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Abstract: A solar plant system has complex nonlinear dynamics with uncertainties due to variations in
system parameters and insolation. Thereby, it is difficult to approximate these complex dynamics with
conventional algorithms whereas Machine Learning (ML) methods yield the essential performance
required. ML models are key units in recent sensor systems for solar plant design, forecasting,
maintenance, and control to provide the best safety, reliability, robustness, and performance as
compared to classical methods which are usually employed in the hardware and software of solar
plants. Considering this, the goal of our paper is to explore and analyze ML technologies and
their advantages and shortcomings as compared to classical methods for the design, forecasting,
maintenance, and control of solar plants. In contrast with other review articles, our research briefly
summarizes our intelligent, self-adaptive models for sizing, forecasting, maintenance, and control
of a solar plant; sets benchmarks for performance comparison of the reviewed ML models for a
solar plant’s system; proposes a simple but effective integration scheme of an ML sensor solar plant
system’s implementation and outlines its future digital transformation into a smart solar plant based
on the integrated cutting-edge technologies; and estimates the impact of ML technologies based on
the proposed scheme on a solar plant value chain.

Keywords: machine learning; neural networks; DL; PV; solar plant; smart sensor

1. Introduction

Solar plant systems have complex nonlinear dynamics with uncertainties since the
system’s parameters and insolation fluctuate [1]. Thereby, it is complicated to approximate
these complex dynamics with classical methods, while ML methods provide the required
performance [2]. In modern sensor systems, ML methods are crucial units to increase
the quality of big dataset processing for solar plant design, forecasting, maintenance,
and control [1,2]. Within the EU COVID-19 strategic reply, the smart energy standards
define a cloud platform specification for a distributed solar big data ecosystem that will
provide the creation of effective ML technologies for smart solar energy [3]. The long-term
contribution of solar energy is dependent on overcoming the remaining issues of grid
integration, high costs, and low efficiency, mainly through the research and development
of a smart solar plant system based on ML methods on account of traditional methods’
ineffectiveness. Within breakthrough studies, ML technologies collected, analyzed, and
converted a huge number of sensory datasets into ML knowledge. These big data sets are
collected by supervisory control and data acquisition (SCADA) systems [4]. The SCADA
system is able to integrate the sensor system and ML technologies into an ML sensor
system based on software that implements ML sensor models and integrates with SCADA
through API. Further, the application of ML technologies for the digital transformation of
solar plant systems has a massive potential to increase their stability, reliability, dynamic
response, cost-effectiveness, and other essential advancements, easing their integration into
electric grids.

The contribution of this article is threefold. First, we reviewed more than 100 research
papers devoted to state-of-the-art ML technologies of solar plant systems, most of the arti-
cles were published in the last five years. Second, we reviewed resources where researchers
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can find open datasets, source code, and ML framework and simulation environments
to create ML technologies for a solar plant system. Third, in contrast with other review
articles, our review proposes a simple but effective pipeline scheme for an ML sensor
solar plant system’s implementation and outlines its future digital transformation into
a smart solar plant based on integrated, cutting-edge technologies; estimates the impact
of the ML technologies based on the proposed scheme on a solar plant value chain; sets
benchmarks for performance comparison of the reviewed ML models for a solar plant’s
system based on the comparative studies’ results summaries; and briefly summarizes
our self-adaptive models for sizing, forecasting, maintenance, and control of a solar plant
based on a modified fuzzy neural net (MFNN) that is automatically created with regard
to tasks’ complexities and overfitting problems [5–8]. Our research provides a mapping
of the recently reported ML methods and quantification of their advantage and shortcom-
ings as compared to classical methods, which are usually employed in the sensor system,
hardware, and software of solar plants; an effective integration scheme of ML technologies
into the sensor systems and software of solar plants; a future prospect of the integrated
cutting-edge technologies, including ML for digital transformation of solar energy into
smart solar energy. In addition, we provide some directions and insights for the future
development of a smart solar plant system.

The rest of the article proceeds as follows. Section 2 reflects an analysis of ML tech-
nologies for a solar plant system. In Section 2.1, we describe an ML sensor system of a solar
plant based on an ML sensor model and its life cycle. Sections 2.2 and 2.3 provide brief
introductions of the main ML methods and frameworks which are being applied in solar
plant systems, correspondingly. In Section 2.4, we briefly describe the open datasets and
source code to create ML technologies for a solar plant system. In Section 3, we analyze,
discuss, and summarize recently reported research into ML applications for solar plant
systems, their advantages, and shortcomings as compared to classical methods. In addition,
in Section 3, we briefly describe an ML sensor system based on a developed software that
integrates with SCADA through API. The subsections of Section 3 reflect an analytical
review of ML technologies for the design, forecasting, maintenance, and control of solar
plants. Section 4 presents the future prospect of integrated, cutting-edge technologies,
such as ML, cloud, edge computing (EC), internet of things (IoT), etc., to create a smart
solar plant system that provides the digital transformation of solar energy into smart solar
energy. Finally, in Section 5, we conclude the article with a brief summary of this review
and a discussion about the current locus and opportunities for future development in the
field of ML to create a smart solar plant system.

2. Machine Learning Technologies for a Solar Plant’s System

Real-life solar plant systems have complex, nonlinear dynamics due to variations in
system parameters and insolation. Thus, ML methods have been proposed to approximate
this complex dynamic. The recent studies [1,2,5–13] prove that ML technologies for a
solar plant’s design, forecasting, maintenance, and control increase the effectiveness and
reliability of the solar plant as compared to conventional methods. In smart sensor systems
of solar plants, ML methods are crucial units to increase the quality of datasets processing
the solar plant’s design, forecasting, maintenance, and control. SCADA is a control system
architecture that uses sensors, programmable logic, and discrete PID controllers to control
the processes of a solar plant system. The solar plant’s system includes advanced sensors.
Big data from SCADA are collected 24/7. Combined with weather big data, this enables
the creation of ML technologies to solve complex tasks of a solar plant’s design, forecasting,
maintenance, and control.

2.1. ML Sensor System of a Solar Plant

Smart models based on ML technologies have the advantage of parallel compu-
tation through modern graphical processing units, which significantly decreases the



Sensors 2022, 22, 9060 3 of 33

time cost in SCADA datasets processing for solar plant design, forecasting, maintenance,
and control [12].

The reliability, accuracy, and other demanded quality parameters must be composed as
the performance of an ML model. This model must be created effectively with high-quality
datasets to have optimal performance [14]. Figure 1 shows the basic life cycle of an ML
sensor model. Smart model creation has two phases: data preparation (DP phase) and
model creation (MC phase). They should be elaborated by the Cross-Industry Standard
Process for Data Mining cycle (CRISP-DM) [15] and Open Neural Network Exchange
(ONNX) format [16]. The CRISP-DM cycle [15] provides a pipeline for the implementation
of smart models in real-time scenarios.

The sensor data of a solar plant are compiled into raw SCADA datasets. Then, these
datasets are preprocessed (Figure 1) in a simple way (standardization or encoding). Data
preparation methods include dimensionality reduction (principal component analysis
(PCA)), sampling (subsampling, oversampling), transformation, encoding, feature extrac-
tion, and selection [14].

Figure 1. A basic life cycle of an ML sensor model.

Feature extraction is a crucial step in a smart sensor system’s creation because it pro-
vides knowledge for ML model creation [14]. The DM methods generate features. The most
relevant data are further separated into train, validating, and test datasets (Figure 1). An
ML model to solve either classification or regression tasks is trained based on a train dataset.
When a smart model provides the demanded performance, its weights are frozen. The ML
frameworks, which we review in Section 2.3, provide an automatic MC phase, including
validating (Figure 1). The trained ML model is deployed. If a monitored ML model does
not provide optimal performance, then it is retrained based on updated datasets.

