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Abstract: In the blockchain system, mining pools are popular for miners to work collectively and
obtain more revenue. Nowadays, there are consensus attacks that threaten the efficiency and security
of mining pools. As a new type of consensus attack, the Fork After Withholding (FAW) attack can
cause huge economic losses to mining pools. Currently, there are a few evaluation tools for FAW
attacks, but it is still difficult to evaluate the FAW attack protection capability of target mining pools.
To address the above problem, this paper proposes a novel evaluation framework for FAW attack
protection of the target mining pools in blockchain systems. In this framework, we establish the
revenue model for mining pools, including honest consensus revenue, block withholding revenue,
successful fork revenue, and consensus cost. We also establish the revenue functions of target mining
pools and other mining pools, respectively. In particular, we propose an efficient computing power
allocation optimization algorithm (CPAOA) for FAW attacks against multiple target mining pools.
We propose a model-solving algorithm based on improved Aquila optimization by improving the
selection mechanism in different optimization stages, which can increase the convergence speed of
the model solution and help find the optimal solution in computing power allocation. Furthermore,
to greatly reduce the possibility of falling into local optimal solutions, we propose a solution update
mechanism that combines the idea of scout bees in an artificial bee colony optimization algorithm and
the constraint of allocating computing power. The experimental results show that the framework can
effectively evaluate the revenue of various mining pools. CPAOA can quickly and accurately allocate
the computing power of FAW attacks according to the computing power of the target mining pool.
Thus, the proposed evaluation framework can effectively help evaluate the FAW attack protection
capability of multiple target mining pools and ensure the security of the blockchain system.

Keywords: blockchain; faw attack; evaluation method; revenue model; computing power allocation op-
timization

1. Introduction

With the advancement of digitization, the data security problem of centralized intelli-
gent systems has occurred (e.g., data theft, privacy theft, and illegal operations) resulting
from the centralized processing of massive data [1–3]. Due to the characteristics of de-
centralization, time-series data, collective maintenance, and immutability of blockchain
technology, the security requirements for intelligent systems have promoted the develop-
ment of blockchain technology [4]. Nowadays, blockchain technology is widely applied in
the Internet of Things, smart healthcare, smart commerce, and so on [5–7]. It is a crucial
technology to speed up the development of digital industrialization; blockchain technol-
ogy considerably enhances the efficiency and security of the digital industry. At present,
academia and industry have devoted their efforts to researching the strategic frontier
technology of blockchain and applying it to digital reform [8].
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The consensus algorithm is one of the core technologies of blockchain, which can
realize the consistency of massive network nodes on transactions [9]. Proof of Work (PoW)
is one of the most widely used consensus algorithms. It has been applied to validate
transactions and records of cryptocurrencies such as Bitcoin [10]. In the process of PoW,
miners are required to continuously solve mathematical puzzles with their computing
power to win the bookkeeping rights of blocks. The more blocks there are in the entire
network, the harder mathematical puzzles to be solved by the miners will become. Thus,
the probability that a single miner receives the revenue with its computing power will
become lower, and a single miner may need to wait for a long time to receive the revenue.
To receive more consistent revenue, some miners may choose to form mining pools. Within
such pools, the pool manager concentrates all miners to reach a consensus and distribute
the revenue in proportion to each miner’s contribution. Although mining pools provide
miners with more stable revenue, there may be consensus attacks on mining pools during
the consensus process [11], such as the Selfish Mining (SM) attack [12], Block Withholding
(BWH) attack [13], and Fork After Withholding (FAW) attack. Consensus attacks affect the
normal transactions of mining pools and provide transaction support for criminal acts such
as money laundering, cyber extortion, and so on [14]. In the SM attack, the attacker does
not broadcast the block after mining. When other miners have calculated the block, the
attacker will immediately broadcast the mined block and compete for the current block
revenue, which results in a fork in the blockchain network, i.e., the chain is forked into
two branches [15]. However, the successful launch of the SM attacks depends on the high
computing power and great block propagation efficiency of the attacker. The BWH attacker
allocates its computing power. It uses part of the computing power for normal consensus
and uses the remaining computing power to penetrate the target mining pool. Then only
part of the PoW is reported, and the full PoW is discarded [16]. The computing power
for penetration does not contribute to the target mining pools but still helps the attacker
receive the revenue distributed by the target mining pool. However, BWH attacks may
make mining pools fall into the miner’s dilemma problem. The FAW attack is a novel attack
combining SM attacks and BWH attacks [17]. In the FAW attack, the attacker allocates its
computing power in the same way as in the BWH attacks. It uses part of the computing
power for launching penetration attacks. But the attacker does not discard the full PoW
immediately and still keeps the block, as in SM attacks. When miners attacked by FAW
know that other miners have calculated and mined, they will immediately announce the
mined block and broadcast, thereby generating a fork to gain the revenue. The FAW
attack makes the BWH attack’s revenue as the lower limit revenue and does not result
in the miner’s dilemma problem. Therefore, the FAW attack can help the attacker obtain
revenue from BWH attacks, then fork and reduce the revenue of the target mining pool.
In conclusion, the FAW attack is a more threatening method against mining pools, which
reduces the enthusiasm for mining pool consensus and endangers consensus security.

It is of great significance to study and evaluate the protection capability of the target
mining pools against FAW attacks, which can improve the security of the target mining
pools in the network. There are a few results in the area of evaluating FAW attacks at
present. The main problems of traditional FAW attack evaluation methods are as follows:

• At present, there are a few evaluation frameworks for FAW attacks, and there is a lack
of revenue evaluation when the target mining pool encounters FAW attacks. Effective
security evaluation of the target mining pool is difficult.

