
10x testicle H 0.0201 ± 0.0038 21.76 ± 24.11 0.93896 ± 0.11773 2.661 ± 0.254 80.36 ± 7.43
10x testicle T 0.0238 ± 0.0052 33.17 ± 37.61 0.98946 ± 0.02517 2.558 ± 0.311 78.10 ± 7.05
20x testicle H 0.0143 ± 0.0083 16.99 ± 15.30 0.99882 ± 0.00077 2.777 ± 0.699 45.26 ± 11.38
20x testicle T 0.0182 ± 0.0021 39.35 ± 21.37 0.99888 ± 0.00178 2.617 ± 0.242 39.61 ± 3.43
40x testicle H 0.0156 ± 0.0044 39.12 ± 17.51 0.99932 ± 0.00043 3.123 ± 0.547 26.16 ± 6.65
40x testicle T 0.0127 ± 0.0020 27.96 ± 13.16 0.99943 ± 0.00020 3.144 ± 0.207 24.20 ± 2.52
10x brain H 0.0261 ± 0.0019 66.19 ± 24.08 0.99693 ± 0.00677 2.428 ± 0.065 74.67 ± 3.57
10x brain T 0.0302 ± 0.0032 43.64 ± 35.87 0.99349 ± 0.00748 2.179 ± 0.155 70.42 ± 3.60
20x brain H 0.0148 ± 0.0013 17.18 ± 6.24 0.99886 ± 0.00019 2.604 ± 0.065 39.16 ± 1.47
20x brain T 0.0138 ± 0.0048 15.97 ± 8.98 0.99891 ± 0.00028 2.683 ± 0.373 40.87 ± 4.96
40x brain H 0.0097 ± 0.0010 10.60 ± 2.94 0.99923 ± 0.00007 3.249 ± 0.075 25.08 ± 1.42
40x brain T 0.0099 ± 0.0031 16.03 ± 12.24 0.99940 ± 0.00015 3.322 ± 0.194 26.38 ± 2.83

1 H = healthy, T = tumoral; 2 RIV = Refractive Index Variance; 3 SC = Scattering Coefficient; 4 AF = Anisotropy
Factor; 5 FD = Fractal Dimension; 6 OS = Outer Scale.
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As it can be appreciated in Table 1, the average values of healthy and tumoral tissues
present differences for some parameters and magnifications, compared with the standard
deviations, while others are quite similar. A first, a statistical analysis is made in the next
section to quantify the potential significance of these differences for classification.

3.3. ANOVA Statistical Analysis

The previous results of phase-contrast parameters are analyzed by an ANOVA test.
The results appear in Table 2.

Table 2. Results of the ANOVA analysis for each tissue type, magnification and phase-contrast
parameter. The p-value of the test is shown. p-values below 0.005 are marked in bold.

Parameter Magnification Liver Kidney Ganglion Testicle Brain

10x 0.0040 8.0806·10−4 1.4369·10−14 0.0011 5.9980·10−15

RIV 1 20x 4.4433·10−6 3.1213·10−4 0.0032 0.0085 6.5141·10−9

40x 0.5945 1.9982·10−7 0.0529 6.5115·10−4 1.3054·10−4

10x 4.8004·10−4 0.1197 0.0019 0.1300 1.0044·10−11

SC 2 [rad2/mm] 20x 5.4952·10−5 1.9922·10−9 1.4394·10−5 2.7525·10−6 0.0013
40x 0.4064 1.9241·10−9 0.2551 0.0032 0.0035
10x 0.1037 0.0383 0.3281 0.0141 2.8297·10−4

AF 3 20x 0.0164 0.0242 5.3934·10−6 0.8691 0.1726
40x 0.1730 0.0168 0.0047 0.1625 0.0230
10x 0.0578 0.0235 1.1789·10−19 0.1273 1.9627·10−14

FD 4 20x 7.0542·10−4 0.1613 0.2120 0.2003 3.4772·10−6

40x 0.1081 0.3510 0.0074 0.8295 0.0019
10x 0.4571 0.9641 1.0577·10−12 0.1898 6.8376·10−7

OS 5 [µm] 20x 0.0120 0.9517 0.8872 0.0058 1.8737·10−4

40x 0.1068 0.1628 0.0092 0.1041 0.0286
1 RIV = Refractive Index Variance; 2 SC = Scattering Coefficient; 3 AF = Anisotropy Factor; 4 FD = Fractal
Dimension; 5 OS = Outer Scale.