2.2. ML Methods for Smart Sensor Creation

An ML sensor model can be developed based on neural network (NN) or non-NN
algorithms [14]. The last ones include PCA, Random Forest (RF), support vector machine
(SVM), and Decision Tree (DT). In contrast with non-NN methods, NN architectures can
include various neurons which are specified by ONNX [17], highly effective learning, and
extracting features. A deep neural learning/network (DL/DNN), such as a recurrent
neural network (RNN), convolutional neural network (CNN), and transformers, is part
of the ML methods with feature learning that use multiple layers, complex connectivity
architectures, and different transfer operators to automatically mine meta features from
the input. NNs, such as artificial neural networks (ANNs), radial basis function neural



Sensors 2022, 22, 9060 4 of 33

networks (RBF-NNs), generative adversarial networks (GANs), RNNs, and CNNs have
recently made major progress in practical applications of solar energy [1].

Figure 2 shows two NN methods’ classes and the ML method groups according to the
task they solved for a solar plant system [2].

Figure 2. Classification of tasks that are solved based on ML methods.

The ensemble’s types are bagging, boosting, and stacking/blending [18,19]. Table 1
presents the comparison of ensemble techniques [18]. There are constant and dynamic
weighting ensemble approaches. In recent studies, the most used ensemble methods are
RF, Extreme Gradient Boosting (XGBoost), Extreme Learning Machine (ELM), etc.

Model training methods that optimize performance include quasi-Newton, stochastic
gradient descent (SGD), evolutionary computation, genetic programming, etc. [15]. The
creation of the ML model is the most complex and important task which includes the
creation of an optimal ML model’s architecture and requires a multidimensional global
optimization (GO).

The bias and variance estimate the effectiveness of a model. The improvement of a
model’s bias always makes gains at the expense of variance and vice versa. The performance
of ML models highly correlates with the representativeness of a dataset. A lot of techniques
provide a model’s evaluation, including cross-validation, kfold, holdout with a different
performance including accuracy (ACC), mean squared error (MSE), precision, receiver
operating characteristics (ROC), recall, Matthew’s correlation coefficient (MCC), F1, area
under the curve (AUC), mean absolute error (MAE), and root-MSE (RMSE). The relative
errors, such as normalized RMSE (nRMSE), normalized MAE (nMAE), etc., facilitate the
comparison between models that are tuned based on datasets with different scales.
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With the goal to develop intelligent models for sizing, forecasting, and control of a
solar plant system and to make an RNN more adaptive with regard to a task’s complexity
and overfitting problem, we developed an MFNN [5–8]. The MFNN includes RNNs with
fuzzy units and/or a convolutional block to process images. An RNN approximates a
membership function in contrast to an Adaptive Network-Based Fuzzy Inference System
(ANFIS). We combined the modified multidimensional quantum-behaved particle swarm
optimization (PSO) with the Levenberg–Marquardt algorithm (MD QPSO) and developed
a hierarchical encoder of the particle’s dimension component [5–8] to automatically create
an optimal architecture of an MFNN and improve the convergence.

Table 1. Comparison of ensemble techniques.

Name of Method Advantages Disadvantages

Bagging Tends to reduce variance more
than bias

Does not work well with
relatively simple models

Boosting Reduces bias and variance Sensory to noise and outliers in
data. Susceptible of overfitting

Stacking/blending
Provides the optimal combination
of base learners, reduces variance,

and bias [18]

In the case of huge datasets, the
computational time increases
sufficiently as each classifier is
working independently on the

huge dataset.

We implemented an MFNN and its life cycle, which includes automatic creation and
self-adaptation as an intelligent framework based on the authors’ software [20]. This
intelligent framework provides the automatic creation of the optimum architecture of an
MFNN with regard to a task’s complexity.

All the above-mentioned ML methods and algorithms were implemented as software
by an ML Framework, which represents a tool to create a smart sensor system.

2.3. ML Frameworks

ML frameworks implement many ML methods [15]. Table 2 shows the comparison of
popular ML frameworks.

Big data ecosystems, namely Apache Flink, Apache Spark, and Cloudera Oryx 2,
include built-in ML libraries for large-scale DM. These ML libraries evolve presently, but
the potency of the entire ecosystem is significant.

Google, Facebook, and Microsoft developed most of the DL frameworks that support
ONNX, namely PyTorch, TensorFlow, Caffe2, Microsoft CNTK, and MXNet.

Chainer, Theano, Deeplearning4, and H2O are also appropriate DL libraries and
frameworks for smart sensor system creation.

The high-level DL wrapper libraries such as Keras, TensorLayer, and Gluon are
developed on top of the DL frameworks. They provide a simpler but more computationally
expensive way for smart sensor system creation.

The ML frameworks provide an automatic MC phase of an ML model, including
validating (Figure 1). An ML sensor system can be implemented as software based on an
ML framework that supports ONNX. Such implementation will provide flexibility and all
an ML framework’s advantages for a developed ML sensor system.
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Table 2. Comparison of ML frameworks.

Name Advantages Disadvantages

TensorFlow Open-source, API-oriented, cross-platform,
ML/DM toolbox implements many ML methods.

The code is not flexible. Lack of documentation.
Toolbox oriented for academic usage.

Microsoft CNTK Open-source, fast-evolving, supports ONNX,
supported by Microsoft. Limited facilities for mobile platforms.

Caffe2 Cross-platform, supports mobile platforms,
supports ONNX.

Complex as compared to PyTorch. Without
dynamic graph computation.

PyTorch
Dynamic computational graph. Automatic

implementation of ML models.
Supports ONNX.

Absence of monitoring and visualization tools like
a tensor board

Keras

Open-source, provides backend tools from Google
and Microsoft. Detailed specification. API for DL.

Quick implementation of DL models (e.g.,
TensorFlow, Theano, CNTK).

Modularity and simplicity make gains at the
expense of flexibility. Limited facilities to create a

new architecture.

2.4. Open Resources for ML Research in a Solar Plant System

The open solar energy data sources, including big data, provide the development of
cutting-edge ML technologies in solar energy.

The GitHub repositories [21,22] are implementations of maximum power point track-
ing (MPPT) systems [21] and management of cities’ demand/load [22] based on an open-
source Gym toolkit [23]. An open-source tool pymgrid [24] provides the creation and
simulation of various microgrids. Octave [25] and Scilab [26] are open sources that are
compatible with MATLAB.

Table 3 presents a brief description of the open datasets to implement and validate ML
solar plant systems.

Table 3. Comparison of meta-heuristic algorithms.

Open Dataset Data Source Location Description

Duke California Solar Array Dataset [27] - Over 400 km2 of imagery and 16,000
hand-labeled solar arrays

SOLETE [28] City: Roskilde, Denmark.
Latitude and longitude: 55.6867, 12.0985

Meteorological and active power
15 months dataset from PV array

Desert Knowledge Australia Center
Dataset [29] -

Data of solar technologies spanning
multiple types, ages, models, and

configurations

Girasol [30] Albuquerque, USA

A meteorological (10 min sampling
interval), insolation (a sampling rate

ranging from 4 to 6 samples per second),
and images (sampling interval of the
cameras is 15 s) 242 days (of 3 years)

dataset

ESOLMET-IER Dataset [31] Institute of Renewable Energies UNAM,
station “ESOLMET-IER” Solar metric and meteorological dataset

The National Solar Radiation Data Base
(NSRDB) [32] The USA and neighboring countries Solar insolation and meteorological

23 years dataset

Photovoltaic Thermal Images Dataset [33] 66 MW PV plant in Tomboruk
Thermal images of PV arrays with the
presence of one or more anomaly cells

and their respective masks

Pecan Street Dataset [34] - 1300 customer loads one-year dataset
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3. Machine Learning Applications for a Solar Plant System

This section presents a review of research studies that have been published mostly in
the last five years on the topic of ML applications for a solar plant. The literature review
process elaborates on the articles’ search queries in Scopus/ScienceDirect, IEEEXplore,
ResearchGate, and Google Scholar with the following keywords: machine learning, neural
networks, DL, PV, and solar plant. We focused on four important tasks’ categories in the
solar plant systems, as shown in Figure 3: design, forecasting, maintenance, and control.
We are persuaded that tasks of these categories are most in demand in solar plant systems
where ML can be applied with high efficiency. Figure 3 identifies the number of publications
devoted to ML for a solar plant’s design, forecasting, maintenance, and control that have
been published mostly during the last five years. We prepared the data based on the
considerable contributions from the most cited journals. We have not covered cybersecurity
in a solar plant system since it was covered in-depth in study [1].