• The evaluation of FAW attacks in the evaluation mining pool and target mining pool
are both considered to be single, i.e., one evaluation mining pool evaluates one target
mining pool. There is a lack of one evaluation mining pool that evaluates multiple
target mining pools, and a consensus revenue model for evaluating the attack revenues
of multiple target mining pools is also needed.

• The traditional FAW attack evaluation allocates the attack computing power fixedly,
and excessive computing power may be wasted on the target mining pools with small
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revenue. Thus, the evaluation computing power cannot be efficiently allocated by the
size of the target mining pool to maximize the attack revenue.

• Given the above problems, this paper considers the target mining pools to be multiple
and proposes a novel evaluation framework for target mining pools. In this framework,
we take advantage of optimization theory and the traditional FAW attack method and
propose a computing power allocation optimization algorithm (CPAOA) of the FAW
evaluation mining pool for multiple target mining pools. The main contributions of
this paper are as follows:

• We propose a novel evaluation framework for target mining pools. We extend the eval-
uation of FAW attacks on one target mining pool to multiple target mining pools. We
establish the mathematical equations for honest consensus revenue, block withholding
revenue, successful fork revenue, consensus cost, etc. Then we establish an adaptive
revenue optimization model for the computing power of the evaluation mining pools.
At the same time, we also establish the revenue models of target mining pools and
other mining pools to evaluate the attack revenue after the adaptive computing power
allocation.

• We propose an improved Aquila optimization-based model-solving algorithm. More
specifically, based on the traditional Aquila optimization algorithm, we improve the
selection mechanism of different optimization processes and the fitness calculation
of the proposed revenue optimization model. The algorithm can improve the conver-
gence speed of the solution of the attack revenue optimization model and find the
global optimal solution efficiently.

• We propose a solution update mechanism to prevent the algorithm from falling into
local optimal solutions. The mechanism combines the idea of scout bees in an artificial
bee colony optimization algorithm and the constraint of allocating computing power.
According to the similarity ratio of solutions in the process of multiple iterations, the
solution update mechanism can replace the relevant solutions in time and help prevent
the algorithm from falling into the local optimal solution dilemma during the solution
process.

2. Related Work

Currently, some scholars focus on using reinforcement learning, optimization, strategy
selection, and other methods to study BWH attacks or SM attacks. For example, Fan
et al. [18] proposed an adaptive zero-determinant strategy, which calculates the coopera-
tive strategy revenue and betrayal strategy by calculating the cooperative strategy. The
revenue method solves the problem of mutual BWH attacks between mining pools and
non-cooperative mining. Davidson et al. [19] proposed a variable difficulty chains-based
SM strategy. This strategy is generalized to different mining difficulties and the importance
of making block timestamp manipulation a new component of the strategy space for selfish
miners. The current relevant references can better implement BWH attacks or SM attacks,
but BWH attacks will cause mining pools to fall into the miner’s dilemma in practice. The
successful launch of an SM attack requires the attacker’s high computing power and fast
block propagation efficiency. Moreover, they both have limitations in the way of attacking.

Regarding the issues above, Kwon Y first proposed the concept of a FAW attack in
2017 [17]. The FAW attack is a new attack that combines the BWH attack and the SM attack,
which can allocate the attacker’s computing power to different target mining pools and obtain
higher attack revenue. For example, Wang et al. [20] proposed a hybrid attack based on
the reinforcement learning method. The attacker uses the reinforcement learning method to
switch between the best attack schemes among BWH, FAW, and PAW to maximize the revenue.
Ke et al. [21] proposed an improved FAW attack. After the FAW attack is implemented to
form a fork, the attack miners will immediately convert from launching the FAW attack to
honest mining. The attacker’s revenue is improved by converting between the honest mining
strategy and the FAW attack strategy. However, the traditional FAW attack only allocates the
attacker’s computing power in a fixed amount, which may result in a waste of computing
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power, i.e., much computing power on the target mining pool with less revenue. Therefore,
some scholars focus on improving the FAW attack to obtain more revenue. Dong et al. [22]
proposed a Selfholding attack that is a combined SM attack with a BWH attack, whose attacker
adopts the Selfholding attack model to allocate the attack computing power. Gao et al. [23]
proposed a computing power adjustment-based interception attack strategy called Power
Adjusting Withholding (PAW), which aims to solve the problem of low revenue efficiency
caused by the fixed allocation of part of the attack computing power in FAW attacks. If
malicious miners dispatched by malicious mining pools find full PoW in multiple target
mining pools, when other mining pools find blocks, all malicious miners will submit full
PoW to their respective mining pool managers simultaneously. This leads to multiple forks
in the network simultaneously, increasing the probability of malicious mining pools gaining
revenue. References [20–23] have improved the distribution of computing power, but they are
still unsuitable for using one evaluation mining pool to attack multiple target mining pools.
Moreover, these methods cannot adaptively allocate attack computing power according to
the size of the target mining pool and lack an evaluation of the effect of attack revenue. In
summary, the current BWH and SM attack methods have certain limitations. More specifically,
traditional FAW attack methods cannot directly apply to evaluate the scenarios of multiple
mining pool attacks and cannot adaptively adjust the distribution of computing resources to
maximize revenue.

3. Framework Principle

The procedure of data-driven evaluation framework is as follows: The first procedure
is Model Building, which is to model and calculate the revenue of an evaluation mining
pool, target mining pool and other mining pools. The second procedure is Model Solving,
which is to achieve the adaptive distribution of computing power based on the proposed
CPAOA. Thus, the framework can help improve the protection capability of the mining
pool seriously affected by FAW attacks (weak ability to withstand attacks), and finally it
can achieve the security evaluation of mining pools in the blockchain network.

In this section, we construct a scenario where there are multiple target mining pools
in a blockchain network. Then we analyze the revenue of different mining pools in the
blockchain network when an attacking mining pool uses FAW to attack multiple target
mining pools, and give the following assumptions.

