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Abstract: Controlling the manipulator is a big challenge due to its hysteresis, deadzone, satura-
tion, and the disturbances of actuators. This study proposes a hybrid state/disturbance observer-
based multiple-constraint control mechanism to address this difficulty. It first proposes a hybrid
state/disturbance observer to simultaneously estimate the unmeasurable states and external distur-
bances. Based on this, a barrier Lyapunov function is proposed and implemented to handle output
saturation constraints, and a back-stepping control method is developed to provide sufficient control
performance under multiple constraints. Furthermore, the stability of the proposed controller is
analyzed and proved. Finally, simulations and experiments are carried out on a 2-DOF and 6-DOF
robot, respectively. The results show that the proposed control method can effectively achieve the
desired control performance. Compared with several commonly used control methods and intelligent
control methods, the proposed method shows superiority. Experiments on a 6-DOF robot verify that
the proposed method has good tracking performance for all joints and does not violate constraints.

Keywords: manipulator; input and output constraints; trajectory tracking control; hybrid observer

1. Introduction

Robots have been widely used on many occasions and have worked in single-task
environments and in complex tasks [1]. For example, the manipulator needs to not only
grasp, carry, and stack, but also to cooperate with other machines to finish complex op-
erations. This manipulator usually has strongly nonlinear features, such as hysteresis,
input deadzone, output saturation, and a nonlinear load, as well as many unmeasurable
physical states and disturbances, including friction, clearance, noise, etc. Ignoring these
constraints may lead to an undesirable performance, such as a high steady-state error, poor
transient response, and large overshoot [2]. In addition, a violation of constraints during
operation may result in performance degradation, hazards, or system damage. Therefore,
it is necessary to consider the input and output constraints of the robot system at the
same time.

Many control methods have been designed for the input deadzone control, and most
of this research is based on the deadzone function with assumed parameters. In general, the
parameter of a deadzone function is difficult to obtain, which leads to common controllers
is difficult to implement. There has been several studies conducted which aim to solve the
problem of nonlinear systems with input deadzone [3]. For example, Wang et al. proposed
a control method for a special nonlinear system with symmetrical deadzone [4] in which
the parameters of deadzone function are unknown and the neural network is used to solve
the deadzone effect. In paper [5], an adaptive neural network controller was proposed for
single-master–multiple-slaves teleoperation with consideration to time delays and input
deadzone uncertainties. Wu et al. [6] proposed a study on the observer-based controller for
nonlinear systems with unmodeled dynamics and actuator deadzone. Tong et al. [7] em-
ployed neural networks to approximate the unknown nonlinear uncertainties. Hu et al. [8]
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presented an integrated direct/indirect adaptive robust control mehtod for a class of nonlin-
ear systems, preceded by unknown nonsymmetric, nonequal slope deadzone nonlinearity.
Sang et al. [9] presented a new adaptive iterative learning control approach with deadzone
to address the problem of bounded noise. Wang et al. [10] proposed a nonlinear controller
to overcome deadzone nonlinearities, which are unavoidable in many physical systems
due to the imperfections of system components. The proposed control employs an ideal
linear model of the system and a model controller to generate an ideal reference output.
Although these methods have obtained many successful applications, they are basically
designed for one or two kinds of nonlinearity and they do not consider controller design
problems in the case of multiple nonlinear constraints. In addition, these methods require
all physical states to be measurable and consider less external uncertainty, leading to poor
control performance on many occasions.

To handle output saturation constraints, many techniques have been developed [11,12].
Yan et al. [13] introduced a nonlinear smooth function to tackle the saturation input non-
linearity, with a disturbance observer compensating for the unknown time-varying dis-
turbances. In [14], an adaptive fuzzy output-feedback control was developed for a class
of output-constrained and uncertain nonlinear systems with input saturation and unmea-
sured states using a log-type BLF and an auxiliary system incorporating the virtual control
variable. Bu et al. [15] proposed a novel DDC algorithm, constructed using saturated
output data, and output saturation causes the convergence rate of DDC systems to slow
down. Xing et al. [16] proposed an observer-based adaptive control for uncertain nonlinear
systems with input saturation and output constraints. Han et al. [17] proposed a dynamic
parallel distributed compensator to design a dynamic output-feedback controller to ensure
the finite time boundary and dissipate the singular uncertain time-varying-delay fuzzy
systems, subject to actuator saturation and output constraints.

