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Abstract: Commercial use of biometric authentication is becoming increasingly popular, which
has sparked the development of EEG-based authentication. To stimulate the brain and capture
characteristic brain signals, these systems generally require the user to perform specific activities such
as deeply concentrating on an image, mental activity, visual counting, etc. This study investigates
whether effective authentication would be feasible for users tasked with a minimal daily activity such
as lifting a tiny object. With this novel protocol, the minimum number of EEG electrodes (channels)
with the highest performance (ranked) was identified to improve user comfort and acceptance
over traditional 32–64 electrode-based EEG systems while also reducing the load of real-time data
processing. For this proof of concept, a public dataset was employed, which contains 32 channels of
EEG data from 12 participants performing a motor task without intent for authentication. The data
was filtered into five frequency bands, and 12 different features were extracted to train a random
forest-based machine learning model. All channels were ranked according to Gini Impurity. It was
found that only 14 channels are required to perform authentication when EEG data is filtered into the
Gamma sub-band within a 1% accuracy of using 32-channels. This analysis will allow (a) the design
of a custom headset with 14 electrodes clustered over the frontal and occipital lobe of the brain, (b) a
reduction in data collection difficulty while performing authentication, (c) minimizing dataset size to
allow real-time authentication while maintaining reasonable performance, and (d) an API for use in
ranking authentication performance in different headsets and tasks.

Keywords: authentication; biometrics; channel reduction; electroencephalogram; machine learning;
random forest

1. Introduction

Sensitive personal data is often stored on digitized databases that can be obtained
through online portals using internet access. Traditionally, sensitive data has been protected
using passwords or physical access keys [1,2]. In the advent of increased accessibility
to biometric scanning tools in consumer devices, multiple data-storage platforms have
adopted fingerprint and facial recognition as an additional security feature [3]. Biometrics
are a secure recognition method that uses unique biological properties of an individual
to ensure correct authentication occurs [4]. For example, fingerprints, iris, and facial
recognition all display unique attributes of an individual [5]. In recent studies [6–16]
electroencephalographic (EEG) signals were tested for their use in this biometric domain.
It was postulated that EEG can serve as a biometric method for person authentication
due to the unique pathways developed by each individual to accomplish a given mental
activity [17].

EEG authentication systems rely on the ability to collect and analyze brain signals to
match an individual to known activity templates. These systems require a data acquisition
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device, as well as a task for the user to perform. Data acquisition is typically accomplished
by a wearable headset with electrodes placed at specific locations [14]. Users wear the
headset while performing a given task, which stimulates the brain and allows the headset
to record the electrical activity in the electrodes. Previous work has included tasks such
as imagined hand movement [8,11,15,18],resting [8–10,12–14,16], limb movement [8,11],
and visual tasks [6,19]. The chosen task(s) should be engaging enough to maintain user
focus, but also simple enough to be performed without extensive instructions and training.
The authentication system proposed in this study uses lifting small objects as a task, which
meets these ideals of stimulating yet simple.

Several groups developing EEG authentication systems have used the EMOTIV
Epoc+ EEG headset, which contains 16 electrodes: 14 EEG channels and 2 reference
electrodes [6,9,14,15]. Other EEG headsets include the 64-electrode BCI2000 as used
by [8,12], 19-channel TruScan [11], and single channel Mindwave [13]. The electrode
placements are typically selected from the international 10–10 system shown in Figure 1.
The international 10–10 system creates a schema by which 81 locations on the scalp are
named and marked at 10% increments between the nasion (top of the nose) to inion (protu-
berance on the back of the skull), and left to right preauricular points (top of ear base) [20].
This is an extension of the original 10–20 system used to mark 21 locations on the scalp such
that studies collecting EEG data can be standardized and reproducible. Newer systems
such as such as the 128-electrode Quik-Cap, Waveguard, and actiCap or 256-electrode
BrainAmp, Quik-Cap, and Electro-Cap use the newer 10–5 system with 345 standardized
positions at 5% intervals [21]. The trend of increasing the number of electrodes improves
the spatial resolution and accuracy of EEG data [20,22], however increasing the number of
data streams also increases the size and processing time of EEG data.

Figure 1. Normal placement of electrodes according to the international 10-10 system.

Another factor that increases the data size is the sampling rate at which EEG data is
collected. For example, the BrainID system used a sampling rate of 128 Hz while users were
tasked with thinking about a specific four-digit code [14]. Since each of the 14 electrodes
collect 128 samples a second, a total of 1792 samples are obtained per second by the system.
Many recent studies employ 32–128 electrodes for data collection with sampling rates
ranging from 128 Hz to 2400 Hz [23]. In systems with higher sampling rates and large
numbers of electrodes, the size of the EEG data can grow exponentially. For instance, a
standard 16-bit resolution 64-electrode system sampling at 512 Hz over each electrode will
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produce 32,768 samples each second. This evaluates to 524,288 bits or 65.536 kb or data
that must be stored and processed for each second of a recording.

Larger datasets provide more detailed information but also increase the computation
time needed to authenticate individuals using current machine learning models, resulting
in multiple hours of processing time. For EEG-based authentication to shift from an
area of theoretical research to consumer biometric, systems will have to authenticate
individuals in real-time with minimal delay. To counter longer processing times, devices
with increasingly larger memory can be used as the size of EEG datasets become more
inflated. Even with high memory devices, EEG data processing time can be brought down
by reducing the number of channels in consideration in the authentication process. To
perform a reduction in the number of channels, it is essential to analyze each channel’s
contribution to authentication performance. An ablation study can be performed to observe
the contribution of each channel towards the overall classification results. This is performed
by removing the channels with the least contribution in a sequential fashion and finding
the lowest number of channels needed to maintain acceptable authentication performance.