Figure 3. ML technologies for a solar plant’s design, forecasting, maintenance, and control.

Figure 4 reflects the number of publications devoted to CNN, ANN, and RNN tech-
nologies for a solar plant system that have been published mostly in the last five years.
Figure 4 also presents the various types of feature spaces- to create a smart sensor system
based on an ML method. It specifies the essential preprocessing and ML models to create a
smart sensor [14].
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The researchers in [10] noted that a pipeline implementation of an ML system is
demanded. Therefore, we proposed a simple but effective pipeline scheme of an implemen-
tation (implementation step in Figure 1) of an ML sensor system for a solar plant. Figure 5
shows this simple scheme of a solar plant system based on ML technologies for a solar
plant’s design, forecasting, maintenance, and control. The center of a solar plant controller
controls all devices and data of the solar plant and congregates datasets from the sensors,
meteorological stations, and inverters [3]. The SCADA system is able to integrate sensor
systems and ML technologies into an ML sensor system based on software that implements
ML sensor models and integrates with SCADA through API. This software through API
can transmit a control signal which is generated by an ML sensor model to a solar plant
controller [14]. These ML sensor models for a solar plant’s design, forecasting, maintenance,
and control are implementations of a basic ML model class which is represented in Figure 5
as a UML class diagram. A method “Train” of a basic ML model class implements the MC
phase, including validating.

Figure 4. Classification of ML sensor types for a solar plant system.

Thus, the impact of the ML technologies based on the proposed scheme (Figure 5) on
a solar plant value chain will mostly be associated with the cost of software development
(including API development and the developed software’s integration with SCADA) and
maintenance. This developed software implements an ML sensor system based on an ML
framework that supports ONNX. Most ML systems, which we review in subsections of
Section 3, can be implemented on a solar plant based on the proposed scheme. Such imple-
mentation will provide flexibility and all ML framework’s advantages for the developed
ML sensor system and its digital transformation into a smart sensor system which we
outlined in Section 4.
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Figure 5. Solar plant system based on ML technologies.

3.1. ML Technologies for Design of the Solar Plants

The optimal design of a solar plant is a very complex task that requires the fulfillment
of models for a solar plant’s components as well as the usage of global optimizers.

3.1.1. Parameter Identification in a Solar Plant System

The parameter extraction models for the single (SDM), double (DDM), or triple diode
solar cell model (TDM) with RMSE as the performance metric are highly demanded for
simulation and fault detection of a solar plant system.

In studies [35,36], the ML parameter identification models for SDM provided good
performance. There are many heuristic search algorithms, including bioinspired, that were
adapted to solve the parameter identification task of the different solar cell models [37–50].
Table 4 displays a brief comparison of the parameter identification models from studies [35–44].

Table 4. Comparison of the parameter identification models.

Algorithm Outperforms Diode Model RMSE

ANN [35] RBF-NN SDM Low

ANN [36] ANFIS SDM Low

Flexible PSO [37] Classical PSO SDM and DDM High

Whale optimization [38] Classical PSO DDM Moderate

Tree-growth-based
optimization (TG) [39]

Two-step Linear Least-Squares (TSLLS) method,
Reduced forms RF, Artificial bee swarm optimization

(ABSO), Harmony search-based algorithm (HS), Particle
swarm optimization (PSO) algorithm, Genetic algorithm
(GA), analytical 5-point method (An.5-Pt), the Lambert

W (LW) function, Newton method, Conductance
method, and pattern search

SDM High
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Table 4. Cont.

Algorithm Outperforms Diode Model RMSE

Memetic adaptive differential
evolution (MD) [40] GA SDM Low

Artificial Bee Colony (ABC)
[41] Classical ABC SDM and DDM Low

JAYA-based [42,47]

Covariance matrix adaptation evolution strategy
(CMAES), Grey Wolf Optimizer (GWO),

Teaching-learning-based artificial bee colony (TLABC),
Transactional agents for pervasive computing (TAPSO),

ML-based stealing attack methodology (MLBSA),
Generalized oppositional teaching learning-based

optimization (GOTLBO)

SDM Low

Chaos Game Optimization
(CGO) [43]

W, TG, MD, applied chaotic reproduction optimization
(CARO) [41], modified simplified swarm optimization

algorithm (MSSO) [48], Cuckoo search algorithm
(CSA) [49], Biogeography optimization algorithm-based
heterogeneous cuckoo search (BBO-HCS) algorithm [50]

SDM Low

Supply-Demand-Based [44]

Backtracking Search Algorithm, Grey Wolf Optimizer,
Bernstein–Levy Search Differential Evolution Algorithm,

Crow Search Optimizer, and Manta Ray Foraging
Optimizer

TDM Low

In [45], the parameter identification models for 17 different industrial solar cells/modules
are reported. The hybrid bee pollinator flower pollination algorithm (BPFPA) [46] has the low-
est RMSE and highest convergence as compared to all 21 reviewed parameter identification
metaheuristic algorithms. Table 5 summarizes the comparative results of papers [42,43,45–47]
to set benchmarks for the performance comparison of the parameter identification models
based on different metaheuristic algorithms for the 57 mm dia RTC France solar cell.

Table 5. Performance comparison of the parameter identification models for the 57 mm dia RTC
France solar cell [45].

Single Diode Model
Sl. No.

Double Diode Model

RMSE Algorithm Algorithm RMSE

7.27 × 10−4 BPFPA [45] 1 BPFPA [45] 7.23 × 10−4

7.84 × 10−4 FPA [45] 2 FPA [45] 7.73 × 10−4

9.45 × 10−4 MPCOA [45] 3 MPCOA [45] 9.22 × 10−4

9.86 × 10−4 STLBO [45] 4 STLBO [45] 9.82 × 10−4

9.86 × 10−4 R-JADE [45] 5 R-JADE [45] 9.82 × 10−4

9.86 × 10−4 TVIWAC PSO [45] 6 ABC + NMS [45] 9.82 × 10−4

9.86 × 10−4 BMO [45] 7 TAPSO [42] 9.8269 × 10−4

9.86 × 10−4 ABC + NMS [45] 8 MLBSA [42] 9.8285 × 10−4

9.86 × 10−4 ABC [45] 9 PGJAYA [42] 9.8298 × 10−4

9.86 × 10−4 BBO-M [45] 10 GOTLBO [42] 9.8299 × 10−4

9.86 × 10−4 LM + SA [45] 11 BMO [45] 9.83 × 10−4

9.8602 × 10−4 TLABC [42] 12 BB0-M [45] 9.83 × 10−4

9.8602 × 10−4 TAPSO [42] 13 ABSO [45] 9.83 × 10−4

9.8602 × 10−4 MLBSA [42] 14 TLABC [42] 9.8407 × 10−4

9.8602 × 10−4 GOTLBO [42] 15 ABC [45] 9.86 × 10−4

9.8602 × 10−4 PGJAYA [42] 16 IGHS [45] 9.86 × 10−4

9.8602 × 10−4 HAJAYADE [42] 17 IJAYA [42] 9.8631 × 10−4

9.860219 × 10−4 CGO [43] 18 JAYA [47] 9.8934 × 10−4
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Table 5. Cont.

Single Diode Model
Sl. No.