Assumptions: The mining pools in the network consist of the evaluation mining pools,
target mining pools and other mining pools. Note that other mining pools only conduct
honest consensus, and target mining pools help maintain their blockchain system and
earn revenue through honest consensus. A part of the consensus computing power in the
evaluation mining pool is used for honest consensus to obtain consensus revenue, and the
other part of the FAW attack’s computing power is allocated according to the size of the
target mining pool’s computing power. Figure 1 shows a schematic diagram of the FAW
attack of an evaluation mining pool on multiple target mining pools, in which part of the
computing power of the evaluation mining pool is used for its honest consensus, and the
other part of the computing power is used for the FAW attack. The evaluation mining
pool adjusts and allocates the FAW attack computing power according to the computing
power of target mining pools, and launches the FAW attack. Then it reduces the revenue of
the target mining pools and improves the average revenue of the evaluation mining pool.
Finally, it effectively evaluates the protection capability of the target mining pool.

However, to maximize the revenue of FAW attacks, the following two problems remain
to be solved: The first problem is how to use mathematical equations to express the consen-
sus cost and revenue of evaluation mining pools, establish a revenue optimization model
for optimal distribution of computing power under FAW attacks, and establish different
mining pool revenue models to evaluate the revenue after adaptive FAW attacks. The
second problem is how to use the optimization algorithm to solve the problem and obtain
the optimal solution for the distribution of attack computing power, thereby improving the
evaluation effect of the target mining pool.
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Figure 1. Schematic diagram of FAW attack against multiple target mining pools. 
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3.1. Model Building

Note that βi represents the computing power of the i-th target mining pool, parameter

n represents the number of target mining pools, PB =
n
∑

i=1
βi represents the total computing

power of all target mining pools. Parameter α and PO represent the total computing power of
evaluation mining pools and other mining pools, respectively. Parameter PT represents the
total computing power of the entire network, i.e., PT = PB + α + PO. The revenue model is
established according to the revenue and consumption cost of the mining pool in [17,23,24].
The revenue of the evaluation mining pool consists of the following three parts:

The first part of the evaluation mining pool’s revenue is the reward for the successful
mining by honest consensus of attack computing power [17], which is determined by the
proportion of its computing power for honest consensus to the entire network’s consensus
computing power, and can be described as follows:

R1 =

(1−
n
∑

i=1
τi)α

PT −
n
∑

i=1
τiα

, (1)

where R1 represents the revenue of honest consensus by the evaluation mining pool.
The second part of the revenue is the sum of the revenue obtained by the distribution

of each computing power of attack τiα in the target mining pool when BWH attacks are
launched to each target mining pool by computing power of attacks [23]. It is determined
by the probability of the target mining pool digging a block and the proportion of revenue,
which can be described as follows:

R2 =
n

∑
i=1

(
βi

PT −
n
∑

i=1
τiα
× τiα

βi + τiα
), (2)

where R2 represents the revenue of BWH attack of the evaluation mining pool.
The rest of the revenue comes from the successful fork. When the illegal miners find

the valid block, the computing power of attack (i.e., τiα) for the i-th target mining pool
will immediately broadcast the blocks which have been discovered before and successfully
generate a fork [23]. In this case, the total revenue obtained by all of the attack computing
power form the revenue of successful forks. More specifically, the third revenue is deter-
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mined by the probability of successful mining, the probability of successful mining by other
target mining pools and the proportion of revenue, which can be described as follows:

R3 =
n

∑
i=1

(ci ×
τiα

PT
× PT − α− βi

PT −
n
∑

i=1
τiα
× τiα

βi + τiα
), (3)

where R3 represents the revenue of the successful fork of the evaluation mining pool, and
ci represents the probability that the attacking computing power τiα submits a block in the
i-th target mining pool successfully on the chain.

Consider that when evaluation mining pool needs to bear costs such as electricity and
equipment loss when conducting honest consensus and FAW attacks, let Ch represent the
consensus cost per unit of computing power, and C f represents the cost of a FAW attack
per unit of computing power, then the cost of attacking the mining pool can be described
as follows:

C = (1−
n

∑
i=1

τi)α× Ch +
n

∑
i=1

τiα× C f . (4)

Thus, the evaluation mining pool’s total revenue RA can be calculated as follows [24]:

RA = (R1 + R2 + R3 − C)× RBlock, (5)

where RA sums up the aforementioned three revenues, minus the cost of consumption and
multiplied by the reward for mining to a single block RBlock.

Therefore, the average revenue RA of the evaluation mining pool’s computing power
is the ratio of the total revenue of the evaluation mining pool to the computing power of
attack, which can be described as follows:

RA = R/α = (R1 + R2 + R3 − C)× RBlock/α

= (
(1−

n
∑

i=1
τi)α

PT−
n
∑

i=1
τiα

+
n
∑

i=1
( βi

PT−
n
∑

i=1
τiα
× τiα

βi+τiα
) +

n
∑

i=1
(ci × τiα

PT
× PT−α−βi

PT−
n
∑

i=1
τiα
× τiα

βi+τiα
)

−((1−
n
∑

i=1
τi)α× Ch +

n
∑

i=1
τiα× C f ))× RBlock/α.

(6)

The following revenue optimization model for FAW evaluation mining pools can be
modeled as follows:

max(RA),
s.t. Eqs. (1)–(6), τi ∈ [0, 1], ∀i,

n
∑

i=1
τi ≤ 1.