Table 2 shows the results of the p-value ANOVA test, for each tissue type, magnification
and parameter. As said before, lower values of the p-value indicate a statistically significant
difference in the average values of the healthy and tumoral samples. This is related with
the expected classification capability of each phase-contrast parameter and magnification
for each tissue type. The next section shows the results of the implementation of different
automatic classifiers.

3.4. Classification Results

The previously exposed classification algorithms were implemented and applied to
the phase-contrast parameters. All the phase-contrast parameters were employed in each
classifier to improve performance. The aim was to distinguish between healthy and tumoral
samples, for each tissue type and magnification. The capabilities of the classifiers were
evaluated with the re-substitution and cross-validation errors. In each of these errors, the
results distinguish between the false positive and false negative rates. This distinction
allows to consider sensibility and specificity. The results of the re-substitution errors for
each tissue type, magnification and classification algorithm are shown in Table 3.

The information on Table 3 can be better analyzed graphically. Figure 3 shows the
re-substitution errors for each of the tissue types.
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Table 3. Results of the re-substitution error, expressed separately for the false positive and false
negative rates, for each tissue type and magnification. Combinations with total re-substitution error
(FP + FN) < 0.1 are marked in bold.

Classifier Error Rate 1 Magnification Liver Kidney Ganglion Testicle Brain

LDA 2 FP 10x 0.1462 0.1570 0.0463 0.0833 0.0741
20x 0.0349 0.1520 0.0463 0.0417 0.3333
40x 0.1124 0.1047 0.2358 0 0.0741

FN 10x 0.2047 0.2267 0.0556 0.0278 0.0370
20x 0.0640 0.1345 0.0370 0.0556 0
40x 0.2249 0.1453 0.0755 0.0278 0.0556

QDA 3 FP 10x 0.0351 0.4012 0.0370 0.1250 0
20x 0.0523 0.1813 0.0278 0 0
40x 0.0592 0.3372 0.0660 0 0.0185

FN 10x 0.3801 0.0349 0.0370 0.0139 0.0556
20x 0.0523 0.0585 0.0093 0.0278 0.0185
40x 0.3018 0.0174 0.2075 0.0139 0.0926

kNB 4 FP 10x 0.1279 0.0930 0.0278 0.0139 0
20x 0.0407 0.1105 0.0278 0.0278 0
40x 0.1279 0.0640 0.0648 0.0417 0.0185

FN 10x 0.1105 0.0872 0.0556 0.0139 0.1667
20x 0.0291 0.0930 0.0370 0 0.0926
40x 0.1395 0.0988 0.1204 0 0.1111

NB 5 FP 10x 0.0407 0.3953 0.0648 0.2500 0.0185
20x 0.0523 0.1395 0.0556 0.0694 0.0185
40x 0.0988 0.3198 0.2593 0.0139 0.0556

FN 10x 0.3837 0.0349 0.0278 0.1806 0.1296
20x 0.0581 0.1221 0.0648 0.0278 0.0741
40x 0.2616 0.0174 0.1389 0.0556 0.0741

kNN 6 FP 10x 0.0988 0.0814 0.1759 0.0694 0.0556
20x 0.1163 0.1105 0.0926 0.0694 0.1296
40x 0.1221 0.0988 0.2037 0.1528 0.1481

FN 10x 0.1221 0.1453 0.0833 0.0556 0.0741
20x 0.1395 0.1105 0.0648 0.0972 0.0741
40x 0.1453 0.0640 0.0648 0.1389 0.0741

SVM 7 FP 10x 0.3953 0.3314 0.3148 0.1944 0.2963
20x 0.2326 0.1395 0 0.4583 0.2407
40x 0.0233 0.0349 0.0741 0.0417 0