Double Diode Model

RMSE Algorithm Algorithm RMSE

9.86022 × 10−4 BBO-HC [50] 19 CMAES [42] 9.9015 × 10−4

9.86023 × 10−4 CSA [49] 20 CLPSO [47] 9.9894 × 10−4

9.8605 × 10−4 CMM-DE/BBO [47] 21 CMM-DE/BBO [45] 1.0088 × 10−3

9.8607 × 10−4 MSSO [48] 22 DE/BBO [47] 1.0255 × 10−3

9.8625 × 10−4 IJAYA [42] 23 BLPSO [47] 1.0628 × 10−3

9.8665 × 10−4 CARO [41] 24 GGHS [45] 1.07 × 10−3

9.87 × 10−4 PSA [45] 25 GWO [42] 1.1429 × 10−3

9.89 × 10−4 IADE [45] 26 HS [45] 1.26 × 10−3

9.8946 × 10−4 JAYA [47] 27 SA [45] N. S
9.91 × 10−4 GGHS [45] 28 PSO [45] N. S
9.91 × 10−4 ABSO [45] 29
9.93 × 10−4 IGHS [45] 30
9.95 × 10−4 HS [45] 31

9.9633 × 10−4 CLPSO [47] 32
9.9922 × 10−4 DE/BBO [47] 33
1.0023 × 10−3 GWO [42] 34
1.0272 × 10−3 BLPSO [47] 35

1.70 × 10−3 SA [45] 36

Summarizing, we highlight a need to assess more benchmarks for a performance
comparison of the parameter identification models including ML methods.

3.1.2. Sizing of a Solar Plant

Within the research literature, a whole array of differing sizing methods for a solar
plant has been proposed. These sizing methods of a solar plant are classified as intuitive,
numerical, and analytical algorithms. The intuitive algorithms do not provide effectiveness
and reliability. The numerical algorithms require a long time series of insolation. Many of
the analytical algorithms use a concept of the system’s reliability or loss of load probability.
ML technologies provide an estimation of the optimal number of panels, storage capacity
of batteries, tilt, and azimuth angles for a solar plant. Moreover, several ML technologies
have been developed to size a solar plant. Table 6 shows a brief comparison of ML sizing
methods of a solar plant [5,51–55].

Table 6. Comparison of ML sizing methods.

Sizing Method Dataset Performance Contribution

Generalized RNN [51]
Meteorological and load

demand dataset from five
Malaysian sites

MAE% is 0.6% -

CNN [52] Duke California Solar Array
dataset [23]

Object-based performance
metric is 0.76

CNN creates semantic
segmentation SolarMapper [53]

DNN framework [54]
Behind-the-meter load dataset

that includes erroneous and
mislabeled training data

MAE% in estimation of a PV tilt
and azimuth values are 10.1%

and 2.8%, correspondingly
-

MFNN [5]

Two-year dataset of total
insolation, meteorological

parameters which was
collected at the site of Abakan

MAE% is 0.6% which is
superior to PSO

Automatic creation,
self-adaptation MFNN based
on the authors’ software [20]

ML optimization method based
on ANN and heuristic

optimizers [55]

One-month datasets of
meteorological parameters
which were collected at the

different climatic China regions

The annual equivalent overall
output energy increased by

4.48% as compared to a Taguchi
standard orthogonal array

Within the application of smart
cities researchers design a

renewable system that includes
solar-to-electricity conversion.
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Summarizing, we highlight a need to assess more benchmarks for a performance com-
parison of the PV sizing ML models. In addition, DL methods, including RNN, that extract
knowledge from time series and effectively approximate insolation and load under small
disturbances of a PV system dynamic, including degradation, are promising alternatives.

3.2. ML Technologies for Insolation and Power Forecasting of Solar Plants

Energy production of a solar plant is highly dependent on weather conditions such as
insolation and temperature. Thus, it is difficult to balance the production and consumption
of the electric grid with integrated solar plants where production levels fluctuate. In case of
a deviation from an hourly plan schedule of solar plant power, the energy market charges
penalties. Hence, many ML methods have been implemented to forecast insolation and the
output power from a solar plant.

Figure 6 presents specifics of the energy market to forecasting and classification of ML
forecasting models based on a forecasting horizon [1,56].

Figure 6. Specifics of the energy market to forecasting and classification of ML forecasting models.

The surveys of insolation and power forecasting of a solar plant in [57–63] appraise
various approaches and methods to increase the performance of forecasting models under
uncertainties. According to the reviews, ANNs are the most popular method for forecasting,
as they are easy to implement and quite effective as compared to classical methods, such as
conventional autoregressive integrated moving average (ARIMA), etc.

3.2.1. ML Technologies for Power Forecasting of Solar Plants

The power forecasting of a solar plant provides safety and effectiveness of grid control.
There are mainly three ways to power forecast for a solar plant:

• only historical output power recorded is used,
• forecasted meteorological parameters are used as input,
• combination of the historical power data with forecasted meteorological parameters

is used.

Recent studies present the ML methods which effectively forecast a solar plant’s power.
The study [64] reveals that the output power with the insolation and the air tempera-

ture has a linear and nonlinear correlation, correspondingly. Recently, researchers have been
more interested in the ML application to increase the accuracy of the forecasters [61,65–77].

The simple (in [61], preprocessing generated normalized insolation; in [73], preprocess-
ing elaborated k-means) and complex data preprocessing algorithms (in [71], four CNNs
with different filters mine simple features from a sequence of time series; a single-kernel
CNN mines the meta features from the simple features) provide for the ML model better
performance (Table 7).

Due to forecast power, in [69,70], researchers integrated a PV-performance model into
ML methods such as RF, SVR, CNN, LSTM, and hybrid CNN-LSTM. The results indicated
that the proposed ML models provide the best performance regardless of the model’s type
and forecasting horizon (Table 7).
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Table 7 shows that indirect, very short-term forecasting ML models [61,67] provide
higher accuracy as compared to direct ones.

Table 7 shows that the dataset’s length has a positive correlation with forecast perfor-
mance (an average correlation coefficient of normalized corresponding columns is 0.34).
Table 7 displays that the forecast horizon has a negative correlation with forecast perfor-
mance (an average correlation coefficient of normalized corresponding columns is −0.31).

Table 7. The performances of the power forecasting ML models.

Predicting Method The Forecasting Horizon Dataset’s Length RMSE (Wh/m2) RMSE%

Stack-ETR (TF) [77] 1 day 4 years 37.37 -

Stack-ETR (MC) [77] 1 day 4 years 13.95 -

Stack-ETR (PC) [77] 1 day 4 years 20.41 -

Stack-GBDT [78] 1 day 4 years 47.7826 -

RNN-LSTM (TF) [79] 1 day 4 years 39.2 -

RNN-LSTM (MC) [79] 1 day 4 years 19.78 -

RNN-LSTM (PC) [79] 1 day 4 years 26.85 -

XGBoost-DNN [80] 1 day 10 years 51.35 -

DPNN [81] 1 day 2 weeks 52.8 -

K-means-AE-CNNLSTM [82] 1 day - 45.11 -

LSTM-RNN [83] 1 day 1 year 82.15 -

LSTM [84] 1 day - 139.3 -

ELM (TF) [85] 1 day 1 year 90.41 -

ELM (MC) [85] 1 day 1 year 59.93 -

ELM (PC) [85] 1 day 1 year 54.96 -

ANN’s ensemble [60] 1 h - 5 6.25%

MLPNN [62] 1 day 1 year 160.3 -

TDNN + clustering [62] 1 day 1 year 122 -

MLFFNN based on BP [62] 1 day 1 year 223 -

CNN-Simple [65] 1 day 6 years 51 -

Multi-headed CNN [65] 1 day 6 years 81 -

CNN-LSTM [65] 1 day 6 years 51 -

5D CNN-LSTM [67]

10 min 1 year 0.083 -

30 min 1 year 0.22 -

60 min 1 year 0.45

90 min 1 year 0.72

120 min 1 year 1.05

150 min 1 year 1.44

180 min 1 year 2.05

D-PNN [68] 1 day 60 -

RF [69] 1 h 15 months - 11.83%

Support Vector Regression (SVR) [69] 1 h 15 months - 13.71%
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Table 7. Cont.

