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Abstract: Acknowledging the importance of the ability to communicate with other people, the
researcher community has developed a series of BCI-spellers, with the goal of regaining commu-
nication and interaction capabilities with the environment for people with disabilities. In order to
bridge the gap in the digital divide between the disabled and the non-disabled people, we believe
that the development of efficient signal processing algorithms and strategies will go a long way
towards achieving novel assistive technologies using new human–computer interfaces. In this paper,
we present various classification strategies that would be adopted by P300 spellers adopting the
row/column paradigm. The presented strategies have obtained high accuracy rates compared with
existent similar research works.

Keywords: brain–computer interface; P300 spellers; P300 row/column paradigm; n-class classification;
ensemble classifiers

1. Introduction

Severe motor disabilities strongly threaten patients’ quality of life by deteriorating
their ability to communicate with other people and making them lose their independence.
The brain–computer interface (BCI) has emerged over the past few decades as the most
important technology that aims to assist severely disabled people in regular everyday
activities by offering them an efficient and easy-to-use muscle-independent pathway to
control, communicate and interact with their environment [1]. BCI systems acquire and
measure brain activity and translate it into control commands. Electroencephalography
(EEG) is one of the most known non-invasive methods that is used by BCI systems to
measure cerebral activity.

BCI-spellers were the first BCI applications that enabled people with severe motor dis-
abilities to regain the ability to communicate with their environment. Various BCI-spellers
have been proposed over the past few decades [2]. BCI-spellers are usually controlled
either by motor imagery (MI) [3–6] or by event-related potentials (ERP) [2]. An MI-based
BCI-speller derives its output from brain activity that is directly and consciously controlled
by the user, independently from external events, by focusing on a specific mental task,
i.e., imagining the movement of a muscle. An ERP-based BCI-speller derives its output
from brain activity changes arising in reaction to external stimuli. ERPs are defined as
changes in EEG signals during or after presenting external events (stimuli). ERP-based
BCI-spellers are categorized to P300 [7–10] or steady-state visual evoked potential (SSVEP)
spellers [11–16]. A P300 ERP is a positive peak in EEG that is elicited by visual or auditory
stimuli. It appears about 300 ms after the stimuli start. SSVEP is characterized by positive
and negative deflection in EEG signals arising in response to a visual stimulus that is
flickering at a specific constant frequency.
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P300-based spellers have a relatively high information transfer rate and require mini-
mal user training (compared to MI). Contrary to MI and SSVEP-based spellers, P300-based
spellers enable BCI systems to spell a wide range of words and support a high number
of commands. Unfortunately, the use of a limited number of imagined movements has
considerably reduced the ability of MI-based spellers to support a wide range of sym-
bols. Indeed, to the best of our knowledge, very few imagined movements such as left-
or right-hand movement, foot movement, tongue movement and eye gazing have been
considered by MI-based spellers in the literature. On the other hand, SSVEP-based spellers
do not require subject training or system calibration. Unfortunately, it is very difficult to
discriminate between SSVEP responses when the number of presented stimuli is increased.
Indeed, in such a case, it is very difficult to discriminate between various flickering visual
stimuli with close frequencies. Moreover, it has been observed that some people have low
SSVEP responses which reduced drastically the accuracy of the BCI system to detect such
responses. All these reasons made P300-based spellers the most commonly used spellers by
BCI systems. This paper overviews P300 paradigms and P300-based spellers paradigms.

BCI-spellers usually correspond to graphical representations of letters, numbers, and
symbols which are controlled using MI or ERPs for spelling and typing. Most of the
research papers dealing with BCI-spellers focus mainly on the design and implementation
of the Graphical User Interface (GUI) of the BCI-speller which is the front-end of the BCI
system. However, more attention should be given to the back-end of the BCI system which
consists of EEG signal processing algorithms to increase the performance of the BCI system.
It is very attractive to design and develop strategies to boost signal processing algorithms.
Some research studies are continuously searching to improve the accuracy of the P300
speller. For example, in [17], an adaptive channel selection method is proposed to enhance
the classification accuracy of the P300 potential. It efficiently permits channel selection
by introducing multiple kernel learning (MKL) to select the model, mapping the EEG
signals in different acquisition channels into other feature spaces through different kernel
functions. So, it constructs MKL by linear weighting and uses many training sessions to
learn weight coefficients to select the optimal sampling set channel combination adaptively.
Other research studies focus on the development of deep learning algorithms to maximize
the prediction rate of the P300 potential. In [18], a capsule network algorithm called
ERP-CapsNet is proposed to perform ERP detection in a BCI-speller application. The
experimental results on BCI Competition datasets and the Akimpech dataset show that
ERP-CapsNet achieves a classification accuracy of about 65% for three subjects.

The current work has been conducted within a funded research project which aims
to promote the accessibility of people with severe disabilities by developing a series of
integrated Brain controlled tools such as mail–client, Web browser and command–line
interface [19]. The developed prototypes adopted a P300-based BCI-speller. In this regard,
several strategies have been explored during the project to classify P300 responses and
to predict users’ desired symbols and/or commands. This manuscript describes all clas-
sification strategies we have explored during this project including a novel classification
strategy that adopted a new partitioning approach to spread trials of the training dataset
over an ensemble of classifiers. The results of the novel strategy outperformed all previous
approaches including the winner of the BCI competition. To the best of our knowledge,
there is no previous work that has adopted the proposed partitioning approach and the
proposed classification strategy. Moreover, this work shows how a multi-class classification
problem could be solved using two-phase classification strategies.