FN 10x 0.2151 0.0872 0.0926 0.3194 0.3333
20x 0.1221 0.1221 0.6667 0.2639 0.2407
40x 0.4360 0.3430 0.4630 0.4861 0.6481

DT 8 FP 10x 0.0640 0.0349 0.0093 0 0
20x 0.0174 0.0523 0.0093 0.0139 0
40x 0.0116 0.0465 0.0463 0 0.0370

FN 10x 0.0233 0.0233 0.0093 0.0139 0.0370
20x 0.0116 0.0233 0.0093 0 0.0741
40x 0.0640 0.0233 0.0463 0 0.0185

ANN 9 FP 10x 0.2907 0.1395 0.0278 0.0417 0.0556
20x 0.0349 0.1163 0.1111 0.0417 0.0370
40x 0.0988 0.1105 0.0926 0.0139 0

FN 10x 0.0814 0.4302 0.0093 0.0139 0.1481
20x 0.0291 0.1105 0.1019 0.0417 0.0556
40x 0.1512 0.1163 0.1667 0 0.3333

1 FP = False Positive rate; FN = False Negative rate; 2 LDA = Linear Discriminant Analysis; 3 QDA = Quadratic
Discriminant Analysis; 4 kNB = kernel Naïve-Bayes; 5 NB = Naïve-Bayes; 6 kNN = k-Nearest Neighbors; 7 SVM =
Support Vector Machine; 8 DT = Decision Tree; 9 ANN = Artificial Neuronal Network.
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Figure 3. Re-substitution error, distinguishing the false positive and false negative rates, for each tis-
sue type, classifier and magnification: (a) Brain tissue; (b) Ganglion tissue; (c) Liver tissue; (d) Kidney
tissue; (e) Testicle tissue. LDA: linear discriminant analysis; QDA: quadratic discriminant analysis;
NB: Naïve Bayes; kNB: kernel Naïve Bayes; kNN: k-nearest neighbors; SVM: support vector machine;
DT: decision tree; ANN: artificial neural network.

The results in Table 3 and Figure 3 show a great heterogeneity between the different
classifiers, tissue types and magnifications, in terms of the re-substitution error. The
cross-validation error is also calculated for all the cases. The results appear in Table 4.

Similarly, the information of Table 4 is expressed graphically in Figure 4.
Cross-validation errors are, in general, bigger than re-substitution errors, as expected.

There is a great variability depending on the tissue type, classifier, and magnification, as it
was the case for the re-substitution error.
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Table 4. Results of the cross-validation error, expressed separately for the false positive and false
negative rates, for each tissue type and magnification. Combinations with total cross-validation error
(FP + FN) < 0.1 are marked in bold.

Classifier Error Rate 1 Magnification Liver Kidney Ganglion Testicle Brain

LDA 2 FP 10x 0.1510 0.1807 0.0545 0.1089 0.0867
20x 0.0408 0.1454 0.0555 0.0411 0.3167
40x 0.1222 0.1157 0.2682 0 0.1333

FN 10x 0.2157 0.2373 0.0564 0.0536 0.0767
20x 0.0814 0.1513 0.0464 0.0696 0.0167
40x 0.2614 0.1503 0.0655 0.0268 0.0700

QDA 3 FP 10x 0.0526 0.4072 0.0636 0.1679 0.0600
20x 0.0585 0.2039 0.0464 0.0268 0.0767
40x 0.1046 0.3670 0.1473 0 0.0967

FN 10x 0.3778 0.0350 0.0382 0.0268 0.0767
20x 0.0578 0.0761 0.0191 0.0429 0.0200
40x 0.3196 0.0288 0.2218 0.0268 0.1300

kNB 4 FP 10x 0.1856 0.1343 0.0545 0.1536 0.0600
20x 0.0408 0.1458 0.0464 0.0125 0.0367
40x 0.1392 0.1219 0.1200 0.0429 0.0567

FN 10x 0.1510 0.1680 0.0564 0.0411 0.1833
20x 0.0641 0.1333 0.0373 0.0268 0.0733
40x 0.2206 0.1039 0.1600 0.0536 0.1267