Predicting Method The Forecasting Horizon Dataset’s Length RMSE (Wh/m2) RMSE%

CNN [69] 1 h 15 months - 15.27%

LSTM [69] 1 h 15 months - 14.89%

Hybrid [69] 1 h 15 months - 15.72%

RF [70]

24 h 15 months - 7.58%

48 h 15 months - 7.75%

72 h 15 months - 7.93%

SVR [70]

24 h 15 months - 8.06%

48 h 15 months - 8.21%

72 h 15 months - 8.29%

CNN [70]

24 h 15 months - 8.69%

48 h 15 months - 8.86%

72 h 15 months - 9.16%

LSTM [70]

24 h 15 months - 7.56%

48 h 15 months - 8.08%

72 h 15 months - 8.12%

Hybrid [70]

24 h 15 months - 8.06%

48 h 15 months - 8.69%

72 h 15 months - 8.96%

Quad-kernel deep CNN (QKCNN) [71] 10 min - - 4%

SVR-RBF [72] 1 h - 10 -

Deep RNN [72] 1 h - 5 -

BackPropagation NN [73] 1 day 100 days 3.66 -

LSTM NN [74] 1 day 3 months 7.1 -

RNN [74] 1 day 3 months 9.2 -

Generalized regression neural network
(GRNN) [74] 1 day 3 months 13.1 -

Extreme learning machine (ELM) [74] 1 day 3 months 24.1 -

Transfer learning constrained LSTM
(TL + C-LSTM) [76] 1 day 1 year 8.89 -

MFNN [5] 2 day 3 years 43.15 20.15%

RFR [77] 1 day 4 years 38.96 -

XGB [77] 1 day 4 years 34.11 -

DTR [77] 1 day 4 years 36.61 -

ADA [77] 1 day 4 years 35.52 -

ETR [77] 1 day 4 years 32.05 -

Stack-RFR [77] 1 day 4 years 24.9 -

Stack-ETR [77] 1 day 4 years 23.09 -

Stack-ADA [77] 1 day 4 years 24.58 -

Stack-XGB [77] 1 day 4 years 23.97 -
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3.2.2. ML Technologies for Insolation Forecasting of the Solar Plants

ML technologies for insolation forecasting provide great benefits to smart grid integra-
tion and solar plant management. ML insolation forecasting is a necessary step for indirect
power forecasting that provides higher accuracy as compared to a direct one. Thus, output
of an insolation forecasting ML model can be used as an additional input signal for an
indirect power forecasting ML model.

In Table 8, we briefly summarize the insolation forecasting ML models from
studies [5,7,60,62,65,67–69,72,77–85].

Table 8 shows that the dataset’s length has a positive correlation with forecast perfor-
mance (an average correlation coefficient of normalized corresponding columns is 0.34).
Table 8 displays that the forecast horizon has a negative correlation with forecast perfor-
mance (an average correlation coefficient of normalized corresponding columns is −0.31).

Summarizing, we highlight a need to assess more datasets and benchmarks for the per-
formance comparison of ML technologies for insolation and solar plant power forecasting.
The number of data preprocessing algorithms has a negative correlation with a forecast’s
performance. The dataset’s length and forecast horizon have positive and negative corre-
lation with a forecast’s performance, correspondingly. A one-year test dataset is enough
to create and validate a robust ML model. Indirect power forecasting provides higher
accuracy as compared to a direct one. In addition, DL methods including transformers
based on an attention mechanism that hierarchically preprocess and mine knowledge from
datasets are promising alternatives.

Table 8. The performances of the insolation forecasting ML models.

Site Model MBE [W/m2] RMSE [W/m2] R2 Dataset’s Length Horizon

Caruru
RF [31] 0.9309 9.1715 0.9962 11 years 30 min

ANN [31] 3.1310 7.006 0.9977 11 years 30 min

Barrancominas
RF [31] 0.0568 9.1002 0.9961 11 years 30 min

ANN [31] 3.0637 6.9222 0.9977 11 years 30 min

Chajal
RF [31] 0.3947 7.0558 0.9976 11 years 30 min

ANN [31] 2.6189 6.2072 0.9981 11 years 30 min

Sipi
RF [31] 0.6185 7.8242 0.9972 11 years 30 min

ANN [31] 2.7263 6.3490 0.9982 11 years 30 min

Puerto
Merizalde

RF [31] 0.5521 7.9230 0.9971 11 years 30 min

ANN [31] 2.8704 6.6222 0.9979 11 years 30 min

Bogota
RF [31] 0.6464 7.7266 0.9973 11 years 30 min

ANN [31] 2.6964 6.3453 0.9981 11 years 30 min

Narino state
LSTM [86] - 42 - 11 years 1 day

LSTM [86] - 64 - 11 years 1 week

Tetouan,
Morocco

SVM [87] 34.709 13.59 - 3 years 1 day

ANN [87] 23.883 15.8 3 years 1 day

Bangladesh

RNN [88] - 0.958 - 6 years 1 h

LSTM [88] - 1.14 - 6 years 1 h

GRU [88] - 0.891 - 6 years 1 h

Abakan, RF MFNN [5] 21.5 0.91 2 years 2 day

Ghardaia,
Algeria LSTM [89] - 0.98–0.96 3 years 1–12 h
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Table 8. Cont.

Site Model MBE [W/m2] RMSE [W/m2] R2 Dataset’s Length Horizon

Uluru (Ayers
Rock) in
Australia

ShuffleNet [90] - 0.1471 - 2 years 1 h

SqueezeNet [90] - 0.1146 - 2 years 1 h

ResNet-18 [90] - 0.0941 - 2 years 1 h

GoogLeNet [90] - 0.0850 - 2 years 1 h

AlexNet [90] - 0.0729 - 2 years 1 h

CEEMDAN-AG-RE-
EML
[90]

- 0.0642 - 2 years 1 h

3.3. ML Technologies for Maintenance of Solar Plants

ML methods solve the most complex tasks, which include failure classification, detec-
tion, localization, and automated solar panel diagnostics, based on solar plant sensor data
(Figure 4). Thus, grid operators can greatly increase the effectiveness and reliability of their
solar plants based on ML technologies.

ANN, FL, DT, RNN, RF, and different ensembles automatically detected basic solar
plant faults based on data from ordinary sensors (Figure 4). DL and various types of CNN
automatically perform analysis of infrared (IFR) images that are tracked by Unmanned
Aerial Vehicles (UAVs). In this field of research, usually a dataset is highly unbalanced,
i.e., it has unlabeled data and/or has rare failures. For this reason, the Balanced Accuracy,
F1 score, Cohen’s Kappa, or MCC better reflect the model’s performance as compared to
traditional accuracy metric.

Most of the ML models were created based on the dataset which was generated from
simulation. A limited number of failure classes were considered, with the exception of a
number of works in [91,92] in which 10 or more faults were considered (Table 9).

3.3.1. ML Technologies for Failure Diagnosis of the Solar Plants

According to study [93], there are six different categories of solar plant systems failures:
shading, open-circuit, degradation, line-to-line, bypass diode, and bridging.

Frequent faults are failure in a component, system isolation, inverter shutdown, shad-
ing, and inverter MPP. In recent years, ML techniques that process data from ordinary
sensors (Figure 4) have been highly applied for fault classification and, in some cases, to
identify the location of a failure.

In studies [91,92,94–98], researchers detect, classify, and localize [98] different fail-
ures of a solar plant system based on non-NN [91,92,95,97], ANN [97], ANFIS [98], and
LSTM [94] that simply process signals from ordinary sensors (Figure 4(1)).

In studies [99–105], researchers detect, classify, and localize [100] different failures of
a solar plant system based on CNNs. For this purpose, researchers tuned CNNs based
on the created dataset which sample represented a two-dimensional or three-dimensional
transformation of data from ordinary sensors (Figure 4) namely, a scalogram [101], a
two-dimensional time series graph [99], a three-dimensional image [103] and a polar-
coordinate image [105]. This transformation can be simple (in [99], only PV current and
voltage were composed into a two-dimensional time series graph) or complex (in [103],
the direct current and alternating current values of a PV system were composed into a
three-dimensional image based on a Gramian Angular Field; in [105], the time domain
waveform signals were composed into a polar-coordinate image based on a symmetrized
dot pattern (SDP)).

We proposed a failure forecasting system of a wiring losses’ failure free operating
period of a PV box based on an MFNN that has two RNNs with fuzzy units [5]. We
created the MFNN based on a two-year historical dataset which included 20 kW PV array’s
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signals. The developed fault forecasting system of the solar plant based on the tuned
MFNN effectively forecasted a wiring losses’ failure free operating period of a PV box. The
relative error of the tuned MFNN was 0.0006.