In recent years, the potential barrier Lyapunov function has attracted more and more
attention and has become an effective tool for the control design of constrained nonlinear
uncertain systems. The control law is derived directly from Lyapunov stability analysis. It
has been successfully applied in the tracking control of a robotic manipulator [18] and in
handling the full-state constraint control of a nonlinear system [19]. Thus, there are many
types of BLF that have been proposed to cope with constraints, such as the log-type BLF [19],
integral-type BLF [20], and tan-type barrier Lyapunov function (BLF) [19]. However, at
the beginning of control, BLF-based controllers usually require specified time-varying
constraints to achieve effective and stable control [18]. In addition, when the constraint
variable is infinitely close to the predefined boundary, in order to meet the constraint
conditions, the output of the BLF-based controller tends to be infinite, which leads to the
paradox of output saturation. Therefore, in order to deal with constraints, BLF-based
controllers should meet feasibility conditions [21], that is, the constraint variables should
always be kept within the predefined boundaries. Parameters should also be designed
appropriately because if the constraint is too small, it may be impractical. A lot of research
has been conducted in [21,22] to eliminate strict feasibility conditions. In these works, the
time derivative of the universal barrier function is regarded as an auxiliary system, and
then incorporated into the control system [23].

On the basis of previous research, an adaptive output-feedback control method for
manipulator systems with multiple constraints has been developed. A hybrid-state observer
has been designed to estimate unmeasured states and disturbances in order to overcome
the output constraint and input deadzone. An adaptive controller has been developed by
combining back-stepping and BLF technology. It was proved that the proposed control
method can ensure that all signals in the closed-loop system are bounded, simultaneously
avoiding input and output constraints. The main contributions of the proposed control
scheme are as follows: (i) the input deadzone and output constraints are solved using a
BLF and auxiliary observer, respectively; (ii) the unmeasured state and disturbance are
estimated by designing a hybrid state observer; and (iii) the designed system has a closed
loop and stability.
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2. Problem Description

The dynamic of a robot can be described as follows,

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ + τd (1)

where q ∈ Rn is the vector of joint displacements, τ ∈ Rn is the vector of joint torques
supplied by the actuators, M(q) ∈ Rn is the inertia matrix, C(q,

.
q) ∈ Rn is the Coriolis and

centrifugal matrix, and G(q) ∈ Rn is the gravitational force. τd is the uncertainty, including
unmodeled dynamics and external disturbances. The inertia matrix M(q) is symmetric and
positive definite, and the matrix

.
M− 2C(q,

.
q) is skew-symmetric.

Considering parameter uncertainty, we define the accurate dynamic parameters are

M(q) = M(q) + ∆M(q)
C(q,

.
q) = C(q,

.
q) + ∆C(q,

.
q)

G(q) = G(q) + ∆G(q)
(2)

where M(q), C(q,
.
q) and G(q) are the nominal parameter of the manipulator, and ∆M(q),

∆C(q,
.
q), and ∆G(q) are the parameter uncertainty. The total unknown disturbance is

defined as
d = τd − ∆M(q)

..
q− ∆C(q,

.
q)

.
q− ∆G(q) (3)

Usually, the disturbance d is bounded and continuous and satisfies
∣∣∣ .
di

∣∣∣ ≤ diM, i =
1, 2, 3, where diM is the positive constant.

Then, the model of the manipulator can be rewritten as:

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ+d (4)

Letting x1 = q, x2 =
.
q, x3 =

.
x2 =

..
q, the model (4) may be rewritten as:

y = x1
x2 =

.
x1

x3 = M−1(q)
[
u(τ)− G(q)− C(q,

.
q)

.
q
]
+ M−1(q)d

(5)

Letting the desirable trajectory be xd(t), the actual output trajectory x(t) is

xd(t) = [xd1(t), xd2(t), · · ·, xdn(t)]
T

x(t) = [x1(t), x2(t), · · · , xn(t)]
T (6)

All the signals are bounded and we have −kc1 ≤ x(t) ≤ kc1,
where kc1= [kc11, kc11, · · ·, kc11]

T is a positive constant vector. In this model, the position of
the manipulator can be measured, but the joint speed and acceleration cannot be measured
directly. To achieve accurate control of this manipulator, it is necessary to estimate these
unknown states.

For the manipulator, the actual inputs and outputs have various types of nonlinear
constraints, such as output saturation, input deadzone, and hysteresis. S = [S1 · · · Sn] is
the torque vector of the motor, and its output saturation may be represented as [24]:

S(τ) =


u(τimax) if τi > τimax
grk(τk) if 0 ≤ τk ≤ τimax
glk(τi) if −τkmin ≤ τi ≤ 0
u(−τimin) if τi ≤ −τimin

(7)

where u(τi)max and u(τi)min are the maximum and minimum of the input signals, respec-
tively, and glk and grk are the nonlinear smooth continuous functions.
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The input deadzone of the joint actuator may be represented as [25]:

U(τi) =


Dr(τi − br), τi ≥ br
0, bl < τi < br
Dl(bl − τi), τi ≤ bl

, i = 1, 2, · · · , n (8)

where τi is the input, bl and br are the boundaries, and Dr(τ) and Dl are the deadzone
function.