NB 5 FP 10x 0.0467 0.4013 0.0636 0.2946 0.0400
20x 0.0523 0.1454 0.0564 0.0411 0.0767
40x 0.0984 0.3088 0.2500 0.0143 0.0767

FN 10x 0.3716 0.0405 0.0291 0.1375 0.1367
20x 0.0637 0.1461 0.0555 0.0554 0.0733
40x 0.2732 0.0288 0.1482 0.0536 0.1233

kNN 6 FP 10x 0.1516 0.1575 0.2573 0.0839 0.1100
20x 0.1866 0.1513 0.1127 0.1518 0.1233
40x 0.2150 0.1333 0.2773 0.2089 0.1667

FN 10x 0.1582 0.1680 0.1664 0.0839 0.0967
20x 0.1575 0.1503 0.1109 0.1393 0.0567
40x 0.2141 0.0931 0.1418 0.1929 0.1300

SVM 7 FP 10x 0.2435 0.1856 0.3145 0.2786 0.2533
20x 0.1353 0.0990 0.0364 0.3625 0.2433
40x 0.2428 0.0706 0.0927 0.0982 0.0333

FN 10x 0.2621 0.3546 0.0918 0.1946 0.2967
20x 0.3765 0.1814 0.6309 0.2518 0.2167
40x 0.2461 0.3954 0.3882 0.3179 0.6000

DT 8 FP 10x 0.1503 0.0987 0.0455 0.0696 0.0200
20x 0.0699 0.0824 0.0373 0.0268 0.0533
40x 0.0935 0.1222 0.1473 0.0143 0.0967

FN 10x 0.1160 0.1111 0.0636 0.0679 0.0767
20x 0.0637 0.1101 0.0282 0.0554 0.1233
40x 0.1389 0.0980 0.1009 0.0429 0.1233

ANN 9 FP 10x 0.1216 0.0925 0.0182 0.0429 0.0533
20x 0.0118 0.1163 0.0182 0.0143 0.0533
40x 0.1333 0.1042 0.1482 0 0.0333

FN 10x 0.1451 0.1458 0.0191 0.0143 0.0567
20x 0.0350 0.1052 0.0191 0.0143 0.0700
40x 0.0866 0.0922 0.0736 0.0143 0.0167

1 FP = False Positive rate; FN = False Negative rate; 2 LDA = Linear Discriminant Analysis; 3 QDA = Quadratic
Discriminant Analysis; 4 kNB = kernel Naïve-Bayes; 5 NB = Naïve-Bayes; 6 kNN = k-Nearest Neighbors; 7 SVM =
Support Vector Machine; 8 DT = Decision Tree; 9 ANN = Artificial Neuronal Network.
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Figure 4. Cross-validation error, distinguishing the false positive and false negative rates, for each tis-
sue type, classifier and magnification: (a) Brain tissue; (b) Ganglion tissue; (c) Liver tissue; (d) Kidney
tissue; (e) Testicle tissue. LDA: linear discriminant analysis; QDA: quadratic discriminant analysis;
NB: Naïve Bayes; kNB: kernel Naïve Bayes; kNN: k-nearest neighbors; SVM: support vector machine;
DT: decision tree; ANN: artificial neural network.

4. Discussion

The proposed system for the automatic discrimination of healthy and tumoral tissues
is based on phase-contrast parameters, calculated from phase-contrast images of fresh
biological tissue slices, in this case of 6 µm thickness, although the system could be trained
for other thicknesses. Examples of phase-contrast images are presented in Figure 2. Images
with 10× (Figure 2a,b,g,h), 20× (Figure 2c,d,i,j) and 40× (Figure 2e,f) magnifications are
shown, both for healthy (Figure 2a,c,e,g,i) and tumoral (Figure 2b,d,f,h,j) tissues. From di-
rect visual inspection, the differences between healthy and tumoral samples are not evident
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in general, as can be seen, for instance, by comparing Figure 2i,j. There is an influence of
the particular structure inside the tissue slice that is part of the field of view, as it can be ap-
preciated for instance when comparing Figure 2a,b, where the latter shows quasi-elliptical
structures that are more difficult to see in the former. However, the presence of these
structures does not seem to be distinctive for tumoral tissue as in Figure 2b. Comparing
Figure 2c,d, the former corresponding to healthy tissue presents ovoidal structures that
are hardly seen in the tumoral tissue in Figure 2d. Regarding magnification, 40× images,
Figure 2e,f, do not show more distinction in direct view than images at 10×, Figure 2a,b,g,h,
or than images at 20×, Figure 2c,d,i,j. Consequently, it is difficult to provide a diagnosis
based on the direct observation of the images. For this reason, and also due to the conve-
nience of automatic digital diagnosis [4], phase-contrast parameters were calculated from
the phase-contrast images.