(7)

Similarly, the average revenue of the target mining pool’s computing power is RI , i.e.,
the ratio of the total revenue of the target mining pool to its total computing power, which
can be described as follows:

RI = (

n
∑

i=1
βi

PT −
n
∑

i=1
τiα
−

n

∑
i=1

βi × Ch)× RBlock/(
n

∑
i=1

βi +
n

∑
i=1

τiα). (8)

The average revenue RO of other mining pool’s computing power is the ratio of the
total revenue of other mining pools to their total computing power, which can be described
as follows:

RO = (
PO

PT −
n
∑

i=1
τiα
− PO × Ch)× RBlock/PO. (9)
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3.2. Model Solving

The time complexity of directly solving the optimization model (6) by using the opti-
mization theory is relatively high; therefore, a heuristic algorithm is used to solve it. Aquila
optimizer algorithm (AO) [25] is one of the latest heuristic algorithms, simulating Aquila’s
high-altitude soaring and contour flight. Its globally optimal solution range can be quickly
determined, then Aquila’s low-altitude flight and capture can be accurately searched for the
optimal solution, which has a good optimal solution search ability. However, the AO algo-
rithm mainly selects different optimization links according to the value of the random number
and cannot reach the convergence state in a short time. At the same time, the algorithm does
not randomly adjust the solution in the optimization process, and it is easy to fall into the
local optimal solution problem. Therefore, this paper proposes a model-solving algorithm
based on improved Aquila optimization for the above two problems. That is, by improving
the selection mechanism of different optimization links, improving the convergence speed,
and combining the idea of scout bees in the artificial bee colony optimization algorithm, the
solution is replaced according to the similarity ratio difference of the solution in multiple
iterations, to effectively avoid the AO algorithm getting stuck in the local optimal solution
and efficiently find the global optimal solution. The details are as follows:

First, the constraints in the model (7) are combined to construct a search space, and
K attack computing power allocation schemes for evaluation mining pool are randomly
generated in the search space; the allocation scheme matrix X= {x1, x2, . . . , xk, . . . , xK} is
formed based on this, where xk represents the k-th attack computing power distribution
scheme. Therefore, the fitness of different allocation schemes can be calculated by the
following Equation (10), and the attack computing power allocation scheme with the
greatest fitness is selected as the optimal computing power allocation scheme xbest.

Fk = RA = (R1 + R2 + R3 − C)× RBlock/α

= (
(1−

n
∑

i=1
τi)α

PT−
n
∑

i=1
τiα

+
n
∑

i=1
( βi

PT−
n
∑

i=1
τiα
× τiα

βi+τiα
) +

n
∑

i=1
(ci × τiα

PT
× PT−α−βi

PT−
n
∑

i=1
τiα
× τiα

βi+τiα
)

−((1−
n
∑

i=1
τi)α× Ch +

n
∑

i=1
τiα× C f ))× RBlock/α, ∀τi ∈ xk,

(10)

where Fk represents the fitness value of the k-th evaluation mining pool’s computing
power distribution scheme. In different iterative processes, it is necessary to adjust the
attack computing power distribution scheme for evaluation mining pools. M represents
the maximum number of iterations, m represents the current number of iterations, LTh
and UTh represent different similarity ratio thresholds, and Op represents the switching
parameter in the optimization stage; thus, the specific update of the allocation scheme is as
follows:

1. When m ≤ M×Op and Fk > UTh, due to the long distance between the current
allocation scheme and the optimal allocation scheme, it is necessary to simulate Aquila’s
high-altitude soaring through the following Equation (11) to quickly determine the search
range of the optimal attack computing power allocation scheme. It is convenient for finding
the optimal distribution scheme of attack computing power in the later stage.

xm+1
k,j = xbest × (1− m

M
) + (xc − xbest)× Rand1, ∀k, (11)

where xm
k,j represents the k-th attack computing power distribution scheme under the m+1-

th iteration, xc represents a vector of size ω× 1, which is composed of the average value
of the current attack computing power distribution scheme matrix X, xbest represents the
optimal allocation scheme in the current iteration process, and Rand1 represents a random
number in the range from 0 to 1.

2. When m ≤ M ×Op and Fk ≤ UTh, the search scope of the optimal allocation
scheme is relatively wide. The scheme uses the following Equation (12) to simulate the
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situation where the Aquila hovers above the prey. Then it further narrows the current
search range by the constant altitude flight of the short glide attack. It is convenient for the
quick approach of the optimal attack computing power allocation scheme in the later stage.

xm+1
k,j = xbest × RL + xd + (µ1 − µ2)× Rand1, ∀k, (12)

where RL represents a Levy flight distribution function, xd represents the randomly selected
attack computing power allocation scheme in the allocation scheme matrix X, and µ1 and
µ2 represent the vectors of random values for simulating the Aquila Spiral Search.

3. When m > M×Op and Fk > LTh, the attack computing power distribution plan
needs to go through the transition from large-scale search to small-scale optimization.
The allocation scheme uses Equation (13) to simulate the Aquila to determine the precise
area of the prey, using low-altitude flight and rapid attack. Then it updates and quickly
approaches the optimal distribution scheme of attack computing power, so that the next
link can accurately search for the optimal distribution scheme of attack computing power.

xm+1
k,j = (xbest − xmean)×ω1 − Rand2 + ((up− lp)× Rand1 + lp)×ω2, ∀k, (13)

where xmean represents the mean vector of the current allocation plan matrix X in different
dimensions, ω1 and ω2 represent allocation scheme search parameters in the range 0 to
1, Rand2 represents a vector of size n× 1 consisting of random numbers in the range 0
to 1, up represents a vector of size n× 1 composed of the maximum values of different
dimensions, and lp represents a vector of size n× 1 consisting of the minimum values of
different dimensions.

4. When m > M×Op and Sk ≤ LTh, the attack computing power distribution scheme
is close to the optimal solution. The allocation scheme calculates the quality function f
to ensure accurate search by Equation (14) and uses Equation (15) to simulate the Aquila
accurately grasping and capturing the prey, that is, to find the optimal attack computing
power distribution plan.

f = m
2×Rand1−1

(1−M)2 , (14)

xm+1
k,j = f × xbest − (g1 × xm

k × Rand1)− g2 × RL + Rand2 × g1, ∀k, (15)

where g1 represents the random value in the process of simulating the Aquila capturing
prey and g2 represents the flight slope in the process of simulating the Aquila capturing
the prey.