The remainder of this paper is organized as follows: Section 2 describes the different
P300 paradigms and highlights the most commonly used P300 speller paradigms. Section 3
introduces the different annotations used in this paper. Section 4 describes different
classification strategies for P300 spellers. Section 5 presents the results obtained by the
discussed classification strategies and compares these results with those obtained by similar
research works. Section 6 summarizes the current research work.
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2. P300 Paradigms

The P300 is arising in response to an external event that appears as a positive deflection
in voltage at the brain’s parietal lobe. It can be measured 300 milliseconds after the stimulus
starts [20]. Thus, to detect and record these deflections, the EEG electrodes should cover
the brain’s parietal lobe. Many prototypes have adopted this paradigm [19,21–28]. They
are all characterized by a high degree of accuracy and require a short time of training. In
our review of the literature, we identify three main P300 paradigms. The first one is the
single-stimulus paradigm which includes one type of stimuli [29]. The second one is called
the oddball paradigm, where the system shows a random sequence of two types of stimuli
’the target stimulus’ that infrequently appears in a sequence of stimuli, and the ’non-target’
stimulus, which appears more frequently [30,31]. The user focuses on a specific stimulus,
“target”, that represents the user’s desire. The target stimulus elicits a P300 response while
the other stimuli do not [30]. The last paradigm is the three-stimulus paradigm which
contains three types of stimulus: target, standard, and distracter (also referred to as probes
or novels). In the three-stimulus paradigm, the novel stimuli are presented infrequently
and produce a P300 response that is different from the typical P300, which represents the
response to the target (P3b), so this “novelty” P300 is called the (P3a) [29].

2.1. P300 Speller Paradigms

Different P300 Speller paradigms have been proposed in the literature and have
developed distinct protocols. We hereby describe the most widely known P300 paradigms.

2.2. Row/Column Paradigm (RC)

Farwell and Donchin introduced the P300 row/column paradigm by presenting for
subjects a 6 × 6 character matrix [7]. The subject is invited to concentrate on the character
he desires to spell. For the spelling of a single character, rows and columns of the matrix
are periodically flashed in random order. A P300 response is elicited 300 ms after the row
or the column that contains the character the user wants to spell is flashed. After analyzing
the user’s brain activity after each flash, P300 responses are detected, and consequently, the
target character is identified as the intersection of the column and row that have elicited
P300 responses.

2.3. Single Character Paradigm (SC)

In this paradigm, only one character is flashed at a time. This paradigm has a low
accuracy rate. Moreover, SC can be prone to the crowding effect [29].

2.4. Checkerboard Paradigm (CB)

A novel P300-based stimulus presentation paradigm is presented in [8] to handle the
adjacency problems and double flash in RC. A matrix with dimension 8 × 9 containing
72 elements is defined. The matrix is superimposed on a checkerboard. The checkerboard
is split into two matrices, each with a dimension of 6 × 6. The first matrix contains the
white cells from the checkerboard, and the second contains the black cells. Before each flash
sequence, the checkerboard items will randomly populate the two matrices. So, the user
sees a random group of six items flashing. The checkerboard layout controls the adjacency-
distraction error because the adjacent cells will not be included in the same group. The rows
of the matrix flash first randomly, then the columns flash. Any item will not flash again,
at least for six intervening flashes; this will eliminate the double flash problem and avoid
overlapping target epochs.

2.5. Region-Based Paradigm (RB)

In the RB paradigm [29,32], the screen was partitioned into seven regions. With 49 sym-
bols (26 alphabet, 10 numeric, and 13 special characters). The 49 symbols are distributed
among seven regions that are flashing randomly. The user focuses on the region that contains
the target, then the system detects the region that contains the target by detecting the P300
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response. Next, the seven symbols in the target region are distributed among the seven regions.
Again the seven regions flash and then the system will identify the target symbol. This method
provides more input characters. Moreover, avoid crowding effect and adjacency problem.

2.6. Comparison between RC, SC, CB, RB Paradigms

The authors in [33] have compared SC with RC P300 paradigms and state that only
55.3% of the trained subjects can spell with 100% accuracy in SC, whereas 72% of these
subjects can spell with 100% in RC. Another study [29] has conducted experiments on
six subjects (males 20–25 years old). Each participant completed the test with the SC,
RC, and RB P300 paradigms. The participants were asked to spell two words. The total
accuracy was 95% for RB, 85% for RC, and 72% for SC. In [8], experiments have been
conducted on 18 participants (11 men, 7 women—2 women, and one man with ALS). Each
participant completed two sessions of the experiments, one for RC and a second for CB. The
CB accuracy was 91.52%, whereas the RC accuracy was 77.34. Table 1 compares between
the different P300 speller paradigms.

Table 1. Comparison between the P300 Speller Paradigms.

Paradigm RC SC CB RB

Accuracy Medium Low Very High High

Adjacency problem X X 7 7

Crowding Effect X X X 7

Double flash X 7 7 7

Xexist 7 not exist.