The results of phase-contrast parameters calculations of all the images obtained are
shown in Table 1. As described in the previous sections, the considered phase-contrast
parameters are the refractive index variance, the scattering coefficient, the anisotropy of
scattering, the fractal dimension and the outer scale. Table 1 shows the average values,
as well as the standard deviations, of every tissue type (liver, kidney, ganglion, testicle
and brain), state (healthy H or tumoral T) and magnification (10×, 20×, and 40×). The
discrimination capability of each parameter for each tissue type and magnification is
dependent on the difference between the average of healthy and tumoral samples of that
tissue type and magnification, and its comparison with the standard deviations. If this
difference of the average values of a particular parameter is big compared with standard
deviations of the sample, then it is likely that a calculation of the parameter of a sample at
one tissue state, either healthy or tumoral, can be easily distinguished from a sample at the
other pathological state. If not, then it would be more complex to discriminate based on
that parameter at a particular magnification. For instance, Table 1 shows that the scattering
coefficient (SC) of ganglion at 20× is 43.46 ± 12.91 for healthy samples, and 18.07 ± 15.31
for tumoral samples. The difference between the average values is 25.39, that is greater than
the standard deviations, 12.91 and 15.31. As said, this fact is indicative of the potentiality
of scattering coefficient at 20× to be a good discriminator for ganglion tissues. On the
other hand, the same parameter for ganglion at 10× is, according to Table 1, 11.10 ± 15.23
for healthy tissue and 16.37 ± 26.96 for tumoral samples. The difference between the
average values is 5.27, that is smaller than the standard deviations, 15.23 and 26.96. The
results at 40× for the ganglion are 18.39 ± 11.12 for healthy samples, and 22.74 ± 16.10
for tumoral samples, with a difference of 4.35, again much smaller than 11.12 and 22.74,
the standard deviations. As these two last cases demonstrate, the scattering coefficient at
10× and 40× for ganglion is not a potentially appropriate parameter to make a significant
discrimination of healthy and tumoral tissues. The case of the ganglion demonstrates a
significant dependence on the magnification for the discriminative potential of a phase-
contrast parameter. Refractive index variance (RIV) of the same tissue, ganglion, according
again to Table 1, shows differences in average values of 0.0067, 0.0062 and 0.0018, and
standard deviations of 0.0042 and 0.0043, 0.0021, and 0.0063, and 0.0042 and 0.0035, at 10×,
20×, and 40×, respectively. Following the same analysis as before, there is potentiality of
discrimination at 10×, as the difference of the averages, 0.0067, is bigger than the standard
deviations, 0.0042 and 0.0043. However, this potentiality is severely reduced at 20×, with
difference in the average values of 0.0062 and standard deviations of 0.0021 and 0.0063,
where the second standard deviation is similar to the difference. At 40×, the difference in
average values 0.0018 is much smaller than the standard deviations, 0.0042 and 0.0035, and
as a consequence the discriminative potential is compromised. These results show that, for
the ganglion, the refractive index variance could be significant at 10×, but not at 20× or
40×. The scattering coefficient previously analyzed showed significance at 20×, but not at
10× or 40×. Consequently, the discrimination capability depends also on the particular
phase-contrast parameter, as expected, and its combination with the magnification factor.
A tissue type dependence can also be easily shown from Table 1. For the case of the testicle,
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the refractive index variance presents a difference of averages of 0.0037, 0.0039, and 0.0029,
and standard deviations of 0.0038 and 0.0052, 0.0083 and 0.0021, and 0.0044 and 0.0020, at
10×, 20×, and 40×, respectively. In all cases, the standard deviations are bigger than the
differences in averages, except one of the standard deviations at 20×, and another one at
40×. This is in contrast with the previous case of the ganglion, where the magnification at
10× for refractive index variance gives the best potential results. This fact demonstrates a
dependence of discrimination potential on the tissue type, as expected.