Depending on the user task selected for authentication, different frequencies of the
brain may provide the most synchronized, and therefore detectable, signals. Brain activity
can be divided into five sub-bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–30 Hz), and gamma bands (30 Hz and higher) [24]. Each sub-band is typically
associated with specific functionalities of the brain and are typically active over specific
regions of the brain, thus are detected by certain electrode positions with better precision
than others. The delta and theta sub-bands are detected most strongly in the frontocentral
region of the brain during sleep [25]. Alpha sub-band rhythms are observed in relaxed
individuals in the occipital region of the brain, typically while the eyes are closed and visual
stimuli is limited [26]. When attentive to stimuli or problem-solving, the beta sub-band
is active in the frontal and temporal regions for short periods of time [27]. Gamma sub-
bands are seen during movement, emotional processing, and high-level mental activities
and can be observed over multiple regions of the brain [26,28,29]. All five sub-bands are
analyzed alongside the non-segmented EEG data to observe changes to EEG authentication
performance in this study.

In summary, the contribution of our study is: (a) To evaluate EEG as a biometric
authentication procedure when users perform a low-impact lifting task. (b) Determining the
lowest number of electrodes required to perform authentication with acceptable accuracy.
(c) Find the best electrode positions and frequency band for this authentication task for the
design of a specialized authentication headset. (d) Share an open-source repository with a
channel reduction and sub-band analysis API.

2. Materials and Methods
2.1. Dataset

This study utilizes a publicly available WAY_EEG_GAL dataset from Luciw et al. [30] that
was collected without intent for use in user authentication. The WAY_EEG_GAL dataset [30]
is made up of 3913 grasp and lift trials from 12 participants (8 female, 4 male). Each participant
performed 328 trials in which they lifted an object of either 165 g, 330 g, or 660 g from a contact
surfaces of either silk, suede, or sandpaper using their thumb and index finger. The combination
of these two variables were randomly ordered during data collection. During trials, the object
was lifted and suspended until an LED light cued the participant to place the object back down,
therefore the time of each trial varies.

The dataset was recorded across kinematics, force, torque, EEG, and electromyography
(EMG) modalities. Four 3D position sensors were attached to the item that was picked up by
the participant to track movement, and two contact plates on the side of the item collected
3 channels of force and torque data to detect grip. The contact plates are located on the Fz
plane shown in Figure 2a. An ActiCap headset with 32 channels at a sampling rate of 500 Hz
was used to collect EEG data as seen in Figure 2c. The third image in Figure 2b showcases five
sensors on the anterior deltoid, brachioradial, flexor digitorum, common extensor digitorum,
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and the first dorsal interosseus muscles which were used to collect EMG data. Of the available
modalities, only EEG is utilized in this study.

Figure 2. The data collection procedure for the EEG_WAY_GAL dataset. (a) Force detection sensors.
(b) EMG sensor placement. (c) ActiCap in use for EEG data collection [30].

2.2. Experimental Setup

The experimental setup used to preprocess the EEG data and implement the machine
learning model for user authentication and channel reduction is described in this section
to allow for experimental replication. The experimental setup also specifies the system
requirements for using the API associated with this study. The API only works on machines
that have access to a NVIDIA GPU and Linux OS. A GPU is utilized due to the ability to
run multi-thread instructions that significantly speed up the machine learning training and
classification process over traditional CPU-based computing. The following system setup
variables were used with the API in this study:

Operating System. Linux (Ubuntu 18.04, Ubuntu 20.04, CentOS 7, CentOS 8, RHEL 7&8).

Environments. MATLAB R2021b and Python 3.9 (Conda RAPIDS-22.02).

Dependencies. (Matlab) Signal Processing Toolbox, (Python) NVIDIA CUDA 11.5, cuML,
sklearn, imblearn, numpy.

Minimum Suggested Memory. 16 GB DDR4 RAM with 2 GB SWAP.

2.3. Data Pipeline

The following data processing pipeline was performed in this study:

2.3.1. Filtering

The EEG data is filtered using a MATLAB script. A 4th-order IIR Butterworth filter
from the Signal Processing Toolbox is applied to the imported EEG data with a pass-band
of 0.2–50 Hz. The band-pass frequencies are converted into a normalized frequency, Wn
using the following formula:

Wn =
fcuto f f

fs
2

,

where fcuto f f is the low or high pass-band, and fs is the sampling rate of the data. The
normalized frequency of the high-pass and low-pass frequencies are applied to the 4th-
order Butterworth filter. The Butterworth filter Matlab execution can also be found in the
Preprocessing folder of the Github repository [31]. The Butterworth filter is applied to the
EEG data using the filtfilt function. This function was chosen due to compatibility with
zero-phase lag IIR filters.

2.3.2. Band Extraction

After all filtering is completed, the filtered EEG data is segmented into five frequency
bands using a MATLAB script. The extracted bands are delta (0.2–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–26 Hz), and gamma (26–50 Hz). Each band is extracted using
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a 4th-order Butterworth filter in the same manner as described in Section 2.3.1, with the
exception of the delta band which is extracted using a 2nd-order Butterworth filter. The
filter order is decreased in the delta band due to the 0.2 Hz high-pass band being below the
recommended 1 Hz minimum for 3rd-order and higher IIR filters [32]. A collective band
without any extracted frequencies and the five sub-bands results in a total of 6 bands to be
classified. Each band is preprocessed and classified independently in the remainder of the
data pipeline.