To avoid the situation that the Aquila loses the globally optimal solution and falls into
the local optimal solution due to the limited flight range of the Aquila during the hunting
process. When the algorithm falls into a local optimal solution or the attack computing
power allocation scheme does not meet the constraints, a new attack computing power
allocation scheme is generated by Equation (16) for replacement. Then the local optimal
solution is updated to ensure the newly generated attack computing power differences in
allocation schemes within the search space.

xt,j =
xt,j + (xt,j − xr,j)× Rand3

n
∑

j=1
(xt,j + (xt,j − xr,j)× Rand3)

, 0 < t ≤ K, (16)

where xt,j represents the regenerated attack computing power distribution scheme, xt,j
represents the attack computing power of the j-th target mining pool in the t-th attack
computing power allocation scheme that needs to be replaced in the allocation scheme
matrix, and xr,j represents the randomly selected attack computing power distribution
scheme in the domain r. Rand3 represents a vector of size n× 1 consisting of uniformly
distributed random numbers in the range −1 to 1. Considering that the total computing
power of target mining pools should not be greater than the total computing power of
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evaluation mining pools, that is, the proportion of attack computing power should not
be greater than the sum of 1, the proportion of attack computing power is updated in the
solution update.

Repeating the above steps, the evaluation mining pool allocates attack computing
power to different target mining pools according to the optimal allocation scheme of
attack computing power and launches FAW attacks on target mining pools. By effectively
attacking the target mining pool, we can evaluate the target mining pool’s protection
capability against FAW attacks, and finally lay the foundation for improving the security of
the mining pool.

4. Algorithm Implementation

The evaluation mining pool launches FAW attacks on the target mining pool by
executing the CPAOA in the evaluation framework, thereby evaluating the protection
capability of the target mining pool. The specific pseudo-code is as follows (Algorithm 1).

Algorithm 1: Computing Power Allocation Optimization Algorithm (CPAOA)

Input: Number of target mining pools
1:M = 1000; K = 50; Op = 1/4; Uth = 90; Lth = 80;
2: Calculate the computing power of the target mining pool and other mining pools;
3: Establish the revenue models of evaluation mining pool, target mining pool, and other
mining pool;
4: Determine the solution model and construct the search space;
5: for (I = 0; I < T; i++)
6: Randomly generate K attack computing power distribution schemes and form them into a
distribution scheme
matrix X;
7: for (j = 0; j < K; j++)
8: Calculate the fitness of each attack computing power distribution scheme;
9: Update the optimal allocation scheme;
10: if judged that the current scheme is in one of the four stages of AO algorithm;
11: Execute the formula at this stage to update the attack computing power distribution
scheme;
12: Calculate the fitness value of the scheme;
13: Calculate the fitness value after the artificial bee colony updates the scheme;
14: Compare with the optimal scheme at the current moment and update the optimal
scheme;
15: or else
16: Obtain the optimal distribution scheme of attack computing power for this round;
17: T = T + 1;
18: Update global optimal scheme;
19: end
20: end
21: Determine the optimal distribution scheme of attack computing power;
22: Launch FAW attacks on multiple target mining pools;
23: Evaluate the protection capabilities of multiple target mining pools;

In line 1, the framework initializes parameters, such as the number of iterations M,
the number of randomly generated schemes K, the switching parameter Op, the threshold
parameter UTh, and threshold parameter LTh. In line 2, the evaluation mining pool
calculates the computing power of the target mining pool and other mining pools. In lines
3–4, the algorithm establishes the models for revenue of evaluation mining pool, target
mining pool, and other mining pool. At the same time, considering the attack cost and
other models, the final determines the solution model and constructs the search space. In
line 6, the algorithm randomly generates K attack computing power distribution schemes
and forms them into a distribution scheme matrix X= {x1, x2, . . . , xk, . . . , xK}. In lines
7–21, the algorithm continuously updates the scheme through the improved AO algorithm.
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According to the scheme being in one of the four stages, which are Aquila’s high-altitude
soaring, contour flight, low-altitude flight and capture, the algorithm calculates the fitness
value of each scheme. After multiple rounds of iterations, the algorithm selects the optimal
distribution scheme of attack computing power and records the allocated computing power
of each target mining pool. In lines 22–23, according to the optimal distribution scheme of
attack computing power, the evaluation mining pool launches FAW attacks on multiple
target mining pools according to the optimal distribution scheme of attack computing
power. Thus, CPAOA evaluates the protection capabilities of multiple target mining pools.

5. Experiment and Analysis
5.1. Parameters and Performance Indicators

To test the performance of CPAOA, we build a prototype blockchain system based on
PoW consensus on a server with Intel i7-10700 CPU 2.90GHz and 16G memory, and the
operating system is 64-bit Win10. We calculate the revenue value of each mining pool in
our proposed algorithm. Using the experimental parameters in Table 1, we calculate the
optimal distribution scheme of attack computing power and the computing power ratio in
the target mining pool, the average revenue of the evaluation mining pool, and the average
revenue of the target mining pool, respectively. We also consider that the total computing
power of target mining pools may change and compare the revenue of CPAOA, BWH,
SM and FAW_F. Note that FAW_F is an attack strategy that no matter how the computing
power of the target mining pool changes, the evaluation mining pool always maintains a
fixed distribution ratio of computing power to launch FAW attacks.

Table 1. Experimental parameter table.