3. Terminology and Annotations

Let us consider a matrix of symbols, called commands, denoted M, of dimension n×m;
n and m correspond to the numbers of rows and columns of the matrix M, respectively.

M =



C1
1 · · · Cj

1 · · · Cm
1

...
...

...
C1

i · · · Cj
i · · · Cm

i
...

...
...

C1
n · · · Cj

n · · · Cm
n


(1)

The intensification denoted I is the process of flashing (intensifying the luminosity)
all symbols of a given row or column of the matrix M. Figure 1 shows an illustration of
the intensifications of the third column and of the second row of a matrix of symbols M,
respectively. An intensification I elicits a single post-stimulus signal denoted ξ(I).

Figure 1. Intensification of the second row and the third column of a matrix of symbols.
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A sequence of intensification denoted by S represents an ordered collection of intensifi-
cations, where all rows and columns of M are intensified randomly once. Thus, S is formed
by (n + m) distinct intensifications, denoted S =< Ii

1, I j
2, . . . , Ik

n+m >. Each component

I corresponds to an intensification of a row/column of M. In fact, I j
i means that the ith

intensification of the sequence S occurs in the jth row/column of the matrix M. We notice
that rows and columns of M are indexed using unique serial numbers, as shown in the
following matrix (Equation (2)).



1 · · · j · · · m
⇓ ⇓ ⇓

m + 1⇒ C1
1 · · · Cj

1 · · · Cm
1

...
...

...
...

m + i⇒ C1
i · · · Cj

i · · · Cm
i

...
...

...
...

m + n⇒ C1
n · · · Cj

n · · · Cm
n


(2)

A single sequence of intensification S elicits (n + m) post-stimulus signals denoted by
ξ(S) corresponding to the following ordered collection of post-stimulus signals:

• ξ(S) =< ξ(Ii
1), ξ(I j

2), · · · , ξ(Ik
n+m) >

• |ξ(S)| = (n + m)

For the selection, denoted by σ, of a single symbol/command cj
i of M, α sequences of

intensifications are performed successively. As such, every row/column of M is intensified
α times during the same selection σ but in random orders.

σ =
α⋃

i=1

Si (3)

Si is the ith sequence of the selection σ. Thus, a selection σ of a single command elicits a set
of post-stimulus signals denoted ξ(σ):

ξ(σ) =
α⋃

i=1

ξ(Si) =
α⋃

i=1

< ξ(Ix
1,i), ξ(Iy

2,i), · · · , ξ(Iz
(n+m),i) > (4)

Ik
i,j corresponds to the ith intensification of the jth sequence Sj and which occurs in the

kth row/column of the matrix of symbols M. ξ(σ) is composed of α × (n + m) post-
stimulus signals.

|ξ(σ)| =
α

∑
i=1
|ξ(Si)| =

α

∑
i=1

(n + m) = α× (n + m) (5)

4. Classification Strategies

The classification problem addressed in this paper is a multi-class classification prob-
lem and it is solved in two steps. In the first step, a binary classification problem is
addressed and it consists of predicting if an EEG post-stimulus signal corresponds to a
P300 response or not. In the second phase, a multi-class classification problem is addressed
and it consists of identifying the symbol that the user wants to spell.

Various design choices could be considered to develop a reliable and efficient solution.
We describe hereafter the most relevant choices to build an efficient classification strategy:

• A single classifier or an ensemble of classifiers: A classifier is a machine learning model
that allows us to identify, based on a set of attributes called features, which group,
called a class, an object belongs to. Advances in machine learning have shown that
an ensemble of classifiers effectively improves the classification accuracy of a single
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classifier. An ensemble of classifiers applies fusion techniques to combine predictions
of single classifiers called base learners. However, the size of the training dataset is a
critical issue in designing a classification strategy based on an ensemble of classifiers
rather than on a single classifier. Indeed, the size of the training dataset impacts the
performance of a machine-learning model. Large datasets lead to higher accuracy
classification while small datasets degrade the system performance due to over-fitting.

• A heterogeneous or a homogeneous ensemble of classifiers: If the training dataset
is large enough to adopt an ensemble of classifiers, the most important question
that should be raised at that stage is: should we adopt distinct classifiers or distinct
instances of the same classifier. Homogeneous ensembles develop the models of the
base learners using the same classification algorithm. In heterogeneous ensembles,
the base learners adopt distinct classification algorithms.

• Voting or stacking: In the case of an ensemble of classifiers, the final decision is
obtained by applying a voting or a stacking fusion technique on the different labels
predicted by the various base learners. Voting allows us to identify the class that has
been predicted (voted) by the majority of base learners. Stacking uses the outputs of
the base learners as features to train another classifier which is called a meta-learner,
which will make the final decision.

• Replication or fragmentation of the training dataset: In the case of an ensemble of
classifiers being adopted, there are two approaches to spread the training dataset over
the base learners. Fragmentation allows us to decompose the training dataset into
distinct fragments each of which will be used to train a single base learner. Replication
allows us to train every base learner using the whole dataset. Replication is applicable
only in case the base learners implement distinct classification algorithms, i.e., in the
case of heterogeneous ensembles of classifiers.

Figure 2 presents the different classification strategies investigated across this research
work to predict a symbol from a matrix of symbols. These strategies are presented and
discussed in the following sub-sections.