The previous analysis of averages and standard deviations is of interest, but requires a
deeper statistical analysis to evaluate the discrimination potentiality of the phase-contrast
parameters. For instance, as shown previously, it was difficult to evaluate the potentiality
when standard deviations are similar to the difference between the average values, or
even when one standard deviation is bigger, while the other one is smaller. The ANOVA
analysis of Table 2 tries to contribute to this analysis. Table 2 shows the p-values of
each combination of tissue type, phase-contrast parameter, and magnification. A lower
p-value indicates a bigger statistical difference in the average values of healthy and tumoral
tissues. p-values below 0.005, that is usually taken as a reference for significant difference,
are marked in bold on the table. As it can be seen on Table 2, each tissue type has at
least two phase-contrast parameters that provide significance below 0.005 at particular
magnifications. This fact reinforces the idea that these phase-contrast parameters are of
interest for tissue discrimination of healthy and tumoral state of liver, kidney, ganglion,
testicle, and brain, as previously shown for colon, kidney, and liver [28]. Refractive index
variance and scattering coefficient present enough significance for all the considered tissue
types. This significance changes according to magnification, but the refractive index
variance at 10×, and the scattering coefficient at 20× are significant for all the tissues. These
results are in agreement with the assumption that the spatial distribution of the refractive
index could be a relevant discriminative property, as these two phase-contrast parameters
are directly related with it. The refractive index variance is the direct measurement of
the spatial refractive index distribution, and the scattering coefficient is strongly related
with it, as the spatial heterogeneity gives rise to scattering. The fractal dimension is
significant only for liver, ganglion, and brain, and the anisotropy factor and the outer
scale provide potential significance for ganglion and brain only. Although the anisotropy
factor is also a scattering property, it usually depends on the size of the inhomogeneities.
The outer scale and the fractal dimension are also parameters related with the scale of the
inhomogeneities. This relationship with the scale is more tissue type dependent, as the inner
structures of each biological tissue present morphological and physiological differences,
that could change more or less in a tumoral state. According to Table 2, all the phase-
contrast parameters are significant, at least for some magnifications, for ganglion and brain.
Refractive index variance, scattering coefficient, and fractal dimension are significant for
the liver, and refractive index variance and scattering coefficient are of potential interest, at
some magnifications, for kidney and testicle. Regarding magnifications, phase-parameters
at 10× are significant for brain tissue, while there is no single magnification to make
all parameters significant for ganglion. The three parameters of interest for liver can
be measured at 20×. In the case of the kidney, the two potential parameters at 20× or
40× remain significant. Finally, testicle images at 40× can provide the two significant
parameters. From the previous analysis it seems that tissue type heterogeneity makes it
difficult to select particular phase-contrast parameters at particular magnifications. These
results are in accordance with the previous ones reported for colon, kidney and liver [28].
As a consequence, all the phase-contrast parameters are considered for the automation
discrimination problem, at all the magnifications considered.