In Table 9, we summarize the ML models for PV failure diagnosis from studies [91,92,94–105].

Table 9. Summary of the ML models for PV failure diagnosis.

Fault Diagnosis Stage Types of Faults Performance (%)
Specific Data/Method (s)

Applied/Ref.Det Clas Loc

X X -

Inverter fault, grid
anomaly, mismatch fault,

MPPT fault, converter
fault

False alarms < 1.
Computational time is

11.809 s

PCA-KDE-based
multivariate KL
divergence/[91]

X X -
Degradation, PS, PS

w/BpD, short circuit,
open, PS w/BpD short

98.3 Experimental data/
stacked autoencoder/[92]

X X -
line-to-line 97.66 Data with noise/

hot spot 98.78 LSTM/[94]

X X - line-to-line, open circuit,
degradation, and PS

99 accuracy that is
superior as compared to

DT

Dataset that was created
during simulation/

RF/[95]

X X -

PS, bridging, bypass
diode, temperature, short

circuit, and complete
shading

99.91 performance, which
is superior as compared to

DTs, XGBoost and RF

Dataset with 1200 samples
/ANNs

/[96]

X X -

Healthy mode 98.17

Dataset with 586,580
samples/PCA + RF/

[97]

inverter fault 99.93

grid connection fault 99.93

sensor fault 99.96

panel fault 100.0

panel connection fault 100.0

X X - PS, open circuit,
line-to-line, arc 70.45 Scalograms with

noise/CNN/[101]

Open-circuit, line-to-line, Average accuracy 99 2-D time series
graph/CNN/[100]

X X X

PS w/ BpD, PS w/
reversed BpD, short

circuit, increase series
resistance

99.94 for Classification,
99.54 for Location

CNN w/residual GRU/
[100]

X X X
Line-to-line, open-circuit,

short-circuit R = 0.9989, RMSE = 0.0383 ANFIS Sugeno/[98]

X X -
Short circuit, PS, abnormal
aging, and hybrid failures

[103]
98.41 CNN and a fully

connected module/[102]

X X -
PS, degradation of a TF
module, short circuit,

open circuit

Average accuracy 95.78
which is superior as
compared to CNN

Test dataset/ResNet/
[103]
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Table 9. Cont.

Fault Diagnosis Stage Types of Faults Performance (%)
Specific Data/Method

(s) Applied/Ref.Det Clas Loc

X X -

Line-to-line 100.0

Dataset of 3D images/
3D CNN/[104]

shorted modules in
strings 91.67

open module in strings 91.67

shorted strings in arrays 100.0

open strings in arrays 95.24

healthy mode 100.0

X X X

Normal PV module 100.0 Dataset includes
3200 samples that

generated by SDP, test
dataset includes

800 samples (200 samples of
each failure)/CNN/[105]

poor connection on a PV
Module 100.0

PV module breakage 100.0

bypass diode 99.5

Summarizing, we highlight a need for open datasets to assess experimental results on
real testbeds and an open tool to generate and process scalograms based on transformers
with an attention mechanism which feasibly outperforms other ML methods, such as CNNs.
For failure detection and classification, there is a need to study the MPPT algorithms based
on Reinforcement Learning (RL) and a spiking neural network under failure conditions.

3.3.2. ML Technologies for Solar Panel Diagnostics

The drop in solar plant productivity due to deviant maintenance modes caused by
nonclean module surfaces, cell damage, delamination, or hot spots, demands a solar panel
diagnostic based on the ML image sensors that process the panels’ images (Figure 4).

In studies [106–109], researchers localized and identified different failures of a solar
plant system based on CNNs that process the solar panels’ images, including thermographic
images [106–108]. In Table 10, we summarize the ML technologies for PV diagnostics from
studies [106–112].

Table 10. Comparison of ML Technologies for PV Diagnostics.

ML Method Localize/Identify Failure Performance Dataset

YOLOv4 [106]

Light reflex, 0.96

Preprocessed dataset of
thermographic images

hot spot, 0.956

short circuit, 0.905

faulty string/sunbstring, 0.969

“good” module 0.997

CNN [107] Binary classification of hot
spots

Average performance on test
dataset is 98%, a range of
processing speed is [0.001,

2 min]

Preprocessed dataset of
thermographic images

Hybrid mask region CNN
[108]

classify three failures: one
damaged cell, nonadjacent,
and adjacent damaged cells

RMSE of 26.85 W/m2,
19.78 W/m2 and 39.2 W/m2

for PC, MC, and TF solar
plants correspondingly

Dataset of thermal images
generated by infrared sensors

installed in a UAV

Modified VGG16 [109] detect a failure (bird’s drops
over a PV array)

Average performance on test
dataset is 93%

Dataset of 1000 affected
images
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Table 10. Cont.

ML Method Localize/Identify Failure Performance Dataset

SVM, naive Bayes, kNN, DT,
RF and pre-trained DNN [110]

Delamination, hot spot,
glass damages, decolorization,

and snail trails
Best accuracy is 100% Dataset of aerial images.

DIP filters and SVM classifier
[111]

Classification into 10 different
classes (1 healthy and 9 failure

modes including warm
module/substrings/cells, hot

spot, etc.)

The average accuracy on test
dataset is 94.4%

The thermographic images
dataset that includes

16,000 samples (1600 for each
class)

VGG16 [112]

Localization and classification
into 6 different classes (1

healthy and 5 failure modes
including overheated

module/substrings hot spot,
etc.)

The mean F1-score is 94.52%

Dataset of thermal infrared
images was collected from
28 solar plants, which have

93220 solar panels

Summarizing, we identify an opportunity to collect and make datasets available in
which new ML models for solar plant diagnostics can be tested. In the reviewed studies, a
considerable number of smart sensors process images almost perfectly. In the reviewed
studies, the smart sensors where signals of image sensor and the CNN blocks strongly
correlate provide high performance. There is an argumentative direction to substitute
non-NN smart models with a DNN-based model for the solar plant’s maintenance because
DNN provides better information processing quality and performance as compared to
non-NN smart models. In addition, ML methods such as GANs can be applied to generate
artificial thermal images and create knowledge of the failure. Moreover, future research can
comprise the elaboration of a pipeline for implementing a real time solar plant diagnostic
system based on DNN or spiking neural network.

3.4. ML Technologies for Control of Solar Plants

The application of ML methods for the MPPT of solar plant systems has massive
potential to increase their stability, reliability, dynamic response, and other essential ad-
vancements and easing their integration to electric grids.

3.4.1. ML MPPT Technologies of Solar Plants

The insolation and cell temperature of solar panels primarily define the total generated
power by a solar plant. In the research reviews, a whole array of differing MPPT algorithms
has been revealed [1,2,4]. Among them, the perturbation and observation (P and O) and
incremental conductance (INC) algorithms are the most popular due to their easy and
simple implementation. However, controllers which were created on the basis of these
algorithms for solar plant systems have very bad speed of the response times, a long time
to settle down from oscillating around the reference state. Furthermore, under PS, the
MPPT task demands GO. Thus, traditional methods for MPPT do not provide global MPPT
(GMPPT) and decrease efficiency in solar power production.

There are a lot of GO algorithms to create a GMPPT model [1,2,4], but all these models
have the following disadvantages: power oscillations in the calm mode; the initialization is
a critical issue that decrease power; very slow convergence to a GMPP under insolation’s
variation, etc. Due to all the above-mentioned disadvantages, GO-based, real-time GMPPT
of a solar plant are ineffective while ML technologies provide the required performance.

In Table 11, we summarize the ML models for MPPT of a solar plant from
studies [8,113–126].

In [114], researchers integrated the trained RL control agent into a fuzzy-logic-sliding
mode control and incremental conductance-sliding mode control (RL FL INC) and gained
better performance as compared to a classical RL agent (Table 11).
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In [120], researchers created an MPPT controller based on a fuzzy logic search of
variable voltage step size and fuzzy adaptive RBF-NN. The simulation results reflect the
superiority of the developed MPPT controller as compared to the conventional P and O
and RBF-NN.