The hysteresis nonlinearity may be represented as [26]:

dφi(τi)

dt
= hai

∣∣∣∣ dτi
dt

∣∣∣∣ [haiτi − φi(τi)] + hbi
dτi
dt

(9)

φ(τ) = Haτi + Hbd(τi), i = 1, 2, · · · , n
here

Ha = diag{ha1, · · · , han} > 0,
Hb = diag{ hb1, · · · , hbn} > 0,
d(τ) = [d1(τ1), d2(τ3), · · · , dn(τn)]

T ≤ d∗
(10)

Obviously, this manipulator exists with unknown dynamics and an external distur-
bance. Moreover, some states cannot be measured directly, and many nonlinear con-
straints exist. Collecting all of this together, it is difficult to achieve accurate control of
this manipulator.

3. Design of Controller

In order to achieve accurate control of the manipulator with multiple constraints,
disturbances, and some unmeasurable states, a hybrid state/disturbance observer-based
multiple-constraint control method is developed here. A hybrid state/disturbance observer
is proposed to simultaneously estimate unmeasurable states and external disturbances. On
this basis, a multiple-constraint control strategy is developed to achieve satisfactory control
performance under multiple constraints. Moreover, the stability of the developed controller
is analyzed and proved.

3.1. Hybrid State/Disturbance Observer

For the manipulator system (5), only the output state x1 can be measured, while
the other state x2, x3 cannot be measured directly. To obtain the states and unknown
disturbance of the manipulator system, a hybrid state/disturbance observer system is
designed as follows:

.
x̂1 = l1|x̂1 − y|

2
3 sgn(x̂1 − y) + x̂2 − d̂1

.
x̂2 = l2

∣∣x̂2 −
.
x1
∣∣ 1

2 sgn(x̂2 −
.
x1) + x̂3 − d̂2.

x̂3 = l3sgn(x̂3 −
.
x2)− d̂3

(11)

where x̂i is the estimation of xi and d̂i is the estimation of disturbance di.

(a) Solving the hybrid observer

In order to find the solution of this hybrid observer, a two-step solving algorithm is
developed: (1) robustly estimate the states under the given disturbance, roughly estimated
according to expert experience or experiment; and (2) estimate the disturbance under the
given states.

Usually, the initial disturbance can be roughly estimated according to expert experience
or experiment, set as d̂1.

Moreover, the disturbance is often bounded and has d̃1 =
∣∣∣d1 − d̂1

∣∣∣ ≤ ξ, in which ξ is
the estimation error of the disturbance di.
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When the parameters li and the symmetric and positive definite matrices P and Q are
properly chosen, the following inequality can be satisfied:

AT P + PA ≤ −Q, A =

−l1
... Ii−1
−li · · · 0

, i = 1, 2, 3 (12)

According to (3),
∣∣∣ .
di

∣∣∣ ≤ diM and the following inequality will be held in finite time,

|x̂i+1 − xi+1|

=

∣∣∣∣li∣∣x̂i −
.
xi−1

∣∣ 3−i
3−i+1 sgn(x̂i −

.
xi−1) + x̂i+1 − d̂i − xi+1

∣∣∣∣
≤
∣∣∣∣li∣∣x̂i −

.
xi−1

∣∣ 3−i
3−i+1 sgn(x̂i −

.
xi−1)− d̂i + ε

∣∣∣∣
≤
∣∣∣∣li∣∣x̂i −

.
xi−1

∣∣ 3−i
3−i+1 ε + ε

∣∣∣∣+ ∣∣∣d̂i

∣∣∣
≤
∣∣∣∣li∣∣x̂i −

.
xi−1

∣∣ 3−i
3−i+1 ε + ε

∣∣∣∣+ diM, i = 2, 3

(13)

According to the inequality (13), in the presence of a bounded noise, the state error of
the system is bounded.

In order to accurately estimate the disturbance, the following linear disturbance
model [27] is used, { .

W = SW + Ed(r)

d = LW
(14)

where d(r) denotes the rth derivatives of d and S ∈ R2r×2r. The matrices S, E, and L have
the following forms.

S =

[
O(2r−2)×2 I2r−2

O2×2 O2×(2r−2)

]
E =

[
O(2r−2)×2

I2

]
L =

[
I2 O2×(2r−2)

]
(15)

Combining (5) and (14), an extended system is obtained as,{ .
x2 = f + LW
.