Figure 2. Classification strategies.

4.1. Single Classifier Strategy

The whole training dataset is used to train a 2-class classifier in the first phase. As
such, the classifier is trained to predict if a post-stimulus EEG signal corresponds to a
P300 response or not. For example, given a post-stimulus signal corresponding to an
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intensification Ik
i,j of a given row or column of M, the prediction method denoted ρ returns

a value ranging between 0 and 1, which corresponds to the probability that the signal ξ(I)
is a P300 response or not.

ρ(ξ(Ik
i,j)) = v such that v ∈ [0, 1] (6)

Given a sequence of intensifications Si, the parsing method denoted τ returns a row
vector, denoted by Ui, the values of which are obtained using the prediction method ρ.

τ(ξ(Si)) = Ui (7)

Ui is a row vector composed of the elements <u1
i , u2

i , · · · , un+m
i > such that:

uj
i = ρ(ξ(I j

x,i)) (8)

uj
i is the probability that the intensification, whatever its order/rank, of the jth

row/column of M that happens during the ith sequence of intensifications Si has elicited a
P300 response or not. Thus, τ(ξ(Si)) is computed as follows:

τ(ξ(Si)) =< ρ(ξ(I1
x,i)), ρ(ξ(I2

y,i)), · · · , ρ(ξ(In+m
z,i )) > (9)

Every row and column of M is intensified once during the same sequence. Hence, the
parsing method τ identifies which intensifications of a given sequence Si have elicited a
P300 response and which have not. It will determine for every row/column of M whether
its corresponding intensification that occurs during the given sequence Si has elicited a
P300 response or not.

We remind that during the same selection σ, every row and column of M is intensified
α times. So, given a selection σ of a single character, the corresponding α sequences of
intensifications are processed sequentially by the parsing method τ leading to α row vectors
each of which corresponds to τ(ξ(Si))1≤i≤α. The α row vectors Ui = τ(ξ(Si))1≤i≤α are
then used to average the probability that the intensifications of rows and columns of M
happening during the selection σ have elicited P300 responses. These probabilities are
computed using the following prediction function Ψ:

Ψ(ξ(σ)) =
1
α
<

α

∑
i=1

τ(ξ(Si)) >

=
1
α
<

α

∑
i=1

Ui >

=
1
α
<

α

∑
i=1

u1
i ,

α

∑
i=1

u2
i , · · · ,

α

∑
i=1

un+m
i >

=
1
α
<

α

∑
i=1

ρ(ξ(I1
x,i)), ∑α

i=1 ρ(ξ(I2
y,i)), · · · ,

α

∑
i=1

ρ(ξ(In+m
z,i )) >

(10)

As such Ψ(ξ(σ)) returns a row vector denoted by V as follows:

Ψ(ξ(σ)) =< v1, v2, · · · , vm, vm+1, · · · , vn+m > (11)

such that

vj =
1
α
×

α

∑
i=1

ρ(ξ(I j
x,i)) (12)

Given a selection σ, we can identify the user’s desired symbol by maximizing the
results of the prediction function Ψ(ξ(σ)). We select the row x and the column y of M’ that
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have most probably elicited P300 responses. We notify that y corresponds to the column
number maximizing the score vy.

vy = Maxm
i=1(v

j) where vj =
1
α
×

α

∑
i=1

ρ(ξ(I j
x,i)) (13)

x is the number of the row that maximizes the score vm+x.

vm+x = Maxn
i=1(v

m+i) (14)

Thus, we consider that the symbol cy
x of M is most probably the user’s desired symbol.

4.2. Ensemble Classifiers Strategy

In the case of ensemble classifiers, two options are possible. The first option is called
Heterogeneous Ensemble Classifiers, which consists of training different classifiers using
the same training dataset. The second option is called Homogeneous Ensemble Classifiers,
which consists of training different instances of the same classifier using different partitions
of the training dataset.

Let us consider a training dataset, denoted D, comprising post-stimulus signals corre-
sponding to the selection of β symbols (commands) cj

i of M.

D =
β⋃

j=1

ξ(σj) =
β⋃

j=1

α⋃
i=1

ξ(Sj
i) (15)

where Sj
i is the ith sequence Si that occurs during the jth selection. So, the dataset D consists

of β× α× (n + m) post-stimulus training signals.

|D| =
β

∑
i=1
|ξ(σi)| =

β

∑
i=1

α× (n + m) = β× α× (n + m) (16)

4.2.1. Heterogeneous Ensemble Classifiers Strategy

This step is often known as decision-level fusion, where different modalities are
utilized for separate training models. An aggregation function is used at the end to
determine the final decision by combining the different prediction results of distinct models.
In such a case, the whole training dataset D is used to train N different 2-class classifiers,
leading to an ensemble of distinct classifiers. Every classifier Ci:1···N is trained to predict
if a signal contains a P300 response or not. Every classifier Ci:1···N builds its prediction
model. Thus every classifier Ci:1···N will customize the prediction method ρ, denoted ρi:1···N ,
according to its prediction model. The total number of trials used to train and build the
model of every classifier is defined using the following expression:

Total number O f trials = β× α× (n + m) (17)

There are two different approaches to building the final decision of this classification
strategy: non-weighted voting and weighted voting.