In [121], we introduced the GMPPT system based on an MFNN that has five convolu-
tional blocks to process the PV array’s images, RNNs, and fuzzy units. Figure 7 shows the
proposed GMPPT system based on an MFNN, where Imi is image of solar plant’s modules;
xi =

(
Vi, Pi−1, dI/ dVi) and ui– input and output signal of MFNN, correspondingly;

µj —membership function of the fuzzy sets Aj (A1 is the rapidly increased uniform inso-
lation, A2 is nonuniform insolation); .z = indmax

j
(µj) = {j |∀k 6= j µj ≥ µk

}
triggers the

rule, which corresponds the z fuzzy set and RNN Fz. The performance and control speed in
GMPPT under PS of the created MFNN were superior as compared to the PSO and RNNs.

Figure 7. The GMPPT system based on an MFNN.

Table 11. Recent comparative studies of ML-based and other MPPT implementations.

ML Method for MPPT Software
Platform

MPPT Simulation
Time (s)

Steady-State
Oscillation (%)

MPPT
Efficiency

(%)

RL control agent [113] Simulink - Almost zero 99.4

RL FL INC [114] MATLAB/Simulink 1 - 99.8

Q-learning [115] MATLAB and Simulink R2015a 20 - -

Q-learning [116] MATLAB/Simulink 30 98.97

Q-learning (DQL) agent [117] MATLAB/Simulink 8 ±2 97

Deep deterministic policy
gradient MPPT [118] MATLAB and Simulink 40 - 97.5

Q-table MPPT [119] MATLAB and Simulink R2017b 40 - 97.5

Fuzzy Adaptive RBF-NN [120] MATLAB/Simulink 1.5 Almost zero 99.21

MFNN [121] Authors’ software [20] 8 Almost zero 99.3

DL RL agent [122] OpenAI Gym environment [21,23] 10 - 99

Bayesian ML (BML) [123] MATLAB 2013a/Simulink 30 Almost zero 98.9

ANN [124] MATLAB/Simulink 10 - 99

Feedback Linearization (FBL)
embedded Full Recurrent

Adaptive NeuroFuzzy
(FRANF) [125]

MATLAB/Simulink 25 - 90.2

Hermite Wavelet-embedded
Neural Fuzzy [126] MATLAB/Simulink 12 94.04
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Summarizing, we highlight a demand for implementing more benchmarks for perfor-
mance comparison of the real-time MPPT ML models based on ML frameworks, which we
presented in Section 2.3. In addition, a real-time MPPT model based on a spiking neural
network is a promising alternative.

3.4.2. ML Technologies for Control of Reconfigurable Solar Plants

The technology of reconfigurable PV arrays (rPV) by switching the electrical inter-
connection maximizes the generated PV array power in case of PS [127,128]. There are
two classes of rPV: static and dynamic. Researchers proposed a lot of rPV’s structures,
including Honey Comb, Series Parallel, Total Cross Tied (TCT), etc. [127–139]. According
to the articles [140–142], the last one generates more power in case of PS as compared to
other structures. The GMMPT of an rPV array in case of PS represents a GO task.

In Table 12, we summarize the ML models for rPV from studies [130–136].
The comparative analysis of recent rPV methods in [130] revealed that a TCT rPV

based on a Static Shade Dispersion Physical Array Relocation (SD-PAR) algorithm and
Modified Harris Hawks Optimizer (MHHO) algorithm that generated a switching matrix
generates more power under PS as compared to other methods. Although, all metaheuristic
optimizers do not provide a GMMP in real time mode because of a slow convergence.

The goal of study [136] is a GMPPT of an rPV array based on the MFNN in a case of
PS. We created an optimal MFNN based on the dataset that contains the 20 kW PV array’s
signals under PS including PV array images that were congregated at the town Abakan
from 31 January 2018 through 31 December 2018. Figures 8 and 9 display the insolation
of the four solar panels’ groups for the time period 9:20 am 3 December 2018–9:21 am 3
December 2018. Figure 10 shows that the rPV system based on the MFNN outperforms an
rPV system based on GA because last one does not provide GMPP in this case. Similarly,
we evaluated the performances of the rPV system based on the MFNN and rPV system
based on GA on 100 test samples from the time period 1 December 2018–31 December 2018.
The comparative simulation results show the superiority in terms of robustness and control
speed of the created intelligent rPV system under PS that provides on average 30% more
energy as compared to a TCT rPV system based on GA.

Figure 8. The configuration scheme created by (a) the TCT rPV, (b) the rPV system based on the
MFNN, and (c) the rPV system based on GA.
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Table 12. Comparison of ML Technologies for Control of the Reconfigurable Solar Plants.

ML Technology Advantages/Disadvantages Performance

TCT rPV based on Static Shade
Dispersion Physical Array Relocation

(SD-PAR) algorithm and Modified Harris
Hawks Optimizer (MHHO) [130]

Disadvantage: GO-based, real-time
GMPPT of a solar plant are ineffective

because of the slow convergence

Technology generates more power under
PS as compared to other methods.

Reconfiguration methods based on a GA
[129,131]

Disadvantage: GO-based, real-time
GMPPT of a solar plant are ineffective

because of the slow convergence

The simulation results in Simulink for
TCT rPV revealed that the developed

method increased power: by 16.68% and
6.8% in three PS scenarios as compared to
the TCT and the Su Do Ku scheme [129];
in four PS scenarios as compared to TCT.

ANFIS and an OCS [132,133] -

Created method provided faster GMMPT
and an average of 21% more generated

power as compared to the P and O
algorithm

Fuzzy controller [134]

Disadvantage: the proposed scheme does
not provide MPPT under dynamic PS

due to constant threshold-based
switching of a fuzzy controller.

-

CNNs [135]
Advantage: Eight CNNs are

implemented by PyTorch and validated
on 1842 images under four PS scenarios

The VGG 19 provides the best result
(MAPE is 3.75%, RMSE is 0.0513,

accuracy is 88.47%).

MFNN that contains: a convolutional
block, RNNs and fuzzy units [136]

Advantage: MFNN is implemented by
authors software [20]. The trained MFNN

by processing of the signals from
ordinary sensors and PV array’s image

creates the GMMP interconnection matrix
and GMMP voltage in case of PS.

The results show the superiority of the
created intelligent rPV system under PS

in terms of robustness, control speed that
provides on average 30% more energy, as
compared to a TCT rPV system based on

GA

Figure 9. The solar panels groups’ insolation.



Sensors 2022, 22, 9060 23 of 33

Figure 10. Curves of the generated power of rPV system based on the MFNN and GA.

Summarizing, we identify an opportunity to use RNN for rPV that provides a GMMP
interconnection matrix and GMMP voltage under dynamic PS. Nevertheless, an rPV’s
payback period is about 20 years [127] solely in places where PS happens daily, or over the
full year leastwise in the seasons where solar production is great.

4. Future Technologies for Smart Solar Energy

The long-term contribution, including increased capacity of solar energy, depends
on solving the remaining tasks of grids integration, high costs, and low efficiency, mainly
through the research and development of a smart solar plant system based on integration
of cutting-edge technologies, including DNN [137–147]. To attain the smart optimization
and high efficiency of solar energy, the cloud, big data, ML, EC, IoT, quantum, and sensor
technologies need to be adaptively combined and implemented as smart grid, home, and
city applications. Figure 11 reflects the overlapping integration of these technologies into a
smart solar plant system. The integration of the above-mentioned cutting-edge technolo-
gies provides high efficiency of ML technologies for the solar plant’s design, forecasting,
maintenance, and control. Implementation of such cutting-edge ML technologies for the
solar plant’s design, forecasting, maintenance, and control provides digital transformation
of solar energy into smart solar energy. These ML technologies are implementations of a
basic ML model class which is represented on Figure 11 as an UML class diagram.