W = SW + Ed(r)
(16)

where f = M0
−1(q)

[
τ − G0(q)− C0(q,

.
q)

.
q
]
. An auxiliary variable is introduced as follows:

O =

[
O1
O2

]
=

[
x2

p(x2) + W

]
(17)

where p(s) = sr + q1sr−1 + · · ·+ qr−1s + qr = 0 is a polynomial vector, which is designed
as shown in [25].

By differentiating Equation (17), and with consideration of Equations (10), (15) and
(17), one has

.
O =

[ .
O1.
O2

]
=

[
f + L(O2 + P(O1))

(S− ∂P(O1)
∂O1

L)O2 + (SP(O1)− ∂P(O1)
∂O1

( f + LP(O1)) + Ed(r)

]
(18)

From (18) and (14), the disturbance observer is designed as
.

Ô2 = (S− (∂P(O1)/∂O1)L)O2 + (SP(O1)− (∂P(O1)/∂O1)( f + LP(O1))
Ŵ =Ô2+P(O 1)

d̂ = LŴ
(19)
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where f = M−1(q)
[
τ − G(q)− C(q,

.
q)

.
q
]
.

According to (19), it is easy to obtain the disturbance. Obviously, when the initial
estimation of the disturbance is accurate, using (12) and (13), it is easy to obtain the
states, upon which it can effectively estimate the disturbance using (19). When the initial
estimation of the disturbance is inaccurate, it uses an iterative process to obtain the states
and disturbance:

Step (1): first, robustly estimate the states under the initial disturbance, which is
roughly estimated according to expert experience or experiment;

Step (2): then, estimate the disturbance under the given states;
Step (3): use the estimated disturbance to replace the initial disturbance and repeat

step (1), (2), and (3) until the satisfactory states and the disturbance is obtained.

(b) Performance analysis of the hybrid observer

The estimation errors are defined as

x̃1 = x̂1 − y, x̃2 = x̂2 −
.
x1, x̃3 = x̂3 −

.
x2, d̃ = d̂− d (20)

According to Equation (20), the disturbance error d̃ may be represented as

d̃ = d̂− d = L
(
W − Ŵ

)
(21)

From (21), one has

.

d̃ = d̂− d = L(
.

W −
.

Ŵ) = SW + Ed(r) − (S− ∂P(O1)
∂O1

L)O2

−(SP(O1)− ∂P(O1)
∂O1

( f + LP(O1))−
.
P(O1)

= (S− ∂P(O1)
∂O1

L)e + Ed(r)
(22)

According to (10), (11), (13), and (22), the error system of the hybrid observer is the
following,

.
x̃ = Ax̃ + f + d̃, ỹ = x̃1
f = M−1(q)

[
τ − G(q)− C(q,

.
q)

.
q
] (23)

where x̃ = [x̃1 x̃2 x̃3]
T , d̃ = [d̃1 d̃2 d̃3]

T
= L(W − Ŵ).

From (11) and (23), one has

.
x̃1 = l1|x̃1|

2
3 sign(x̃1) + x̃2 − d̂1.

x̃2 = l2|x̃2|
1
2 sign(x̃2) + x̃3 − d̂2.

x̃3 = l3sign(x̃3)− d̂3

d̃ = Asign(x̃i+1 −
.̃
xi) + M−1(q)

[
τ − G(q)− C(q,

.
q)

.
q
]
− d̂

(24)

Theorem 1. Using the designed hybrid observer (11) and the three-step solving algorithm, the
state estimation error x̃ and the disturbance estimation error d̃ converge to the expected value in
finite time, which ensures that x̃ and d̃ are bounded, guaranteeing xi(i = 1, 2, 3) will not escape to
infinity before the finite time convergence of the hybrid observer error. As such, it can effectively
estimate the states and disturbance.

Proof. See Appendix A. �

3.2. Design of Feedback Controller

In order to achieve the well-tracking performance of the manipulator under multiple
constraints, a multiple-constraint control strategy with consideration of the integrated
barrier Lyapunov function method and the back-stepping algorithm is developed here,
as shown in Figure 1. The tracking error is defined as e = [e1, · · · , en]

T = x1 − xd =
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[x11 − xd1, · · · , x1n − xdn], where x1 = [x11, x12, · · ·, x1n] is the actual trajectory and xd is
the desired trajectory. The back-stepping algorithm defines

z = [z1, · · · , zn]
T = x2 − α (25)

where α denotes the virtual control variable.
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21 22
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2 1 2 2 2 2 1 2 1 2 2

2 1 2 1 2

  
( ) = + ( 2 cos(q ))

  

=m ( cos(q )) =m ( cos(q )) =m

-m q sin(q )  -m (q q )sin(q )
( , )

-m q sin(q )    0

M M
M q M m l m l l l l

M M

M l l l M l l l M l

l l l l
C q q

l l

 
= + + 
 

+ +

 +
=  
  

，

， ，

1 2 2 1 1 2 2 1 2

2 2 1 2

( ) cos( ) gcos(q +q )
( )

gcos(q +q )

m l m l g q m l
G q

m l

+ + 
=  
   

(46) 

Table 1. Parameters of 2-DOF robot. 