a. Non Weighted Voting

In this case, the different classifiers play the same role to predict the selected sym-
bol/command. Given a selection σ, the corresponding α sequences of intensifications
are parsed simultaneously by the N distinct classifiers. Every classifier Ci:1···N calculates
Ψi(ξ(σ)) and returns a row vector denoted Vi as follows:

Ψi(ξ(σ)) =< v1
i , v2

i , · · · , vm
i , vm+1

i , · · · , vn+m
i > (18)
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such that

vj
i =

1
α
×

α

∑
k=1

ρi(ξ(I j
x,k)) (19)

The results Vi = Ψi(ξ(σ))i:1···N obtained by the different classifiers Ci:1···N are then
combined to calculate the global decision as follows:

Ψglobal(ξ(σ)) =
1
N
×

N

∑
i=1

Ψi(ξ(σ)) (20)

Ψglobal(ξ(σ)) returns a row vector denoted R =< r1, r2, · · · , rn+m > such that

rj =
1
N
×

N

∑
i=1

1
α
×

α

∑
k=1

ρi(ξ(I j
x,k)) =

1
N
× 1

α
×

N

∑
i=1

α

∑
k=1

ρi(ξ(I j
x,k)) (21)

rj is the probability that the intensification which occurs in the jth row/column of M
has elicited a P300 response.

Given a selection σ, we can determine the user’s desired symbol by maximizing
the results of the prediction function Ψglobal(ξ(σ)). Using the values of the row vector
W = Ψglobal(ξ(σ)) we identify the column and the row that have most probably elicited
P300 responses. Considering y is the number of the column of M that has most probably
elicited P300 responses. Thus, y is the column number that maximizes the score ry.

ry = Maxm
i=1(r

j) (22)

Let x be the number of the row of M that has most probably elicited P300 responses. x
is the number of the row that maximizes the score rm+x.

rm+x = Maxn
i=1(r

m+i) (23)

Thus, we consider that the symbol cy
x of M is the most probably user’s desired symbol.

b. Weighted Voting

In this case, we apply the same strategy as the non-weighted voting approach except
that the decisions of the involved classifiers are waved to generate the global decision.
Every classifier Ci:1···N is assigned a weight denoted wi that corresponds to the accuracy of
Ci:1···N during the training phase. As such the results obtained by the different classifiers
Ci:1···N are combined to predict the global decision using the following prediction function
Ψglobal(ξ(σ)) to calculate the global decision as follows:

Ψglobal(ξ(σ)) =
1
N
×

N

∑
i=1

wi ×Ψi(ξ(σ)) (24)

Ψglobal(ξ(σ)) returns a row vector denoted R =< r1, r2, · · · , rn+m > such that

rj =
1
N
×

N

∑
i=1

wi ×
1
α
×

α

∑
k=1

ρi(ξ(I j
x,k)) =

1
N
× 1

α
×

N

∑
i=1

wi ×
α

∑
k=1

ρi(ξ(I j
x,k)) (25)

rj is the probability that the intensification that occurs in the jth row/column of M has
elicited a P300 response.

Given a selection σ, we can determine the user’s desired symbol by maximizing
the results of the prediction function Ψglobal(ξ(σ)). Using the values of the row vector
R = Ψglobal(ξ(σ)) we identify the column and the row that have most probably elicited
P300 responses. Let y and x be the numbers of the column and the row of M that has
most probably elicited P300 responses, respectively. y and x are obtained by applying
Equations (22) and (23), respectively.

Thus, we consider that the symbol cy
x of M is the most probably user’s desired symbol.
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4.2.2. Homogeneous Ensemble Classifiers Strategy

In this case, the training dataset D is split into disjoint partitions (portions). Every
partition is used to train an instance of the same 2-class classifier, leading to an ensemble of
homogeneous classifiers. Every classifier is as such trained to predict if a signal contains a
P300 response or not. The training dataset D could be split into two different approaches:
Vertical or Horizontal partitioning.

a. Horizontal Partitioning

We remind that the dataset contains β selections σi. Every selection σi is composed
of α sequences of intensifications denoted by Sj

i . Sj
i represents the jth sequence of the

ith selection.
In the horizontal partitioning strategy, the signals of the training dataset D are spread

over α partitions denoted πi:1···α each of which is defined as follows:

πi:1···α =
β⋃

j=1

ξ(Si
j) (26)

A partition πi:1···α contains all ith sequences of intensifications of the β selections.
As such, the partition π1 contains all first sequences of the β selections, the partition π2
contains all second sequences of the β selections and so on. The obtained partitions have to
satisfy the following properties:

α⋃
i=1

πi = D and
α⋂

i=1

πi = ∅ (27)

Every partition πi is composed of β sequences of intensifications. Hence, a partition
πi contains β× (n + m) post-stimulus signals.

|πi| =
β

∑
j=1
|ξ(Si

j)| =
β

∑
j=1

n + m = β× (n + m) (28)

Every partition πi is used to train a single 2-class classifier Ci:1···α, leading to an
ensemble of α classifiers. Every classifier Ci:1···α is as such trained to predict if a signal
corresponds to a P300 response or not. Thus, the total number of trials used to train every
classifier is defined using the following expression:

Total number O f trials = β× (n + m) (29)