2.3.3. Windowing

The EEG data from each band is segmented into overlapping rectangular windows in
MATLAB. Each window contains 0.5 s of EEG data, with a 0.25 s overlap with previous
and future windows. Windowing is used to isolate features over smaller segments of the
overall EEG data to improve feature resolution [33].

2.3.4. Feature Extraction

Features are extracted from each band of the EEG dataset to provide a concise rep-
resentation of the EEG signals using information that is useful to the classifier model.
Each feature describes a property of the signal contained within each window. A set of
12 statistical features are extracted from each window. Because the size of each window is
small in comparison to the entire dataset, computing only 12 properties to represent the
entire window is unlikely to result in significant data loss due to the data reconstruction
using all windows combined.

Each of the 12 extracted features were selected from current literature in EEG user
authentication [34,35]. The 12 features used are average, standard deviation, mean abso-
lute value, root mean square, skewness, kurtosis, Hjorth activity, Hjorth mobility, Hjorth
complexity, Shannon’s entropy [36], and spectral entropy [37].

All features are obtained using Matlab functions. Statistical features such as average,
standard deviation, mean absolute value, root mean square, skewness, and kurtosis are
obtained from the time-domain data to provide relationships between the samples within
individual windows. The Hjorth parameters are found using the Hjorth function from the
MATS toolkit [38]. Hjorth parameters are advanced statistical methods in observing time-
domain signals through patterns in variance, making this a popular method in monitoring
EEG data [39]. The entropy features describe the amount of uncertainty in the EEG signal
pattern. This is observed in both the time domain using Shannon’s entropy and in the
frequency domain using spectral density. Both entropy features are obtained by applying
the windowed data using modified wavelet entropy functions.

2.3.5. Data Splitting

The six bands for each participant were then split to create training, validation, and
testing data. For each feature dataset, 80% was used for training, 10% for validation, and
10% for testing. Samples were randomly selected from each featureset while splitting to
avoid time-bias. All data processing performed after this step are completed in Python
using the GPU-dependent API.

2.3.6. Channel Ranking

Since 32 channels of data are available, testing every non-ordered combination of
possible electrodes within the headset would result in 32 choose k models being needed for
testing. This evaluates to

C32,k =

(
32
k

)
=

32!
k!(32 − k)!

C32,k = 4294967296 models required.
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Since this is a large number of models to run on a consumer-grade computer, a channel
ranking system is used to only evaluate 32 possible combinations with the total number of
channels decreasing in each permutation. Channel ranking is performed using the Extreme
Gradient Classifier (XGB) model from python’s xgb module. This model is an ensemble
class algorithm. This means that the amount of inter-subject variance accounted for by each
channel towards the entire dataset is scored as a percentage. A percentage is returned for
each channel as an unsorted array. This keeps the percentage for each channel in the same
column as the channel it is representing.

These channel rankings are used for channel reduction by removing the channel with
the lowest percentage from the binerized dataset across both training and testing data splits.
Both the testing and training data are reduced to simulate the use of a headset with the
chosen channel’s electrode removed. This reduced dataset is used to retrain the random
forest model using the training split. The retrained model is used to predict the classes of
the reduced testing data. The physical location of each channel which is removed is kept
on record to analyze the patterns in channel importance.

2.3.7. Upsampling

User authentication is performed by comparing the templates of one single user to the
templates of all 12 users on the database. The code will select one participant as a ‘genuine’
user and will mark all other users as ‘imposters’. The code cycles through each participant
such that each individual will be the genuine user once and the imposter 11 times. To
simplify the identification of genuine user versus imposter, all training data is binarized,
while a user is selected as the genuine user, all training samples labeled with the genuine
user’s ID have their labels changed to a ‘1’, while all other user IDs are changed to a ‘0’.

However, training a machine learning model with a 1:11 ratio of genuine samples to
imposter samples will result in classification biases towards imposter classifications. To
circumnavigate this potential issue, the number of genuine samples are increased to match
the number of imposter samples to achieve a 50/50 split in genuine and imposter training
data. This upsampling process is performed using Synthetic Minority Over-sampling
Technique (SMOTE) [40].

SMOTE locates the minority class in a dataset, which in the case of this study will be
the genuine user’s data. Given that binary labeling is used, the SMOTE algorithm will
identify the discrepancy between the number of available genuine samples to imposter
samples by finding the ratio of ‘1’ labels to ‘0’ labels, while the genuine samples remain at a
lower ratio, new samples will be created. These new samples are made by selecting the k
nearest neighbors and creating a convex combination of two neighbors [40].

2.3.8. Hyperparameter Tuning

The binarized and upsampled data is used to train and fit a random forest model. A
benchmark is created for the random forest model in which all 32 channels of data are used
in fitting and classification. The random forest model is tuned by changing the values of
the hyperparameters, after which the model is trained and tested. The best hyperparameter
combination is determined and used in all further models trained when channel reduction
is performed to ensure results can be attributed to channel reduction exclusively. The
chosen hyperparameter combination will be used to generate the 32-channel benchmark
score that is used for comparison with channel reduction scores.

Hyperparameter selection is performed in an iterative loop. For hyperparameters
with a finite number of predetermined options, a list of possible values are made. For
hyperparameters with infinite options of numerical values, a range of numbers are placed
in a list. The numbers for each numerical hyperparameter were determined by first testing
a broad range of values that varied from 10% to 1000% of the module’s default value. After
testing across all 12 participants, the range is narrowed down until different values provide
optimal results for different participants.