Parameter Number

Number of iterations M 1000
Number of randomly generated evaluation mining pool computing

Power distribution schemes K 50

Consensus cost per unit of computing power Ch 0.00015
Cost of FAW attack per unit of computing power C f 0.00005

Computing power of the entire network PT 3000
Probability of successful hashing of blocks in target mining pools c 0.6

Reward of single block consensus RBlock 500

5.2. Parameter Selection Analysis

In order to analyze the influence of the fitness threshold parameter on the number
of iterations when the algorithm reaches the optimal solution, let the fitness threshold
parameter UTh be 50, 70, 90, 110 and 130, respectively. The parameters LTh are set as 60, 80,
100, 120, and 140, respectively. The given number of iterations is 1000, and the number of
target pools is 9. Figure 2 shows the parameter diagram of Aquila optimization. As shown
in Figure 2, the fitness threshold parameter can affect the range of solution optimization in
the CPAOA optimization process. When the parameter UTh increases continuously in the
range of 50 to 90, CPAOA is in the large-scale search stage of soaring at high altitude during
the optimization process. This is, the larger search range of the algorithm, the shorter
search time in reaching the vicinity of the optimal solution. Therefore, the number of
iterations when the algorithm reaches the optimal solution decreases gradually. However,
when the parameter UTh increases continuously in the range of 90 to 130, CPAOA is in the
large-scale search stage of hovering and gliding during the optimization process. At this
time, a lot of iteration rounds will lead to an excess of search capacity, and the optimization
of the low-altitude flight and dive capture stage will start late, so the number of iterations
when the algorithm reaches the optimal solution gradually increases. When the parameter
LTh increases continuously in the range of 60 to 80, CPAOA is in the low-altitude flight
stage during the optimization process, the search range increases, and the algorithm can
accurately search for the optimal solution. As a result, the number of iterations when the



Sensors 2022, 22, 9125 11 of 19

algorithm reaches the optimal solution gradually decreases. However, when the parameter
LTh increases continuously in the range of 80 to 140, CPAOA is in the stage of small-scale
diving to capture prey during the optimization process, and the increase of the search range
will make it difficult to obtain the optimal solution quickly and accurately. Therefore, the
number of iterations when the algorithm reaches the optimal solution gradually increases.
Through parameter analysis, it can be concluded that when CPAOA selects UTh as 90
and LTh as 80, CPAOA can better allocate the four-stage range of optimization to find the
optimal solution quickly.
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Figure 2. Aquila optimization parameter diagram.

The switching parameter Op in the optimization stage are selected as 1/6, 1/4 and 1/2,
respectively. The fitness threshold parameter UTh is 90, the parameter LTh is 80, the number
of iterations is 1000, the number of target mining pools is 9, and other parameters are shown
in Table 1. We analyze the influence of switching parameters in the optimization stage on
the average revenue of the evaluation mining pool (note that all average revenue in the
following refers to the average revenue of computing power in the mining pool). As shown
in Figure 3, the switching parameters in the optimization stage will affect the allocation
ratio of the large-scale optimization of high-altitude flight and the small-scale optimization
of low-altitude capture in the CPAOA optimization process. When the switching parameter
in the optimization stage is 1/6, the search times of high-altitude soaring and hovering
gliding in the CPAOA optimization process are too short. At this time, the optimization
relies on low-altitude flight and dive capture with a small search range, and it is not easy to
approach the optimal solution quickly. When the switching parameter in the optimization
stage is 1/4, the search range of high-altitude soaring, hovering gliding, low-altitude flight
and diving capture in the CPAOA optimization process all reach the appropriate range so
that the optimal solution can be obtained quickly. When the switching parameter in the
optimization stage is 1/2, the search times of high-altitude soaring and hovering gliding
are too many in the CPAOA optimization process, which can quickly approach the vicinity
of the optimal solution. However, it needs to wait for the number of iterations to reach
500 before the reliable low-altitude flight and dive capture gradually approach the optimal
solution. Therefore, when the switching parameter of the CPAOA optimization stage is
selected as 1/4, the optimization iterative search range can be better allocated to find the
optimal solution quickly.
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Figure 3. Optimization stage switching parameter diagram.

The switching parameter Op in the optimization stage is selected as 1/4, the fitness
threshold parameter UTh is 90, the parameter LTh is 80, the number of iterations is 1000,
the number of target mining pools is 9, and other parameters are shown in Table 1. We
analyze the influence of adding the artificial bee colony update mechanism on optimization.
As shown in Figure 4, the addition of the artificial bee colony update mechanism can help
achieve the optimal fitness value more quickly and accurately, and the function also can
converge faster to obtain the optimal scheme of attack computing power distribution. Due
to certain constraints in the distribution scheme of attack computing power, the attack
computing power allocated to each target mining pool is greater than 0 and less than the
computing power of the evaluation mining pools. In the process of continuous iterative
optimization by CPAOA, the artificial bee colony update mechanism can modify and
update the solution according to the similar ratio difference of the solution in multiple
iterations; it can effectively avoid the AO algorithm getting stuck at the local optimal
solution and search for the global optimal solution.
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5.3. Algorithm Performance Analysis