Given a selection σ, the corresponding α sequences of intensifications are parsed
simultaneously by the α classifiers. Every classifier processes a single sequence of the α
sequences of σ. Thus, a classifier Ci will parse the ith sequence Si of σ. Every classifier Ci
calculates τi(ξ(Si)) as follows:

τi(ξ(Si)) =< ρi(ξ(I1
x,i)), ρ(ξ(I2

y,i)), · · · , ρ(ξ(In+m
z,i )) > (30)

Every classifier Ci returns a row vector denoted Vi whose values are calculated as
follows:

vj
i = ρi(ξ(I j

x,i)) (31)

vj
i is the probability that the intensification, whatever its order/rank, of the jth

row/column of M that happens during the ith sequence of intensifications Si has elicited a
P300 response or not. The different results (row vectors) Vi = τi(ξ(Si))i:1···α calculated by
the different classifiers Ci:1···α are then combined to calculate the global decision as follows:
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Ψglobal(ξ(σ)) =
1
α
×

α

∑
i=1

τi(ξ((Si))) (32)

Ψglobal(ξ(σ)) returns a row vector denoted R =< r1, r2, · · · , rn+m > such that

rj =
1
α
×

α

∑
i=1

ρi(ξ(I j
x,i)) (33)

rj is the probability that the intensifications that occur in the jth row/column of M
have elicited P300 responses.

Given a selection σ, we can identify the column and the row that have most probably
elicited P300 responses by maximizing the results of the prediction function Ψglobal(ξ(σ)).
Let y and x be the numbers of the column and the row of M that has most probably elicited
P300 responses, respectively. y and x are obtained by applying Equations (22) and (23),
respectively. Thus, we consider that the symbol cy

x of M is the most probable user’s
desired symbol.

b. Vertical Partitioning

In the vertical partitioning strategy, the selections are spread over a set of classifiers.
So, we defined a collection composed of N different instances of the same classifier. Then,
we split equally the β selections over the different instances Ci:1···N . Thus, every classifier
Ci:1···N will be trained on a subset of the training dataset composed of β

N selections. As
such, every instance Ci:1···N of the classifiers will be assigned a partition defined as follows:

πi:1···N =

i× β
N⋃

j=(i−1)× β
N +1

ξ(σj) (34)

A partition πi:1···N contains β
N successive selections and satisfies the properties de-

scribed by expression (33).
Every partition πi contains β

N × α× (n + m) post-stimulus signals.

|πi| =
i× β

N

∑
j=(i−1)× β

N +1

|ξ(σj)| =
i× β

N

∑
j=(i−1)× β

N +1

α

∑
k=1
|ξ(Sk

j )| =
β

N
× α× (n + m) (35)

Every partition πi is used to train a 2-class classifier Ci:1···N , leading to an ensemble of
N classifiers. Every classifier Ci:1···N is as such trained to predict if a signal contains a P300
response or not. Thus, the total number of trials used to train every classifier is defined
using the following expression:

Total number O f trials =
β

N
× α× (n + m) (36)

Given a selection σ, the corresponding α sequences of intensifications are parsed
simultaneously by the N classifiers. Every classifier Ci:1···N calculates Ψi(ξ(σ)) and returns
a row vector denoted Vi (Equation (18)) whose values are calculated using Equation (19).

The different results (row vectors) Vi = Ψi(ξ(σ))i:1···N calculated by the different
classifiers Ci:1···N are then combined to calculate the global decision as follows:

Ψglobal(ξ(σ)) =
1
N
×

N

∑
i=1

Ψi(ξ(σ)) (37)
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Ψglobal(ξ(σ)) returns a row vector denoted R =< r1, r2, · · · , rn+m > such that

rj =
1
N
×

N

∑
i=1

1
α
×

α

∑
k=1

ρi(ξ(I j
x,k)) =

1
N
× 1

α
×

N

∑
i=1

α

∑
k=1

ρi(ξ(I j
x,k)) (38)

rj is the probability that the intensification that occurs in the jth row/column of M has
elicited a P300 response.

Given a selection σ, we can identify the column and the row that have most probably
elicited P300 responses by maximizing the results of the prediction function Ψglobal(ξ(σ)).
Let y and x be the numbers of the column and the row of M that has most probably elicited
P300 responses, respectively. y and x are obtained by applying Equations (22) and (23),
respectively. Thus, we consider that the symbol cy

x of M is the most probable user’s
desired symbol.

5. Results and Discussion
5.1. Description of the Testing Dataset

A dataset provided by BCI competition, in [34], is used to test and check the effective-
ness of the proposed approach and for comparison purposes. It contains the EEG signals
of two subjects trying to select 85 characters (85 selections) during five different sessions.
Each selection is recorded from the brain using 64 channels, most of which are put in the
brain’s parietal lobe. Every character spelling corresponds to 180 = 12 × 15 post-stimulus
labeled signals. So, each subject’s dataset is composed of 15,300 post-stimulus in total.

The testing dataset is composed of 100 characters spelling, equivalent to
18,000 = 180 × 100 post-stimulus signals. The diverse parameters of the selected dataset
using the previous approach are summarized in Table 2.

Table 2. Description of the benchmarking dataset.