Sensors 2022, 22, 9156 7 of 17

The random forest model used in this section is obtained from the CUDA cuML
ensemble library. The cuML ensemble repository is made to reflect the structure of sklearn’s
ensemble library, and thus the functionality of this code can be changed to run on CPU
exclusive devices. Changing from the cuML to sklearn ensemble libraries can result in
improved classification performance due to constraints on GPU machine learning kernels,
however making this change will also result in a much greater processing time which is
not ideal for real-use in-person authentication systems.

2.3.9. Classification

Classification is performed using the same random forest parameters specified in the
benchmark test in a model trained using channel reduced datasets. For each lowest ranking
channel that is truncated from the dataset, the change in classification accuracy is saved
to a results file. The accuracy of the classifier is determined by the percentage of times
the model is able to correctly classify a 0.5 s sample across all available channels as being
genuine or imposter. The results file contains the benchmark score, impurity score list,
training and classification times, and accuracies for each channel reduction.

2.3.10. Analysis

An analysis API was developed to interpret and plot specific patterns in the results.
This API was developed in Python 3.9 as a class with functions to perform different types
of analysis procedures on the results file output by the classification script. The API can
be imported into scripts to use the averaging, data sorting by participant, sorting data by
band, and timing value extraction functions. These values are returned as lists that can
be input to matlibplot pyplot objects for plotting, or to be used for further user-defined
analysis. The following analysis operations were applied to the classification results:

• Individual participant accuracy.

– The classification accuracy for each participant is plotted against each other at
each channel reduction for each of the 6 bands;

– This allows for discrepancies between participant performance to be viewed in
each band.

• Band performance by participant.

– The accuracy at each number of channels used is plotted for each participant
across all bands;

– This allows for differences in band performance to be observed for each participant.

• Average band accuracy.

– The average accuracy over all participants for each number of channels used is
calculated for each band;

– The average accuracy for each band is plotted against each other to view differ-
ences in average band performances.

• Participant Gini importance rankings.

– The Gini importance assigned to each electrode position is extracted for each
participant and plotted on a bar graph.

• Average Gini importance by band.

– The average Gini importance of each electrode position is calculated across all
participants; by band;

– A bar graph is made to visualize the average ranking of electrode positions for
each band.

• Change in accuracy.

– The change in accuracy for each channel reduction is found for each participant
in each band;
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– The changes for each participant are plotted against each other within each band
to determine if change per participant is significantly different.

• Average classification time by band.

– The average classification time across all participants for each number of channels
used for each band is determined;

– The average classification time of each band is plotted against each other to review
differences in band timing performance.

• Channels reduced before 1% reduction in accuracy.

– The number of channels that can be reduced before the average accuracy is
reduced by 1% is found in each band;

– This finds the minimum channels needed before the accuracy is dropped by 1%
in each band.

All plots are graphed using matlibplot’s pyplot.

3. Results

When observing all six of the examined bands, it can be seen that the bands follow
trends in performance across participants. Figure 3 showcases the average performance of
each band by number of channels used. This average was obtained by finding the mean
accuracy across all 12 participants in a given band for each number of channels used. From
the average performance, it can be seen that the gamma sub-band provides the highest
authentication accuracy at 83.15%, followed by the beta sub-band and overall band at
81.95% and 81.35%, respectively. The worst performing bands are delta and theta closely
tied together at 78.13% and 78.46%, respectively, followed by alpha at 79.85%.

Figure 3. The average accuracy obtained by each band for each number of electrodes in use.

The change in accuracy per channel reduction is also viewed by individual participant
over all six bands. This process is performed to ensure that the average accuracy provides
a consistent representation across all individuals, and to view the degree of variation
observed across individuals. It is observed that while gamma provides the highest average
performance, it is not the top performing band in all participants, as seen in Figure 4 where
the overall and beta bands outperform gamma. However, the gamma, beta, and the overall
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bands are the top performing bands in the vast majority of participants, thus excluding the
theta, delta, and alpha bands as significant contributors. Within the three top performing
bands, gamma is most often seen as the top performance band, as seen in Figures 5 and 6.

Figure 4. The accuracy of each band for participant 4.

Figure 5. The accuracy of each band for participant 3.
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Figure 6. The accuracy of each band for participant 8.

When assessing accuracy, it can be seen that not all participants achieve similar
accuracies. A higher authentication accuracy is observed for participant 2 than with all
other subjects. Similarly, participant 10 is not authenticated at as high a rate as as other
participants across all six bands. A significant decrease in accuracy of ∼10% can be observed
in specific bands between these two participants.

To determine the optimal number of channels, the change in accuracy for each channel
reduction is observed. Figure 7 showcases the change in accuracy seen for each participant
in the overall band. The decrease in accuracy when 1–20 channels are removed remains
minuscule; however when considered alongside the average accuracy in Figure 3 it can be
seen that large decreases in accuracy occur only at below 10 to 7-channels. The minimum
number of channels needed before a 1% accuracy reduction occurred was determined
by band. The minimum channels required is 13 for the gamma sub-band, 14 for the
overall band and beta sub-band, 15 for the theta and alpha sub-bands, and 17 for the delta
sub-band.

To determine the best electrodes for use in a motor task-based authentication system,
the channels assigned the highest Gini importance during channel ranking are considered.
The Gini importance of each channel varies depending on the band selected. The best
electrodes for use in this system are therefore selected from the gamma, beta, and overall
bands. The average Gini importance of each electrode is obtained by using the mean value
across all participants in a band. Figure 8 shows the average Gini importance of each
electrode in the gamma band. The top 14 channels can be seen in Table 1. The physical
location of each electrode on the international 10–10 electrode placement system can be
seen in Figure 1.
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Figure 7. The change in accuracy for each participant using the overall band for each number of
channels used.

Figure 8. The average Gini importance for each electrode in the Gamma band.