Parameters Value Parameters Value 

𝑚1 1.950 kg 𝑙1 303.5 mm 

𝑚2 1.835 kg 𝑙2 208 mm 

Table 2. D-H Parameters of 6-DOF JAKA robot. 

Link i 𝒂𝒊−𝟏 (mm) 𝜶𝒊−𝟏 (°) 𝒅𝒊 (mm) 𝒒𝒊 

1 0 0 143.4 𝑞1 

2 0 90.0 0 𝑞2 

3 360.0 0 0 𝑞3 

4 303.5 0 −115.0 𝑞4 

5 0 90.0 113.5 𝑞5 

6 0 −90.0 107.0 𝑞6 

The initial position is  0 0 ,  0q =  and  0 0 ,  0q = . The unknown dynamics and ex-

ternal disturbance are defined as follows: 
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The derivative of (25) is
.
z =

.
x2 −

.
α (26)

x0 is a small positive constant, which satisfies{
|x1i| ≤ kc1i ≤ kai, i = 1, 2, · · ·, n
|xdi| ≤ kc1i ≤ kai, i = 1, 2, · · ·, n

(27)

where kai = kc1i + x0.
The following two-step strategy is developed to design the controller.
Step 1: For the multi-link manipulator, construct the following Lyapunov function,

V1 =
n

∑
i=1

∫ ei

0

σk2
ai

k2
ai − (σ + xdi)

2 dσ (28)

where σ is a modification value.
Differentiating (28) yields

.
V1 =

n

∑
i=1

k2
ai(ẑi + αi)

k2
ai − x2

1i
−

n

∑
i=1

eiρi
.
xdi (29)

here,

ρi(e1i, xdi) =
∫ 1

0
k2

ai
k2

ai−(βei+xdi)
2 dβ

= kai
2e1i

ln (kai+ei+xdi)(kai−xdi)
(kai−ei−xdi)(kai+xdi)

(30)

ρi(e1i, xdi) is well defined and bounded around the neighborhood of e1i = 0.
Using L’Hopital’s rule, one has

lim
e1i→0

ρi(e1i, xdi) = lim
e1i→0

kai
2e1i

ln (kai+ei+xdi)(kai−xdi)
(kai−ei−xdi)(kai+xdi)

=
k2

ai
k2

ai−x2
di

(31)
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Design virtual control variable αi as follows,

αi = (−k1ie1i +
(k2

ai − x2
1i)

.
xdiρi

k2
ai

), i = 1, 2, · · · , n (32)

where kai is the positive control gain.
Combining (29) with (30), one has

.
V1 = −

n

∑
i=1

k1ik2
aie

2
1i

k2
ai − x2

1i
+

n

∑
i=1

k2
aie1i ẑi

k2
ai − x2

1i
(33)

Step 2: Establish the second Lyapunov function as follows

V2 = V1 +
1
2

zT M(x1)z (34)

Differentiating V2 yields,

.
V2 =

.
V1 + zT M(x1)

.
z + zT 1

2

.
M(x1)

.
z (35)

Substituting (5) and (25) into (35), we have

.
V2 =

.
V1 + zT

[
M(x1)(

.
x2 −

.
α) + 1

2

.
M(x1)

.
ẑ
]

=
.

V1 + zT [τ − d− C(x1, x2)α + G(x1)−M(x1)
.
α)

+ 1
2 (

.
M(x1)− 2C(x1, x2))e2]

(36)

Substituting (32) and (34) into (35) and (36) is simplified as

.
V2 = −

n
∑

i=1

k1ik2
aie

2
i

k2
ai−x2

1i
+

n
∑

i=1

k2
aieizi

k2
ai−x2

1i

+zT
[
τ − G(x1) + C(x1, x2)α + M(x1)

.
α− d̂

] (37)

In order to make
.

V2 < 0, considering the hysteresis (9) and input saturation (7), the
torque control law is designed as follows,

τ = −
n

∑
i=1

k2
aieizi

k2
ai − x2

1i
− Kz + G(x1) + C(x1, x2)α + M(x1)

.
α + d̂ (38)

where K = diag(k1, k2) is a positive gain matrix, and it must satisfy

min{2λmin(K)/λmax(M(x1))} > 0 (39)

where λmin(•) and λmax(•) denotes the maximum and minimum eigenvalue of (•).
Then, considering the input deadzone, and by combining the input constraint (8) and

the control law (39), the final control law is designed as follows,

u(τ) = −Kz−
n
∑

i=1

k2
aieizi

k2
ai−x2

1i

+Ha
[
G0(x1) + C0(x1, x2)α1 + M0(x1)

.
α1
]
+ Hbd̂

(40)

Therefore, the control law can deal with all constraints, including hysteresis, output
saturation, and input deadzone.