Phase-contrast parameters of each tissue type are used to train and test eight different
automatic classifiers. First, all the data are used to train each classifier, and then the
classifiers are tested with the same data to check if they can provide a correct classification
or not. This re-substitution error results appear in Table 3. The re-substitution error has
been divided into the false positive (FP) and false negative (FN) rates. Total re-substitution
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errors, calculated as the sum of FP and FN, under 0.1 (or 10%) are marked in bold. A first
look at Table 3 shows a great variability between the classifiers, as expected. Decision Tree
(DT) classifier is the only one that presents errors below 10% for all the tissue types, for any
of the magnifications. This error goes down to 0 for testicle tissue at 40×, with a maximum
of 8.73% for liver at 10×. The classifier is highly specific for testicle and brain, even with
100% specificity at 10× for both tissues, and also at 20× for brain, and at 40× for testicle.
DT is also quite sensitive for testicle at 20× and 40×, with 100% sensitivity. On the other
hand, kNN and SVM classifiers are not able to provide a classification with errors below
10% for any of the possible combinations of tissue type and magnification, with a minimum
of 12.5% for kNN on testicle at 10×, and 26.26% for SVM on kidney at 20×. kNB and ANN
are able to provide errors below 10% for all the tissues but kidney. In the case of kNB this
can be done at 20× for all the tissues, while for ANN there is no single magnification that
provides the desired results for all the tissue types. The minimum error for kNB is 2.78%
for testicle at 10× and 20×, and the minimum for ANN is 1.39% for testicle at 40×. The
other classifiers, LDA, QDA, and NB are able to provide errors below 10% for three of the
tissue types, liver, ganglion and testicle in the case of LDA, and ganglion, testicle and brain
for QDA and NB. Minimum error for LDA is 2.78%, for QDA 1.39%, and for NB 6.95%, all
of them for testicle at 40×. The results of Table 3 are presented graphically in Figure 3 to
facilitate the analysis. The graphs in Figure 3 confirm that DT presents low re-substitution
error values for all the tissue types, while SVM presents high values in general. Analyzing
data on a tissue type basis, DT presents small error for brain as said, but QDA at 20× is
also a good classifier. In the case of ganglion, DT, particularly at 10× and 20× is the best
one. Liver and kidney also show that the best choice is DT at 20× for liver, and DT at 10×
for kidney. In the case of testicle there are low errors with DT, QDA at 20× or 40×, and
kNB at 10× or 20×. Prevalence of specificity or sensitivity is, as said before, dependent
on the tissue type, classifier and magnification. From this analysis of re-substitution error,
DT classifier would be applicable to all the tissue types with an error below 10% for any
magnification. Although ANN would provide an error with the same characteristics for all
the tissue types but kidney, in this case the error has a minimum of 22.68% at 20× and 40×,
that is quite high. kNB provides classification errors below 10% for all but kidney tissue, in
this case with a minimum of 16.28% at 40×.

Although the previous results are promising, it would be more realistic to employ a
group of data for training the classifiers and the rest for testing. This gives rise to the cross-
validation error, that also tries with several different groups of data to avoid bias when
selecting the training and testing groups. Table 4 shows the results of the cross-validation
errors for the eight previous classifiers. Again, the total cross-validation errors, obtained as
a sum of FP and FN, below 0.1 (10%) are marked in bold. In general, the cross-validation
errors are bigger than the re-substitution errors, as can be seen in Table 4, and was expected
by definition. There is now no classifier able to provide errors below 10% for all the tissue
types. ANN is able to provide this outcome for all tissue types but kidney. However,
there is no common magnification factor that can assure these results, and at least 20× and
40× should be used. The minimum error is 1.43% for testicle at 40×, and a maximum of
5.72% for testicle at 10×. There is also a maximum specificity, 100%, for testicle at 40×.
As expected, now that the errors increased, SVM and kNN are not yet capable to classify
with errors less than 10% for any tissue type. The minimum error for SVM is 28.04% for
kidney at 20×, and 16.78% for testicle at 10×. LDA can give an error below 10%, 2.68%,
only for testicle at 40×, and even with a 100% specificity. kNB and NB give these results for
only two tissues, ganglion and testicle, at 20× for both in the case of kNB and minimum
of 3.93% for testicle at 20×, and with no common magnification for NB, and a minimum
of 6.79% for testicle at 40×. DT and QDA can provide errors below 10% for three tissues,
ganglion, testicle and brain, and a minimum of 5.72% for testicle at 40× for DT, and of 2.68%
for testicle at 40× for QDA, with a specificity of 100%. Figure 4 shows the same values
graphically for each of the tissue types. In the case of brain ANN at 40×, QDA at 20×
and DT at 10× are the most appropriate classifiers. Ganglion tissue presents good results
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for ANN at 10× and 20×, and DT at 20×. Liver presents good results for ANN at 20×.
Kidney is the most difficult tissue to classify, as there are no results below 10%, as said. The
potential influence of the uneven distribution of images in the classification results is not
clearly reflected in the results. Kidney and liver present the maximum number of images,
with a total of 516 each, so the classification algorithms should work better. However, while
for liver it is possible to find error results under 5% for ANN at 20×, it is not possible to
find results better than 19% for kidney. Tissues with a lower number of images, such as
ganglion with 324, testicle with 216 and brain with 162, present best results of 1.86% for
DT at 20×, 1.39% for QDA at 40×, and 1.85% for QDA at 20×. There is also no apparent
correlation of the best results with the minimum error given by the classification algorithms.
Figure 4 establishes that ANN and DT are the best classifiers. According to Table 4, the
minimum error is obtained from DT at 20×, 19.25%, while ANN has a minimum error
of 19.64% at 40×. Lastly, testicle tissue has reduced errors for ANN at 20× and 40×, and
LDA and QDA at 40×. These results show that a good potential classifier would be ANN
with a combination of at least 20× and 40× magnifications. In this case, all the tissues
but kidney have a maximum error of 4.68% for liver at 20×, and kidney could present a
minimum error of 19.64% at 40×. An alternative would be DT, which was the best in the
re-substitution error analysis, with tissues other than liver and kidney with a maximum
error of 9.67% for brain at 10×, and capable of having errors of 13.36% for liver at 20×, and
19.25% for kidney at 20×. The case of QDA could be also an option, but in this case the
minimum for kidney would be an error of 28% at 20×, that is quite high.