No linear relationship exists between the number of channels reduced and the user
authentication time, however a notable pattern exists among all the sub-bands observed.
The exclusion of the worst performing channel results in a noticeable decrease in average
classification time in all bands. After the first channel is removed, the classification time
exhibits a gradually escalating upward trend until only 7 to 10 electrodes are left. All
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bands experience the longest classification time at six electrodes, at which point further
channel reductions result in a steep decline in classification time. The average classification
time during channel reduction exceeds the average classification time for all 32 channels
at 23 channels for the beta sub-band, 18 channels for the overall band, gamma and theta
sub-bands, 17 channels for the delta sub-band, and 16 channels for the alpha sub-band.
Figure 9 showcases these findings. The time required to train each model does see a linear
trend as channels are reduced.

Figure 9. The average classification time for each number of channels used in each band.

4. Discussion

This study aims to reduce the computational intensity and storage demand required
for EEG-based user authentication by minimizing the number of electrodes in use. By
finding the optimal number and location of electrodes, a custom headset can be designed
to perform this task while reducing user discomfort due to bulky EEG headset designs.
This headset would be specialized for the recognition of motor-based tasks such as the one
performed by participants in this study for use in instant authentication. The minimum
number of channels that can be used while maintaining an accuracy drop-off of less than
1% from using all 32 channels ranges from 13 channels to 17 channels across the different
bands analysed. This indicates that the number of electrodes in use for the specialized
EEG headset should fall within this range. As seen in Figure 3, the gamma, beta, and
overall bands provide the highest accuracy of the six available options, indicating that the
number of electrodes if using the best performing bands can be reduced to either 13 or
14 electrodes. Therefore, a 14-channel headset is proposed for collecting enough data to
accurately perform user authentication while minimizing the size of the dataset passed to
the machine learning algorithm. The proposed headset will utilize electrodes placed at the
locations corresponding to the top 14 channels. The overall top 14 channels are considered
those that were listed among the top 14 by individual participants the most often. From
the data listed in Table 1, the top 14 channels are ‘PO10’, ‘T8’, ‘F4’, ‘O2’, ‘Fp2’, ‘F3’, ‘T7’,
‘PO9’, ‘FC5’, ‘F7’, ‘O1’, ‘Fp1’, ‘Oz’, and ‘Fz’. These top 14 electrodes have the highest Gini
importance score across the gamma, beta and overall bands. The location of these electrodes
can be seen in Figure 10. It should be noted that half of the 14 top performing channels
are clustered around the region of the frontal cortex. These results make sense given the
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task for the dataset used, as the frontal cortex is known to be heavily connected to motor
movement [41,42]. In addition to the frontal lobe positioned electrodes, 5 of the top ranked
electrodes are located above the occipital lobe. The occipital lobe is associated with the
processing and interpretation of visual information [43]. Fine motor movement tasks, such
as the task performed by participants in the public dataset used, utilize vision for motor
planning and spatial perception [44]. As such, the high performance of the occipital lobe
sensors lines up with the known functions of the brain regions. It can also be noted that
two symmetric temporal lobe electrodes are included in the top ranking electrodes. The
temporal lobe is yet another region involved in the process of spatial recognition and thus
it’s inclusion in a headset may improve fine motor movement recognition [45].

Table 1. Channels selected ranked in top 14 during channel ranking.

Channel Fp1 Fp2 F7 F3 Fz F4 F8 FC5
Times in Top 14 6 11 8 12 10 11 5 7
Channel FC1 FC2 FC6 T7 C3 Cz C4 T8
Times in Top 14 9 5 4 7 3 10 3 9
Channel Tp9 CP5 CP1 CP2 CP6 TP10 P7 P3
Times in Top 14 1 3 2 1 4 0 2 0
Channel Pz P4 P8 PO9 O1 Oz O2 PO10
Times in Top 14 5 0 2 5 3 6 3 11

Figure 10. The placement of electrodes by channel number in the WAY_EEG_GAL dataset with the
top 14 channels marked in red

Creating a 14-electrode authentication EEG headset will allow for increased user
comfort, as most EEG collection devices require close contact of the electrodes and scalp.
As a result, an increased number of electrodes involves greater effort from the headset
wearer to part hair to provide access to the scalp. In addition, many EEG devices require the
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use of saline solution or even electroconductive gel. By reducing the number of locations
where these solvents are applied, the user discomfort can be minimized. The top ranked
electrodes are evenly mirrored across he left and right hemispheres of the brain, with the
exception of FC5 and F7, indicating that a well balanced headset could be obtained for this
functionality. Further research may be conducted to analyze exchanging the FC5 electrode
for the F8 electrode, or exchanging the F7 electrode for the FC6 electrode to maintain even
electrode symmetry.

From a cost standpoint, reducing the number of electrodes in use by an EEG headset
should allow for the development of cheaper EEG authentication systems. Less electrodes and
connecting materials such as wires, plastic, and insulation are required in the design, which
allows for a reduced manufacturing cost. In addition to mechanical materials, the embedded
components of such a system will also be available at a reduced price. Less channels involves
the use of less analog to digital converters needed for microcontrollers to interpret the EEG
signals. This reduces component prices for the design, but also allows for the use of more
general purpose embedded devices that do not need specialized additions to accommodate
for large numbers of analog inputs. The use of general embedded devices widens the range
of devices open to be interfaced with the proposed headset, and thus increases the ability to
perform further improvements by independent researchers at a low cost.