Sensors 2022, 22, 9112 9 of 17

Theorem 2. Considering the manipulator system (5) with an unknown disturbance, input deadzone,
and output saturation, and given feedback control laws (38) and (40), the closed-loop system is
semi-globally stable.

Proof. Substituting (38) into (37) yields

.
V2 = −

n

∑
i=1

k1ik2
aie

2
i

k2
ai − x2

1i
− zTKẑ (41)

Define ẑ = z̃ + z and substitute it into (41)

.
V2 = −

n

∑
i=1

k1ik2
aie

2
i

k2
ai − x2

1i
− zTKz− zTKz̃ (42)

While
−zTKz̃ ≤ 1

2 zT z̃ + 1
2 (Kz̃)T(Kz̃)

−zT z̃ ≤ 1
2 zT z̃ + 1

2 z̃T z̃
(43)

From (42) and (43), one has

.
V2 = −

n
∑

i=1

k1ik2
aie

2
i

k2
ai−x2

1i
− zTKz− zT z̃− zTKz̃

≤ −
n
∑

i=1

k1ik2
aie

2
i

k2
ai−x2

1i
+ 1

2 zT z̃ + 1
2 (Kz̃)T(Kz̃)− 1

2 zT z̃ + 1
2 z̃T z̃

= −
n
∑

i=1

k1ik2
aie

2
i

k2
ai−x2

1i
− zTKz ≤ −V2ρ

(44)

Because

ρ= min{mina≤i≤n(ki)} = min{2λmin(k2)/λmax(M)} > 0. (45)

one has
.

V2 < 0 according to (44) and (45). This indicates that the system tends to be stable
in a small spectrum. �

4. Case Studies and Experiment

In this section, we simulated the proposed algorithm and validated the proposed
control algorithm on a robot platform consisting of a six-degree-of-freedom (DOF) robot
(JAKA ZU-7s), DC power, and an embedded DSP control system, as depicted in Figure 1.
We carried out the simulation and experiment on a 2-DOF and 6-DOF robot platform,
respectively. The dynamic model of the 2-DOF robot and its parameters are shown in
Equation (46) and Table 1. The parameters of the 6-DOF robot are shown in Table 2. The
accurate dynamic model of the 6-DOF robot was obtained by parameter identification.

Table 1. Parameters of 2-DOF robot.

Parameters Value Parameters Value

m1 1.950 kg l1 303.5 mm
m2 1.835 kg l2 208 mm



Sensors 2022, 22, 9112 10 of 17

Table 2. D-H Parameters of 6-DOF JAKA robot.

Link i ai−1 (mm) αi−1 (◦) di (mm) qi

1 0 0 143.4 q1
2 0 90.0 0 q2
3 360.0 0 0 q3
4 303.5 0 −115.0 q4
5 0 90.0 113.5 q5
6 0 −90.0 107.0 q6

For the 2-DOF manipulator, the inertia matrix M(q), the Coriolis and centrifugal
matrix C(q,

.
q), and the gravity matrix G(q) are as follows

M(q) =
[

M11M12
M21M22

]
, M11 = m1l2

1 + m1(l2
1 + l2

2 + 2l1l2cos(q 2))

M12= m2(l2
2 + l1l2cos(q 2

)
), M21= m2(l2

2 + l1l2cos(q 2
)
) , M22= m2l2

2

C(q,
.
q) =

[
−m2l1l2

.
q2sin(q 2) −m2l1l2

( .
q 1 +

.
q2) sin(q 2

)
−m2l1l2

.
q1sin(q 2) 0

]
G(q) =

[
(m1l2 + m2l1)g cos(q1) + m2l2gcos(q 1+q2)

m2l2gcos(q 1+q2)

] (46)

The initial position is q0 = [0 , 0] and
.
q0 = [0 , 0]. The unknown dynamics and

external disturbance are defined as follows:

(1) Unknown unmodeled dynamics

∆M(q) = 0.2M(q)
∆C(q,

.
q) = 0.2C(q,

.
q)

∆G(q)= 0.2G(q)
(47)

(2) Unknown external disturbance term

τd =

[
10(1− exp(−0.28 · t))(sin(0.5 · pi · t))
10(1− exp(−0.28 · t))(cos(0.5 · pi · t))

]
(48)