Let ε denote the proportion of the evaluation mining pool’s attack computing power

to its total computing power, i.e., ε =
n
∑

i=1
τiα/α. The number of target mining pools is 9,

the fitness threshold parameter UTh is 90, the parameter LTh is 80, the computing power
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of target mining pools is 400, and other parameters are shown in Table 1. We analyze
and compare the average revenue of a mining pool unit when ε is set to 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% and 100%, respectively. As shown in Figure 5, CPAOA can
reduce the average revenue of the target mining pool unit’s computing power by 27.54%
on average, increase the average revenue of target mining pool unit’s computing power
by 22.21% and the average revenue of the other mining pools by 18.87%. CPAOA has a
significant effect on illegal behavior containment and is protective for other mining pools.
At the same time, when the proportion of attacking computing power reaches 70%, the
fluctuation of the average computing power of evaluation mining pools and target mining
pools has become stable. As a result, evaluation mining pools get the most revenue by
mining honestly and attacking target mining pools. As the proportion of attack computing
power allocated to evaluation mining pools increases, the computing power allocated to
FAW attacks increases. Accordingly, the honest mining computing power of evaluation
mining pools will decrease. It can be seen from the revenue model that the reduction of
the honest mining computing power of the entire network will increase the successful
mining probability of other mining pools. At the same time, due to the increase in attack
computing power, the mining probability of target mining pools decreases, and the FAW
attack revenue obtained by evaluation mining pools through R1, R2 and R3 increases. In
the process of computing power allocation of the FAW attack, CPAOA finds the optimal
solution by improving the selection mechanism of the four optimization stages to improve
the convergence speed of the solution of the attack revenue optimization model. Moreover,
using the artificial bee colony idea to update the solution can avoid the situation that the
attack computing power allocation scheme falls into the local optimal solution or does not
meet the constraints. In this way, the optimal distribution scheme of attack computing
power can be obtained, and the revenue of attacking the mining pool can be maximized.
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According to the results in Figure 6, the selected number of target mining pools is 9,
the total computing power of the evaluation mining pool is 500, the computing power of
target mining pools is 400, the fitness threshold parameter UTh is 90, the parameter LTh
is 80, and other parameters are shown in Table 1. We analyze the computing power of
each target mining pool and the distribution of the evaluation mining pool’s computing
power. As shown in Figure 6, the distribution of the attack computing power can adap-
tively allocate the FAW attack computing power according to the computing power of the
target mining pool, which maximizes the revenue of the evaluation mining pool. As a
result, CPAOA establishes revenue models for different mining pools and improves the
calculation method of fitness value in the optimization process. At the same time, given the
shortcomings of the traditional AO optimization solution, which makes it easy to fall into
the local optimal solution without adjustment, CPAOA improves the selection mechanism
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of different optimization links, combined with the idea of the scout bee in the artificial bee
colony optimization algorithm. CPAOA updates the solution in time to meet the constraints
to avoid falling into a local optimal solution. Finally, CPAOA obtains the globally optimal
solution and allocates the computing power in a form suitable for the computing power of
each target mining pool to maximize the revenue of evaluation mining pools.
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The number of target mining pools is 9, the fitness threshold parameter UTh is 90,
the parameter LTh is 80, and other parameters are shown in Table 1. We analyze the
average revenue of the target mining pool’s computing power when the total computing
power of the target mining pool and the evaluation mining pool is 200, 300, 400, 500,
and 600, respectively. As shown in Figure 7, with the computing power of evaluation
mining pools increasing, the average computing power of all target mining pools can be
effectively suppressed and has a downward trend. With the increase in the computing
power of target mining pools, the average revenue of target mining pools has increased.
However, the increase has been effectively restrained, narrowing the trend. As a result,
when the computing power of the target mining pool is constant, with the computing
power of the evaluation mining pool increasing, the computing power of mining in the
whole network increases, and the FAW attack computing power of the evaluation mining
pool to the target mining pool also increases. Therefore, the probability of target mining
pools being calculated as mines is reduced, and more revenue needs to be allocated to
the FAW attack computing power, decreasing the average revenue of target mining pools.
When the computing power of the evaluation mining pool is constant, with the computing
power of the target mining pool increasing, although the probability of target mining
in the target mining pool increases, the CPAOA will calculate the computing power by
attacking the mining pool according to the computing power of different target mining
pools. The power revenue optimization model adaptively allocates attack computing
power, launches effective FAW attacks on multiple target mining pools by a single mining
pool, and obtains more target mining pool revenue. Therefore, as the computing power of
target mining pools increases, the increase in target mining pool income tends to narrow,
which is effectively suppressed.
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5.4. Algorithm Comparison Analysis

The number of target mining pools is 9, the computing power of target mining pools is
400, the fitness threshold parameter UTh is 90, the parameter LTh is 80, and other parameters
are shown in Table 1. We analyze and compare the average revenue of evaluation mining
pools and target mining pools for CPAOA, BWH, SM, and FAW_F when the computing power
of evaluation mining pools is set to 200, 300, 400, 500, and 600, respectively. As shown in
Figures 8 and 9, no matter how the computing power of the evaluation mining pool changes,
the average computing power of the evaluation mining pools of CPAOA is higher than the
average computing power of the evaluation mining pools of BWH, SM and FAW_F, which
is increased by at least 17.82%. The average hash rate returns of the target mining pools are
lower than those of BWH, SM and FAW_F, and they are reduced by at least 20.04%. As a result,
CPAOA establishes an optimization model for the revenue of the evaluation mining pool’s
computing power, based on four-stage optimization and local optimal solution updating.
This iterates continuously based on the fitness value in the established revenue model. It
obtains the optimal solution and thus obtains the optimal solution for different target mines.
To maximize the average computing power of evaluation mining pools and minimize the
average computing power of target mining pools, CPAOA has the highest average computing
power of evaluation mining pools and the lowest average computing power of target mining
pools. However, FAW_F always maintains a fixed distribution of attack computing power
and cannot cope with the increase in the total computing power of the entire network and
the uneven allocation of computing power in target mining pools; thus, the average revenue
of its evaluation mining pools is lower than CPAOA. At the same time, with the computing
power of the attacked mining pools increasing, FAW_F will gradually approach the optimal
computing power distribution. The average computing power of target mining pools has
a great downward trend, but it is always higher than CPAOA. Computing power of BWH
attack only gains revenue by reporting part of the proof of work in the target mining pool.
Computing power of SM attack chooses to broadcast the calculated mine immediately when
other miners calculate the mine. Both BWH and SM are only part of the FAW attack. Therefore,
the average computing power of evaluation mining pools under BWH and SM is lower than
that of FAW attack, and the average computing power of target mining pools is higher than
that of CPAOA.