The computational power required to process the EEG signals from a 14-channel headset
is significantly lower than that required for a 32-channel or larger headset. Since the process-
ing power of computers are limited by memory, increased data sizes can lead to the memory
cap being reached and therefore may exponentially increase computation time once said cap
has been reached. To allow low-cost devices with low memory to perform authentication
tasks, reducing the strain on system memory provides great benefits to processing time. This
allows for real-time authentication to be performed on pre-trained models.

The timing results obtained in this study indicate that reducing the number of channels
in use does not result in large decreases in classification time when using the RF classifier,
and that classification time can increase when large numbers of channels are removed.
For the 14-electrode system proposed, the classification time remains similar to that of
a 32-electrode system. The initial drop in classification time when the first channel is
removed may be due to reduced dimentionality paired with simplification from reduced
overfitting [46]. Subsequent reductions after 23–16 channels may increase the classification
time because smaller datasets may lead to less effective use of parallelization. Only the
significantly reduced number of channels decreases the time needed for classification,
indicating there may be a threshold for effective tree parallelism. The training time for
the model is linearly reduced, and as a result enrollment time could be reduced using
a reduced channel system. The accuracy score of 82.25% with 14 electrodes using the
gamma sub-band shows promising results for the proposed EEG headset design. This
acts as a proof of concept that a motor task EEG-based user authentication system could
be implemented at a wider scale with future research for improving the model. Many
changes that may improve the accuracy even further include investigating the use of
different features, feature fusion, and the use of a feature selection algorithm as part of
preprocessing, the use of different machine learning models for comparison of results,
comparing different channel ranking models for changes in authentication accuracy, and
investigating mutual information between channels on a participant by participant basis.
Additional methods that may improve the performance includes the use of multimodal
data for user authentication, and observing band combinations.

The public dataset was employed in this study was not collected for authentication.
As a result, the performance obtained by authenticating users from this dataset may be
lower than if a dedicated dataset intended for authentication use where employed. Factors
such as task times, types, and labeling may be modified in a dedicated dataset to result
in higher authentication accuracy. Further investigation into the proposed design may be
conducted through the use of self collected EEG data with users instructed to perform
motor-tasks for user authentication.
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An additional consideration when analyzing the results of this paper is the size of the
userbase. The public database only contains 12 participants. This small pool of participants
may not provide a widely applicable conclusion to the brain activity of fine motor tasks
across the wider population of individuals. Replicating the study with a larger userbase
will greatly improve the reliability of the results.

Future work investigating the connection between top performing channels and types
of tasks may be beneficial. It’s believed that visual stimuli are able to produce more unique
EEG data [9]. Therefore, an analysis of the performance of a variety of electrodes when
complemented by a visual task may produce interesting results.

In summary, the study provides a proof of concept for a custom motor-task EEG-based
authentication headset for use in real-time user authentication. This headset will involve
the use of 14 electrodes with a focus over the frontal cortex and occipital lobe. The reduced
data size of this headset will reduce the computational complexity while only seeing a 1%
drop in authentication accuracy compared to the original 32 channel headset the data was
collected with.

5. Conclusions

In this project it was found that 32 channels of EEG data can be truncated down to
14 channels while maintaining authentication performance within a 1% accuracy decline
of the full channel system when users perform a simple motor task. This is a reduction in
over half the dataset, thereby decreasing the time required to (train and) predict if a user is
genuine or an imposter. These results indicate that a custom headset with 14 electrodes
clustered over the frontal lobe, occipital lobe, and temporal lobe of the brain can be designed
for a motor movement task-based authentication system. This may reduce data collection
difficulty and reduce dataset size while maintaining accuracy performance.

Author Contributions: Conceptualization, M.H.I., A.R.-D., M.B. and E.C.K.; methodology, M.B. and
EE.C.K.; software, M.B., E.C.K. and A.R.-D.; writing—original draft preparation, M.B. and E.C.K.;
writing—review and editing, M.I. and D.H.; visualization, M.B. and E.C.K.; supervision, M.H.I., S.S.
and D.H.; project administration, M.H.I. and S.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was funded by Clarkson University’s new faculty (M.I.) start-up grant. D.H.
and S.S. are partially supported by US NSF TI-2122746, CNS-1650503, and CITeR.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: The dataset was obtained from a publicly available repository. No
direct human study was performed by the authors of this paper.

Data Availability Statement: The data presented in this study are openly available in the EEG_User_Auth
repository from user KetolaC on Github.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Katsini, C.; Belk, M.; Fidas, C.; Avouris, N.; Samaras, G. Security and Usability in Knowledge-based User Authentication: A

Review. In Proceedings of the PCI ’16: Proceedings of the 20th Pan-Hellenic Conference on Informatics, Patras, Greece, 10–12
November 2016 ; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1–6.

2. Zhao, S.; Hu, W. Improvement on OTP authentication and a possession-based authentication framework. Int. J. Multimed. Intell.
Secur. 2018, 3, 187–203. [CrossRef]

3. Corcoran, P.; Costache, C. Biometric technology and smartphones: A consideration of the practicalities of a broad adoption of
biometrics and the likely impacts. In Proceedings of the 2015 IEEE International Symposium on Technology and Society (ISTAS),
Dublin, Ireland, 11–12 November 2015; pp. 1–7.

4. Eng, A.; Wahsheh, L.A. Look into my eyes: A survey of biometric security. In Proceedings of the 2013 10th International
Conference on Information Technology: New Generations, Las Vegas, NV, USA, 15–17 April 2013; pp. 422–427.