Thus, the total disturbance is shown below,

d = τd − ∆M(q)
..
q− ∆C(q,

.
q)

.
q− ∆G(q) (49)

The input dead time and the output saturation are described as follows: br = 2.5,
bl = −4.5, respectively, with

U(τi) =

{
Dr(τ) = 2(τ − br)(sin(τ) + 1)

Dl(τ) = (τ − bl)
3 (50)

4.1. Control Performance

The desired trajectory and its velocity and acceleration are given as follows[
q3
q4

]
=

[
sin(0.5t) + 2 · cos(t)

2 · cos(0.5t)

]
[

dq3
dq4

]
=

[
0.5 cos(0.5t)− 2 sin(t)

− sin(0.5t)

]
[

ddq3
ddq4

]
=

[
−0.25 sin(0.5t)− 2 · cos(t)

− sin(0.5t)

] (51)

Then, the proposed control method is used to control this manipulator with input non-
linearity, output saturation, and external disturbance states to track the reference trajectory.
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The hybrid state/disturbance observer is the following,

.
x̂1 = −l1|x̂1 − y|

2
3 sgn(x̂1 − y) + x̂2 · v1 + d1

.
x̂2 = −l3|x̂1 − y|

1
2 sgn(x̂2 −

.
x1) + d2.

x̂3 = −l3sgn(x̂3 −
.
x2) + d3

(52)

where l1 = 10, l2 = 15, and l3 = 15. The initial disturbance is set as d1 = 0, and the
parameters of the disturbance observer are decided as follows

S =

[
O2 I2
O2 O2

]
E =

[
O2
I2

]
L =

[
I2 O2

]
l =


40
0

400
0

0
40
0

400

 p =

[
40x2

400x2

] (53)

The control gains are decided as ka1 = ka2 = 100 and K = diag[k1, k2] = diag[5, 5].
Using the designed observer, the estimated state x2, x3 and its observation error are

shown in Figure 2a–d, respectively. Figure 3 show the disturbance estimation and its
estimation error, respectively. From these figures, the unmeasurable state value of each
joint and the disturbance can be accurately estimated.
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Using this designed controller, the control torque is shown in Figure 4, the desired
trajectory and the practical trajectory are shown in Figure 5, and their difference is shown
in Figure 6. From these figures, it can be seen that the control torque is smooth without
a sudden change, it does not violate output constraints, and the proposed method can
effectively achieve the tracking of this manipulator, even if there are input nonlinearity,
output saturation, external disturbances, and unmeasurable states.
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Further, a comparison between the proposed method and three commonly used control
methods, i.e., the neural network adaptive control [25], robust adaptive control [26], and
fuzzy adaptive control [27], is carried out. The trajectory track and tracking error under
the different control methods are shown in Figure 7, Figure 8, and Table 3, respectively.
From these figures, it can be seen that the proposed control method has a smaller relative
tracking error and deviation angle than the other ones. This is because the proposed method
considers input nonlinearity, output saturation, and external disturbances together, while
the other methods do not. Although these common methods have excellent performance
without constraints, they cannot deal with these constraints when there are input deadzones
and output saturation constraints. Compared with the methods proposed in this paper, the
trajectory-tracking control accuracy is relatively lower.

Table 3. Performance comparison.

Methods
Mean Absolute Error (Degree)

Joint 3 (q3) Joint 4 (q4)

Proposed Control 0.0114 0.0087

NN Adaptive Control 0.2144 2.1308

Robust Adaptive Control 1.5823 0.3331

Fuzzy Adaptive Control 0.1680 0.0281
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4.2. Experiment

To further validate the proposed method, an experiment based on the JAKA robot
platform experiment was conducted. The layout of the robot manipulator is shown in
Figure 1. The type of manipulator is a collaborative ultralight robot, JAKA zu7s. The
position model controls the joints in Cartesian space, while the velocity model and torque
model control the joints in angular space. The signals are sent to the DSP controller through
a USB port by MATLAB R2018b and by compiling the program. The execution frequency
and sampling frequency of the controller are 100 Hz and 20 Hz, respectively. The following
is the reference input trajectory

q1
q2
q3
q4
q5
q6

 =



4 sin(π
2 t) + 3 cos(πt)

3 cos(π
2 t) + 0.2 sin(t)

4 sin(π
2 t) + 2 cos(πt)
3 cos(π

2 t)
sin(π

5 t) + 2 cos( 2
5 πt)

2 cos(π
5 t)

 (54)

The parameters of the deadzone are defined as br = 5, bl = −5, hr = 15, and hl = −10.
The experimental results are shown in Figure 9, which shows that all joints have good
tracking performance, and the proposed constraints are guaranteed by the experimental
setup. For all joints, the average tracking error is within 0.01 degree, and the trajectories
converge within the constraint range. Thus, the proposed method can realize highly
precious tracking control.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18 
 