Notation Formula Value

The dimensions of the command Matrix M n, m 6, 6

The number of post-stimulus signals during a
single sequence of intensifications S. |ζ(S)| |ζ(S)| = n + m 12

The number of sequences of intensifications S
in a single selection σ. α 15

Total number of post-stimulus signals during
a single selection. |ζ(σ)| |ζ(S)| = α× (n + m) 180

The number of selections (per subject) of the
training dataset. β 85

Total number of post-stimulus signals (per
subject) of the training dataset. |D| |D| = β× α× (n + m) 15,300

The number of selections (per subject) of the
testing dataset. β′ 100

Total number of post-stimulus signals (per
subject) of the testing dataset. |D′| |D′| = β′α(n + m) 18,000

Performing a benchmark test with only two subjects is insufficient in general. However,
every subject was invited to select 100 characters which correspond to 18,000 trials (EEG
signals) per subject. The number of trials is enough to make a significant benchmark test.

5.2. EEG Signals Pre-Processing and Features Extraction

We are interested in this work only in EEG signals that appeared after each intensifica-
tion. As mentioned above, the evoked potentials appear 300 ms after the stimulus. Thus,
samples between 0 to 667 ms posterior to the beginning of intensification are extracted
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for every channel. The sampling rate of the EEG signals was set to 240 Hz. To the best of
our knowledge, this epoch is large enough to acquire efficient time features. The selected
epoch is bandpass filtered using an infinite impulse response (IIR) filter. The order of
the filter is set to eight as it is sufficient to keep the spectrum components between 0.1
and 10 Hz. Afterward, the filtered signals were decimated according to the high cut-off
frequency, 10 Hz. The decimation process reduces the sampling frequency of a signal to
a lower sampling frequency that differs from the original frequency. Decimation is also
known as down-sampling. So, the extracted signal comprises only 14 samples at each
electrode. Finally, each post-stimulus signal is transformed as a single vector composed
of 896 = 14 × 64 samples. As mentioned above, the EEG signal has been filtered with an
8-order bandpass filter the cut-off frequencies of which are 0.1 and 10 Hz and has been
decimated according to the high cut-off frequency. The decimation process reduces the
sampling frequency of a signal to a lower sampling frequency that differs from the original
frequency. Decimation also is known as down-sampling. Therefore, the extracted signal
from a single channel is composed of 14 samples.

5.3. Results

The various strategies analyzed in this work have been evaluated using the dataset
mentioned above. For every classification strategy, Table 3 shows the total number of
psst-stimulus signals used for training the classifiers.

The benchmark dataset contains two subsets of trials. The first subset is composed
of 85 selections per subject which correspond to 15,300 post-stimulus signals. This subset
is used to train the classifier(s). Table 3 summarizes how these trials are spread over
the classifiers according to the classification strategy. The second subset is composed,
as mentioned in Table 2, of 100 selections per subject which correspond to 18,000 post-
stimulus signals per subject too. The second subset is used for testing the accuracy of the
classification strategies.

Table 3. Settings of the different classification strategies.

Number of Total Number of Post-Stimulus Signals per Classifier

Classifiers Formula Value

Ensemble Heterogeneous
Classifiers Strategy 4 |D| = β× α× (n + m) 15,300

Ensemble Homogeneous
Classification Strategy
with Vertical Partitioning

17 |D| = β
N × α× (n + m) 900

Ensemble Homogeneous
Classification Strategy
with Horizontal
Partitioning

15 |D| = β× (n + m) 1020

Given a selection σ, the α sequences of intensifications are parsed by the classifier(s) of a
given strategy. The distinct (n+m) intensifications of every sequence are processed separately
by the classifier(s) to determine which ones correspond to a P300 response and which do not.
For every sequence of intensifications, the classifier(s) aggregates the (n + m) predictions and
returns a row vector. Every strategy consolidates the distinct α row vectors, using appropriate
formulas, to identify which character corresponds most probably to the selection σ.

Various classifiers are applied during the first phase of the classification problem to
analyze and select the appropriate one for our application. For example, we have evaluated
the linear discriminant analysis (LDA) [35], partial least squares regression (PLS) [36], logis-
tic regression (REG) [37], and support vector machine (SVM) [19]. These algorithms were
evaluated using the BCI competition dataset containing the recording of two subjects, A
and B. Every classifier has been trained using 15,300 post-stimulus signals and tested using
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18,000 post-stimulus signals. Table 4 summarizes the classification accuracy of each classi-
fier, which represents the number of trials classified correctly. The maximum classification
accuracy was reached using the SVM algorithm, where for subject A the accuracy achieved
was 96% and 93% for subject B, respectively. Thus, the average classification accuracy using
this technique is about 94.5%. Regarding subject A, the classification accuracy achieved
was 93%, 94%, and 94% using LDA, PLS, and REG, respectively. The SVM fails to maintain
high accuracy for subject B, where the highest accuracy was obtained using the PLS and
REG classifiers.

Table 4. Average accuracy of the single classification strategy.

Subject LDA SVM PLS REG

Subject A 93 96 94 94

Subject B 92 93 94 94

SVM, LDA, PLS and REG classifiers have been fused to evaluate the performance of
the ensemble heterogeneous classification strategy. Table 5 shows the accuracy rate of the
ensemble classifiers for subjects A and B. The ensemble classifiers have been trained using
15,300 post-stimulus signals and have been tested using 18,000 post-stimulus signals. Using
the non-weighted voting technique, the ensemble classifiers reach an accuracy rate of 88%
and 91% for subjects A and B, respectively. The weighted voting techniques enhance the
accuracy of the ensemble classifiers by achieving an accuracy rate of 89% for subject A. For
subject B, the performance remains the same.