5. Liu, S.; Silverman, M. A Practical Guide to Biometric Security Technologyy. IT Prof. 2001, 3, 27–32. [CrossRef]
6. Ashby, C.; Bhatia, A.; Tenore, F.; Vogelstein, J. Low-cost electroencephalogram (EEG) based authentication. In Proceedings of the

2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 442–445.

http://doi.org/10.1504/IJMIS.2018.096406
http://dx.doi.org/10.1109/6294.899930


Sensors 2022, 22, 9156 16 of 17

7. Chuang, J.; Nguyen, H.; Wang, C.; Johnson, B. I think, therefore I am: Usability and security of authentication using brainwaves.
In Proceedings of the International Conference on Financial Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–16.

8. Kang, J.H.; Jo, Y.C.; Kim, S.P. Electroencephalographic feature evaluation for improving personal authentication performance.
Neurocomputing 2018, 287, 93–101. [CrossRef]

9. Klonovs, J.; Petersen, C.K.; Olesen, H.; Hammershoj, A. ID proof on the go: Development of a mobile EEG-based biometric
authentication system. IEEE Veh. Technol. Mag. 2013, 8, 81–89. [CrossRef]

10. Nakamura, T.; Goverdovsky, V.; Mandic, D.P. In-ear EEG biometrics for feasible and readily collectable real-world person
authentication. IEEE Trans. Inf. Forensics Secur. 2017, 13, 648–661. [CrossRef]

11. Chin, T.Z.; Saidatul, A.; Ibrahim, Z. Exploring eeg based authentication for imaginary and non-imaginary tasks using power
spectral density method. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 10–12
October 2019; IOP Publishing: Bristol, UK, 2019; Volume 557, p. 012031.

12. Thomas, K.P.; Vinod, A.P. EEG-based biometric authentication using gamma band power during rest state. Circuits Syst. Signal
Process. 2018, 37, 277–289. [CrossRef]

13. Zhang, R.; Yan, B.; Tong, L.; Shu, J.; Song, X.; Zeng, Y. Identity Authentication Using Portable Electroencephalography Signals in
Resting States. IEEE Access 2019, 7, 160671–160682. [CrossRef]

14. Jayarathne, I.; Cohen, M.; Amarakeerthi, S. BrainID: Development of an EEG-based biometric authentication system. In
Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON),
Vancouver, BC, Canada, 13–15 October 2016; pp. 1–6.

15. Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement.
IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [CrossRef]

16. Sohankar, J.; Sadeghi, K.; Banerjee, A.; Gupta, S.K. E-bias: A pervasive eeg-based identification and authentication system.
In Proceedings of the 11th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Cancun, Mexico, 2–6
November 2015; pp. 165–172.

17. Jayarathne, I.; Cohen, M.; Amarakeerthi, S. Survey of EEG-based biometric authentication. In Proceedings of the 2017 IEEE 8th
International Conference on Awareness Science and Technology (iCAST), Taichung, Taiwan, 8–10 November 2017; pp. 324–329.

18. Wang, Y.; Wu, D.; Liu, X.; Hei, X. Never lost keys: A novel key generation scheme based on motor imagery EEG in end-edge-cloud
system. China Commun. 2022, 19, 172–184. [CrossRef]

19. Stergiadis, C.; Kostaridou, V.; Veloudis, S.; Kazis, D.; Klados, M. A. A Personalized User Authentication System Based on EEG
Signals. Sensors 2022, 22, 6929. [CrossRef]

20. Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning
systems. Neuroimage 2007, 34, 1600–1611. [CrossRef]

21. Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin.
Neurophysiol. 2001, 112, 713–719. [CrossRef] [PubMed]

22. Györfi, O.; Ip, C.; Justesen, A.B.; Gam-Jensen, M.L.; Rømer, C.; Fabricius, M.; Pinborg, L.H.; Beniczky, S. Accuracy of high-density
EEG electrode position measurement using an optical scanner compared with the photogrammetry method. Clin. Neurophysiol.
Pract. 2022,7, 135–138 [CrossRef] [PubMed]

23. Ketola, E.; Ray-Dowling, A.; Imtiaz, M.; Hou, D. A Survey on EEG-Based Authentication; Department of Electrical and Computer
Engineering, Clarkson University, Potsdam, NY, USA, 2022; unpublished manuscript, last modified on June 2022; to be submitted.

24. Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum.
Neurosci. 2019, 12, 521. [CrossRef] [PubMed]

25. Nayak, C.S.; Anilkumar, A.C. EEG Normal Waveforms; StatPearls: Treasure Island, FL, USA, 2020.
26. Lewine, J.D.; Orrison, W.W., Jr. Clinical Electroencephalography and Event-Related Potentials. Funct. Brain Imaging 1995, 327,

Unit 6.25.1–24. [CrossRef]
27. Ai, Q.; Liu, Q.; Meng, W.; Xie, S.Q. Chapter 2– State-of-the-Art. Adv. Rehabil. Technol. 2018, 11–32.
28. Gwon, D.; Ahn, M. Alpha and high gamma phase amplitude coupling during motor imagery and weighted cross-frequency

coupling to extract discriminative cross-frequency patterns. NeuroImage 2021, 240, 118403. [CrossRef]
29. Yang, K.; Tong, L.; Shu, J.; Zhuang, N.; Yan, B.; Zeng, Y. High gamma band EEG closely related to emotion: Evidence from

functional network. Front. Hum. Neurosci. 2020, 14, 89. [CrossRef]
30. Luciw, M.D.; Jarocka, E.; Edin, B.B. Multi-channel EEG recordings during 3936 grasp and lift trials with varying weight and

friction. Sci. Data 2014, 1, 140047. [CrossRef]
31. Ketola, E.C.; Barankovich, M. EEG_User_Auth. Version 1.0. Available online: https://github.com/KetolaC/EEG_User_Auth.git

(accessed on 31 October 2022).
32. Bednar, J.; Coberly, W. Order selection for and design of IIR filters. IEEE Trans. Acoust. Speech, Signal Process. 1982, 30, 211–216.