 

4sin( ) 3cos( )
2

3cos( ) 0.2sin( )1
2

2
4sin( ) 2cos( )

3 2

4
3cos( )

25
26 sin( ) 2cos( )

5 5

2cos( )
5

t t

t tq

q
t t

q

q
t

q

q t t

t
















 
+ 

 
 +   

   
   +   

=   
   
   
   
   + 

 
 
    

(54) 

The parameters of the deadzone are defined as br = 5, bl = −5, hr = 15, and hl = −10. The 

experimental results are shown in Figure 9, which shows that all joints have good tracking 

performance, and the proposed constraints are guaranteed by the experimental setup. For 

all joints, the average tracking error is within 0.01 degree, and the trajectories converge 

within the constraint range. Thus, the proposed method can realize highly precious track-

ing control. 

0 5 10 15 20
t/s

-5

0

5

P
o
si

ti
o
n
(D

eg
re

e)

0 5 10 15 20

t/s

-2

0

2

P
o
si

ti
o
n
(D

eg
re

e)

5 10 15

t/s

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

E
rr

o
r/

(D
eg

re
e)

Tracking error

Tracking error of q1

Tracking error of q2

Desired trajectory of q1 Actual trajectory of q1

Desired trajectory of q2 Actual trajectory of q2

 
(a) 

0 5 10 15 20

t/s

-5

0

5

P
o
si

ti
o
n
(D

eg
re

e)

0 5 10 15 20

t/s

-5

0

5

P
o
si

ti
o
n
(D

eg
re

e)

2 4 6 8 10 12 14 16 18

t/s

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

E
rr

o
r/

(D
eg

re
e)

Tracking error

Tracking error of q3

Tracking error of q4

Desired trajectory of q3 Actual trajectory of q3

Desired trajectory of q4 Actual trajectory of q4

 
(b) 

Figure 9. Cont.
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The parameters of the deadzone are defined as br = 5, bl = −5, hr = 15, and hl = −10. The 

experimental results are shown in Figure 9, which shows that all joints have good tracking 

performance, and the proposed constraints are guaranteed by the experimental setup. For 

all joints, the average tracking error is within 0.01 degree, and the trajectories converge 

within the constraint range. Thus, the proposed method can realize highly precious track-

ing control. 
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Figure 9. Tracking performance and errors for each joint of the 6DOF robot. (a) Tracking perfor-

mance and tracking error of q1 and q2; (b) Tracking performance and tracking error of q3 and q4; 

(c) Tracking performance and tracking error of q5 and q6. 

5. Conclusions 

A hybrid state/disturbance observer-based multiple-constraint control method for a 

manipulator is developed and evaluated in this study. The proposed hybrid state/disturb-

ance observer can accurately estimate unmeasurable states and external disturbances. 

Combining back-stepping and BLF approaches, we propose an adaptive controller that 

can achieve tracking performance in the presence of several constraints and unknown dis-

turbances. Simulations on a 2-DOF robot proved that the proposed strategy is effective. 

In comparison to several commonly employed intelligent control approaches, its control 

performance is superior. Experiments on a 6-DOF robot showed that all joints have good 

tracking performance and do not violate constraints. Future research will focus on the 

tracking control of underactuated systems with deferred constraints. 
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Figure 9. Tracking performance and errors for each joint of the 6DOF robot. (a) Tracking performance
and tracking error of q1 and q2; (b) Tracking performance and tracking error of q3 and q4; (c) Tracking
performance and tracking error of q5 and q6.

5. Conclusions

A hybrid state/disturbance observer-based multiple-constraint control method for a
manipulator is developed and evaluated in this study. The proposed hybrid state/disturbance
observer can accurately estimate unmeasurable states and external disturbances. Combin-
ing back-stepping and BLF approaches, we propose an adaptive controller that can achieve
tracking performance in the presence of several constraints and unknown disturbances.
Simulations on a 2-DOF robot proved that the proposed strategy is effective. In comparison
to several commonly employed intelligent control approaches, its control performance
is superior. Experiments on a 6-DOF robot showed that all joints have good tracking
performance and do not violate constraints. Future research will focus on the tracking
control of underactuated systems with deferred constraints.
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Appendix A

A Lyapunov function is designed as

Vo(x1, x̂, D̂) = 1/2x1
2 +

m

∑
i=2

(1/2)x̂2
i + 1/2d̂2 + x̃T Px̃ (A1)

where m is the order of states.
With the derivatives of (A1), and according to (13) and (25), one has
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Therefore, the observer is stable.
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