Table 5. Average accuracy of the ensemble heterogeneous classification strategy.

Accuracy (%)

Subject Weighted Voting Non-Weighted Voting

Subject A 89 88

Subject B 91 91

The ensemble homogeneous classification strategy was evaluated by fusing the pre-
dictions of different instances of the SVM classifier. In the case of vertical partitioning,
we decided to split the training dataset into partitions each of which was composed of
post-stimulus signals of five successive selections, leading to 17 different partitions. As
such, every partition corresponded to 900 post-stimulus signals. Every partition has been
used to train a single instance of the SVM classifier. Table 6 shows the accuracy rate of
the ensemble classifiers for subjects A and B. The accuracy rate of the ensemble classifiers
using the vertical partitioning reached an accuracy rate of 96% and 93% for subjects A and
B, respectively.

Table 6. Average accuracy of the ensemble homogeneous classification strategy using vertical or
horizontal partitioning.

Accuracy (%)

Subject Horizontal Partitioning Vertical Partitioning

Subject A 98 96

Subject B 96 93

In the case of horizontal partitioning, the training dataset was split into 15 partitions
each of which was composed of post-stimulus signals that correspond to sequences that
happen in the same order during the selections. Partition 1 contained post-stimulus signals
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of all first sequences. Partition 2 contained post-stimulus signals corresponding to all
second sequences, etc. As such, every partition corresponded to 1020 post-stimulus signals.
Every partition has been used to train a single instance of the SVM classifier. As shown
in Table 6, the accuracy rate of the ensemble classifiers using the horizontal partitioning
reached an accuracy rate of 98% and 96% for subjects A and B, respectively.

5.4. Benchmarks

For comparison purposes, Table 7 summarizes the accuracy rates obtained by the
winners of the BCI competition.

Table 7. Accuracy rates obtained by the winners of the BCI competition (%).

Winners of the BCI Competition

Subject 1st 2nd 3rd

Subject A 96 90.5 80

Subject B 95 90.5 80

Unexpectedly, the efficiency of the ensemble heterogeneous classification strategy
is low compared to those of the single classification strategy. However, results show
that, using a weighted voting technique or not, the ensemble heterogeneous classification
strategy has obtained better accuracy rates than the third-ranked algorithm of the BCI
competition. In the meantime, the proposed single classification strategy outperformed the
second and third-ranked algorithms.

Compared to the winner, the proposed ensemble homogeneous classification strate-
gies have obtained competitive results. Adopting the vertical partitioning approach, the
ensemble homogeneous classification strategy has reached the same accuracy as the winner
for subject A, but the accuracy has decreased by 2% for subject B. Using the horizontal
partitioning, the ensemble homogeneous classification strategy outperformed the winner
for both subjects A and B.

6. Conclusions and Future Work

P300 spellers offered serious opportunities for people with severe motor disabilities
to interact efficiently with their environment. Different P300 speller paradigms have been
proposed in the literature. This paper overviewed the most known P300 speller paradigms
the Row/Column P300 speller paradigm still remains the most popular paradigm adopted
by P300 spellers. This paper discussed various efficient classification strategies for the
row/column P300 speller paradigm. These strategies were tested using a public dataset.
The results were competitive compared to those obtained by the winner algorithms of the
BCI competition using the same dataset. One of the presented strategies outperformed the
winner of the competition.

The classification problem addressed in this paper was complex and it was solved in
two steps. The first step aimed to predict if a post-stimulus EEG signal corresponded to a
P300 response or not. Thus, this first step was a 2-class classification problem-solving. The
second phase dealt with a multi-class classification problem since it aimed to predict the
user’s desired symbol/command from a matrix of symbols.

Various strategies were discussed in this paper including single classifier strategy
and ensemble classification strategies. The single classifier strategy was tested using
four different 2-class classifiers: LDA, PLS, REG, and SVM. The average accuracy rate
of such a strategy ranged between 92% and 96%. These distinct classifiers were fused
to validate the ensemble heterogeneous classification strategy by applying a weighted
voting and a non-weighted voting algorithm. Contrary to all expectations, the performance
decreased compared to the single classification strategy. This lack of performance was
fixed by the ensemble homogeneous classification strategy by fusing different instances
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of the same classifier, in this case, the SVM classifier. The ensemble was built based on
how the dataset was split among the different instances. Two approaches were tested:
horizontal and vertical partitioning. The ensemble homogeneous classification strategy
using the vertical partitioning technique obtained results too close to the winner algorithm
of the BCI competition. However, the ensemble classification strategy using the horizontal
partitioning technique outperformed the winner algorithm of the competition. The average
accuracy rate was improved by 2%.

In the future, we intend to extend our classification strategies to include deep learning
algorithms and study their efficiency. Moreover, we are planning to combine the two
selective attention methods P300 and SSVEP, or P300 with ERS/ERD motor imagery BCI
mental strategies knowing that recent research showed that the subject can simultaneously
produce both SSVEP and ERS/ERD.
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