Figure 11 shows a method “Add” of a basic ML model class. This method adds a
quantum layer into a classical ML model to create a quantum ML model. This method can
be implemented by an integrating framework (Pennylane) for quantum computer simula-
tors [140]. A quantum-based solar plant failure detection model was developed in [141].
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Figure 11. Smart solar plant system.

IoT (Figure 11) provides an optimal solution to collect solar energy big data wirelessly
(Figure 11). In [137], the solution researchers integrated a solar plant failure detection
ML model. Future research can comprise the elaboration of a pipeline for implementing
a real time solar plant diagnostic system based on IoT, EC, and/or TinyML technolo-
gies [138]. In [139], researchers developed based on EC a lightweight ML real-time solar
plant failure detection model. Recent cloud-based monitoring solutions were developed
in [141,142]. Forthcoming ML technologies for solar energy will integrate cloud-based
solutions in which these technologies take full benefits of ML parallelism, data parallelism,
practically limitless big data and ML knowledge storage, and almost boundless parallel
computational resources.

The most complex issue of a smart sensor system is the self-learning of a sensor
system. The potential methods for smart sensor’s adaptive learning are memristors and
a spiking neural network [143]. In the future, a smart solar plant system will integrate a
self-supervised learning ML model zoo [144] that provides optimum ML technologies for
the solar plant’s design, forecasting, maintenance, and control.

Within the EU COVID-19 strategic reply, the smart energy standards define a cloud
platform specification for distributed solar big data ecosystem that will provide creation
of effective ML technologies for smart solar energy. The open solar energy data sources,
including big data, provide the development of cutting-edge ML technologies in solar
energy. Therefore, more open datasets with real data from solar sensor systems should be
shared with the research community.

The integration of the cloud, big data, ML, EC, IoT, quantum, and sensor technologies
will provide high efficiency of ML technologies for the solar plant’s design, forecasting,
maintenance, and control. Implementation of these technologies for the solar plant’s design,
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forecasting, maintenance, and control provides digital transformation of solar energy into
smart solar energy. The integrated electric grids are becoming increasingly reliable and
overall solar production costs are minimized.

5. Conclusions

We presented a structured (mostly in benchmark tables) review of the advances in ML
technologies for the solar plant’s design, forecasting, maintenance, and control where most
of the reviewed articles were published within the last five years.

ML methods are key elements of smart sensor systems of solar plants because they
automatically create smart models for the solar plant’s design, forecasting, maintenance,
and control and more effectively analyze exponentially growing big data as compared to
traditional methods. In this review, we briefly summarized our self-adaptive models for
sizing, forecasting, maintenance, and control of a solar plant based on an MFNN that were
automatically created with regard to a task’s complexity and overfitting problem.

In the reviewed studies, the smart sensors where signals of image sensor and the
CNN blocks strongly correlate provide high performance. There is an argumentative
direction to substitute non-NN smart models with a DNN-based model for the solar plant’s
design, forecasting, maintenance, and control because DNN provides better information
processing quality and performance as compared to non-NN smart models. The impact of
the ML technologies based on the proposed implementation scheme on a solar plant value
chain will mostly be associated with the cost of software development which implements
a ML sensor system based on ONNX, a developed software’s integration with SCADA,
and maintenance.

The most complex issue of a smart sensor system is the self-learning of a sensor
system. The potential methods for adaptive sensor learning are memristors and a spiking
neural network.

In addition, we have outlined several problems that can be considered for future
research in field of smart solar energy:

• In forecasting and failure detection, the usage of the DNNs such as transformers based
on an attention mechanism is a promising alternative.

• For failure detection and classification, there is a need to study the MPPT algorithms
based on RL and a spiking neural network under failure conditions.

• For diagnosis of a solar plant system based on thermal images, the usage of GANs is a
promising alternative.

• There is a need to propose a pipeline for implementing a real-time solar plant diagnos-
tic system based on IoT, EC, and/or TinyML technologies.

• The development of ML algorithms for real-time processing and decision making are
most in demand in solar plant systems.

The long-term contribution, including increased capacity of solar energy, depends
on solving the remaining tasks of coupling to electric grids, high costs, and low efficiency,
mainly through the research and development of a smart solar plant system based on
the integration of cutting-edge technologies, including DNN. Within the EU COVID-19
strategic reply, the smart energy standards define a cloud platform specification for a
distributed smart solar big data ecosystem that will provide the creation of effective ML
technologies for smart solar energy. The open solar energy data sources, including big
data, provide the development of cutting-edge ML technologies in solar energy. Therefore,
more open datasets with real data from solar plant sensor systems should be shared with
the research community. In order to achieve the smart optimization and high efficiency of
solar energy, the cloud, big data, ML, EC, IoT, quantum, and sensor technologies need to be
adaptively combined and implemented as smart grid, home, and city applications. The
integration of the above-mentioned cutting-edge technologies will provide high efficiency
of ML technologies for the solar plant’s design, forecasting, maintenance, and control.
Implementation of these technologies for the solar plant’s design, forecasting, maintenance,
and control will provide digital transformation of solar energy into smart solar energy. The
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integrated electric grids are becoming increasingly reliable, and overall solar production
costs are minimized. Forthcoming ML technologies for solar energy will integrate cloud-
based solutions, in which these technologies take full benefits of the ML parallelism, data
parallelism, practically limitless big data and ML knowledge storage, and almost boundless
parallel computational resources.
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Abbreviations

SCADA Supervisory control and data acquisition
ML Machine learning
PID Proportional integral derivative
CRISP DM Cross Industry Standard Process for Data Mining
ONNX Open neural network exchange
PCA Principal component analysis
NN Neural network
LR Linear regression
SVM Support vector machine
RF Random forest
DT Decision tree
DL/DNN Deep neural learning/network
ANN Artificial neural network
RNN Recurrent neural networks
CNN Convolutional neural networks
XGBoost Extreme gradient boosting
SGD Stochastic gradient descent
ACC Accuracy
MCC Matthew’s correlation coefficient
ROC Receiver operating characteristic
AUC Area under the curve
MAE Mean absolute error
CEEMDA Complete ensemble empirical mode decomposition with adaptive noise
nRMSE Normalized RMSE
nMAE Normalized MAE
STLBO Simplified Teaching Learning Based Optimization
ANFIS Adaptive network based fuzzy inference system
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PSO Particle swarm optimization
QK-CNN quad-kernel deep CNN
MPPT Maximum power point tracking
NSRDB National solar radiation data base
MPP Maximum power point
CGO Chaos game optimizer
CARO Applied chaotic reproduction optimization
RH Relative humidity
CSA Cuckoo search algorithm
BMO Bird Mating Optimization algorithm
MSSO Modified simplified swarm optimization algorithm
CI Cloud index
WS Wind speed
Pr pressure
MD QPSO Multidimensional quantum behaved particle swarm optimization
C-LSTM Constrained LSTM
kNN k-Nearest Neighbors
ETR Extra trees regressor
RMSE Root-mean square error
CWT Continuous wavelet transform
IFR Infrared
UAV Unmanned Aerial Vehicle
IS Isolation Forest
LOF Local Outlier Factor
STC Standard test conditions
DQL Deep Q-learning
DDPG deep deterministic policy gradient
RBF NN radial basis function neural network
TCT Total-cross-tied
SD-PAR Shade Dispersion Physical Array Relocation
MHHO Modified Harris Hawks Optimizer
BPFPA Bee Pollinated Flower Pollination Algorithm
FPA Flower Pollination Algorithm
MPCOA Mutative Scale Parallel Chaos Optimization Algorithm
MFNN Modified fuzzy neural net
R-JADE Repaired adaptive differential evolution
TVIWACPSO PSO with time varying inertia weight and acceleration coefficients
BBO-HCS Biogeography optimization algorithm based heterogeneous cuckoo search
ABC Artificial Bee Colony
NMS Nelder Mead algorithm
BBO Biogeography Based Optimization
LM Levenberg–Marquardt
PSA Parallel Swarm Algorithm
IADE Improved Adaptive Differential Evolution
GGHS Grouping based global harmony search
ABSO Artificial Bee Swarm Optimization
IGHS Innovative Global Harmony Search
HS Harmony Search
SA Simulated Annealing
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