[CrossRef]
33. Keelawat, P.; Thammasan, N.; Numao, M.; Kijsirikul, B. A comparative study of window size and channel arrangement on

EEG-emotion recognition using deep CNN. Sensors 2021, 21, 1678. [CrossRef] [PubMed]
34. La Rocca, D.; Campisi, P.; Scarano, G. On the Repeatability of EEG Features in a Biometric Recognition Framework using a

Resting State Protocol. In Proceedings of the BIOSIGNALS, Rio de Janeiro, Brazil, 18–20 February 2013; pp. 419–428.

http://dx.doi.org/10.1016/j.neucom.2018.01.074
http://dx.doi.org/10.1109/MVT.2012.2234056
http://dx.doi.org/10.1109/TIFS.2017.2763124
http://dx.doi.org/10.1007/s00034-017-0551-4
http://dx.doi.org/10.1109/ACCESS.2019.2950366
http://dx.doi.org/10.1109/86.895946
http://dx.doi.org/10.23919/JCC.2022.07.014
http://dx.doi.org/10.3390/s22186929
http://dx.doi.org/10.1016/j.neuroimage.2006.09.024
http://dx.doi.org/10.1016/S1388-2457(00)00527-7
http://www.ncbi.nlm.nih.gov/pubmed/11275545
http://dx.doi.org/10.1016/j.cnp.2022.04.002
http://www.ncbi.nlm.nih.gov/pubmed/35620351
http://dx.doi.org/10.3389/fnhum.2018.00521
http://www.ncbi.nlm.nih.gov/pubmed/30687041
http://dx.doi.org/10.1002/0471142301.ns0625s52.
http://dx.doi.org/10.1016/j.neuroimage.2021.118403
http://dx.doi.org/10.3389/fnhum.2020.00089
http://dx.doi.org/10.1038/sdata.2014.47
https://github.com/KetolaC/EEG_User_Auth.git
http://dx.doi.org/10.1109/TASSP.1982.1163878
http://dx.doi.org/10.3390/s21051678
http://www.ncbi.nlm.nih.gov/pubmed/33804366


Sensors 2022, 22, 9156 17 of 17

35. Riera, A.; Soria-Frisch, A.; Caparrini, M.; Grau, C.; Ruffini, G. Unobtrusive biometric system based on electroencephalogram
analysis. EURASIP J. Adv. Signal Process. 2007, 2008, 143728. [CrossRef]

36. Rahman, A.; Chowdhury, M.E.; Khandakar, A.; Kiranyaz, S.; Zaman, K.S.; Reaz, M.B.I.; Islam, M.T.; Ezeddin, M.; Kadir, M.A.
Multimodal EEG and keystroke dynamics based biometric system using machine learning algorithms. IEEE Access 2021,
9, 94625–94643. [CrossRef]

37. Abdullah, M.K.; Subari, K.S.; Loong, J.L.C.; Ahmad, N.N. Analysis of the EEG signal for a practical biometric system. World Acad.
Sci. Eng. Technol. 2010, 68, 1123–1127.

38. Kugiumtzis, D.; Tsimpiris, A. Measures of analysis of time series (MATS): A MATLAB toolkit for computation of multiple
measures on time series data bases. arXiv Preprint 2010, arXiv:1002.1940.

39. Cocconcelli, M.; Strozzi, M.; Molano, J.C.C; Rubini, R. Detectivity: A combination of Hjorth’s parameters for condition monitoring
of ball bearings. Mech. Syst. Signal Process. 2022, 164, 108247. [CrossRef]

40. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

41. Fuster, J.M. Frontal lobes. Curr. Opin. Neurobiol. 1993, 3, 160–165. [CrossRef]
42. Dum, R.P.; Strick, P.L. Motor areas in the frontal lobe of the primate. Physiol. Behav. 2002, 77, 677–682. [CrossRef]
43. Jawabri, K.H.; Sharma, S. Physiology, Cerebral Cortex Functions; StatPearls Publishing: Orlando, FL, USA, 2022.
44. Pinero-Pinto, E.; Pérez-Cabezas, V.; De-Hita-Cantalejo, C.; Ruiz-Molinero, C.; Gutiérrez-Sánchez, E.; Jiménez-Rejano, J.; Sánchez-

González, J.; Sánchez-González, M.C. Vision Development Differences between Slow and Fast Motor Development in Typical
Developing Toddlers: A Cross-Sectional Study Int. J. Environ. Res. Public Health 2020, 17, 3597. [CrossRef]

45. Chauvière, L. Update on temporal lobe-dependent information processing, in health and disease Eur. J. Neurosci. 2020,
51, 2159–2204.

46. Chen, R.; Dewi, C.; Huang, S.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods J.
Big Data 2020, 7, 1–26. [CrossRef]

http://dx.doi.org/10.1155/2008/143728
http://dx.doi.org/10.1109/ACCESS.2021.3092840
http://dx.doi.org/10.1016/j.ymssp.2021.108247
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/0959-4388(93)90204-C
http://dx.doi.org/10.1016/S0031-9384(02)00929-0
http://dx.doi.org/10.3390/ijerph17103597
http://dx.doi.org/10.1186/s40537-020-00327-4

	Introduction
	Materials and Methods
	Dataset
	Experimental Setup
	Data Pipeline
	Filtering
	Band Extraction
	Windowing
	Feature Extraction
	Data Splitting
	Channel Ranking
	Upsampling
	Hyperparameter Tuning
	Classification
	Analysis


	Results
	Discussion
	Conclusions
	References