5. Conclusions

The previous analysis has shown that the proposed phase-contrast parameters are
potential candidates for tumoral tissue discrimination in an automatic artificial intelligence
system based on phase-contrast microscopic images of five different fresh biological tis-
sues. The use of phase-contrast parameters from microscopic images allows refractive
index distribution information to be obtained without a strong dependence on particular
pixel-wise data, as is the case when the information of each pixel of the whole image is
employed. It also simplifies the classification algorithms training and implementation, and
as a consequence, the feasibility of implementation and the speed of diagnosis increase. The
present proposal employs fresh biological tissue slices, in which no fixation nor staining
procedures were applied. The system provides a completely automated discrimination
diagnosis, based on motorized microscopic images acquisition and the application of a
trained classifier. The use of label-free samples could be of great interest in clinical practice
for time to diagnosis reduction, artifacts avoidance, and digital diagnosis. This could be
particularly critical when a quick diagnosis is needed, such as during surgical interventions
of tumoral tissue removal. In this case the samples can be sliced and directly located on the
system for automated diagnosis. The present system is more affordable than quantitative
phase imaging approaches that would facilitate adoption at histopathology services in
hospitals. The cost of the system could be even compensated by the elimination of reactants
and reduction of processing steps, specially for low-cost devices in developing countries.

The analysis of averages and standard deviations and the ANOVA results, indicate
that there is a tissue type and magnification dependence on the statistical significance of
the differences between healthy and tumoral tissues. This dependence does permit clearly
selecting particular phase-contrast parameters or a particular magnification for a general
multi-tissue device. The results of the application of different classifiers show that it is
possible to obtain an automatic classifier based on ANN with a maximum cross-validation
error of 4.68% for liver, ganglion, testicle, and brain, and 19.64% for kidney. Although
the last error could be too high, it just affects one of the tissue types, while the others
remain under 5%. An alternative would a DT classifier, with errors below 10% for ganglion,
testicle, and brain, 13.36% for liver, and 19.25% for kidney. The last error could still be
too high, but again it appears on only one tissue type. Further studies can employ other
classification algorithms to try to improve the results for kidney, or even more advanced
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phase-contrast imaging systems. Although a quite broad group of tissue types is being
used in this work, additional tissue types could be also tested. In any case, the results show
the feasibility of considering refractive index distribution as a tumoral discriminant on
label-free biological samples.
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