We also analyze the experimental data and calculate the total average revenue of
CPAOA, BWH, SM and FAW_F, that is the average revenue of mining pool under different
computing power (i.e., 200, 300, 400, 500 and 600). Table 2 shows the comparative results of
total average revenue with different algorithms. In Table 2, with respect to the evaluation
mining pools, CPAOA is 30.54% higher than BWH on average, 186% higher than SM, and
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17.82% higher than FAW_F. With respect to the target mining pools, CPAOA is 38.83%
lower than BWH, 20.04% lower than SM, and 32.07% lower than FAW_F. The above shows
that CPAOA can more effectively allocate the computing power of the evaluation mining
pools. CPAOA can also evaluate the target mining pools more efficiently and improve
the security of the target mining pool with weak protection capability evaluated. The
data-driven evaluation framework can ensure the revenue and security of the mining pools
and participants in the blockchain network.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19 
 

 

is lower than that of FAW attack, and the average computing power of target mining pools 

is higher than that of CPAOA. 

 

Figure 8. Comparison of the average revenue of algorithms with computing power of an evaluation 

mining pool. 

 

Figure 9. Comparison of the average revenue of algorithms with computing power of a target min-

ing pool. 

We also analyze the experimental data and calculate the total average revenue of 

CPAOA, BWH, SM and FAW_F, that is the average revenue of mining pool under differ-

ent computing power (i.e., 200, 300, 400, 500 and 600). Table 2 shows the comparative 

results of total average revenue with different algorithms. In Table 2, with respect to the 

evaluation mining pools, CPAOA is 30.54% higher than BWH on average, 186% higher 

than SM, and 17.82% higher than FAW_F. With respect to the target mining pools, 

CPAOA is 38.83% lower than BWH, 20.04% lower than SM, and 32.07% lower than 

FAW_F. The above shows that CPAOA can more effectively allocate the computing power 

of the evaluation mining pools. CPAOA can also evaluate the target mining pools more 

efficiently and improve the security of the target mining pool with weak protection capa-

bility evaluated. The data-driven evaluation framework can ensure the revenue and secu-

rity of the mining pools and participants in the blockchain network. 

  

Figure 8. Comparison of the average revenue of algorithms with computing power of an evaluation
mining pool.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19 
 

 

is lower than that of FAW attack, and the average computing power of target mining pools 

is higher than that of CPAOA. 

 

Figure 8. Comparison of the average revenue of algorithms with computing power of an evaluation 

mining pool. 

 

Figure 9. Comparison of the average revenue of algorithms with computing power of a target min-

ing pool. 

We also analyze the experimental data and calculate the total average revenue of 

CPAOA, BWH, SM and FAW_F, that is the average revenue of mining pool under differ-

ent computing power (i.e., 200, 300, 400, 500 and 600). Table 2 shows the comparative 

results of total average revenue with different algorithms. In Table 2, with respect to the 

evaluation mining pools, CPAOA is 30.54% higher than BWH on average, 186% higher 

than SM, and 17.82% higher than FAW_F. With respect to the target mining pools, 

CPAOA is 38.83% lower than BWH, 20.04% lower than SM, and 32.07% lower than 

FAW_F. The above shows that CPAOA can more effectively allocate the computing power 

of the evaluation mining pools. CPAOA can also evaluate the target mining pools more 

efficiently and improve the security of the target mining pool with weak protection capa-

bility evaluated. The data-driven evaluation framework can ensure the revenue and secu-

rity of the mining pools and participants in the blockchain network. 

  

Figure 9. Comparison of the average revenue of algorithms with computing power of a target mining pool.



Sensors 2022, 22, 9125 17 of 19

Table 2. Experimental summary table.

Algorithm Mining Pool Total Average
Revenue Comparison

CPAOA Evaluation mining
pool 0.1173 1

Target mining pool 0.0650 1

BWH Evaluation mining
pool 0.0902 30.54%

Target mining pool 0.1062 −38.83%

SM Evaluation mining
pool 0.0423 186.04%

Target mining pool 0.0813 −20.04%

FAW_F Evaluation mining
pool 0.0995 17.82%

Target mining pool 0.0970 −32.07%

6. Conclusions

In this paper, which considers the effective evaluation of the target mining pool’s pro-
tection capability against FAW attacks, we propose a novel evaluation framework for FAW
attack protection of the target mining pools. In this framework, aiming at the evaluation of
multiple target mining pools, we propose a computing power allocation optimization algo-
rithm (CPAOA) for FAW attack mining pools. Firstly, the framework proposes the honest
consensus revenue, block withholding revenue, successful fork revenue, and consensus
cost with mathematical equations, and establishes the revenue model of different mining
pools to evaluate the attack revenue. Then, CPAOA transforms the adaptive allocation
of the computing power of evaluation mining pools into the optimization problem of the
revenue optimization model. Moreover, CPAOA proposes an improved solution algorithm.
The algorithm is based on the Aquila optimization method to calculate the optimal solution
of the revenue model by improving the selection mechanism of different optimization
processes. Then CPAOA proposes the solution update mechanism of the local optimal solu-
tion, which can improve the efficiency of optimization and reduce the probability that the
algorithm will fall into the local optimal solution. Based on the experimental analysis, we
analyze the influence of the CPAOA algorithm’s parameters on its performance. Compared
with traditional attack methods, CPAOA can significantly improve the average revenue of
evaluation mining pools and reduce the average revenue of the target mining pools. The
proposed framework can efficiently evaluate the protection capability of the target pool
against FAW attacks.

In future works, we will extend the evaluation framework to more consistency attacks
and consider the case of multiple-to-multiple mining pools. The framework will provide
appropriate measures for mining pools, thus further improving the security of blockchain
mining pools.
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