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Abstract: In sand-dust environments, the low quality of images captured outdoors adversely affects
many remote-based image processing and computer vision systems, because of severe color casts,
low contrast, and poor visibility of sand-dust images. In such cases, conventional color correction
methods do not guarantee appropriate performance in outdoor computer vision applications. In this
paper, we present a novel color correction and dehazing algorithm for sand-dust image enhancement.
First, we propose an effective color correction method that preserves the consistency of the chromatic
variances and maintains the coincidence of the chromatic means. Next, a transmission map for
image dehazing is estimated using the gamma correction for the enhancement of color-corrected
sand-dust images. Finally, a cross-correlation-based chromatic histogram shift algorithm is proposed
to reduce the reddish artifacts in the enhanced images. We performed extensive experiments for
various sand-dust images and compared the performance of the proposed method to that of several
existing state-of-the-art enhancement methods. The simulation results indicated that the proposed
enhancement scheme outperforms the existing approaches in terms of both subjective and objective
qualities.

Keywords: sand-dust image enhancement; chromatic variance consistency; dehazing; gamma correc-
tion; cross-correlation; color correction

1. Introduction

Outdoor images are captured in a wide range of light atmospheres. Due to uncontrol-
lable factors, the performance of outdoor vision systems, such as intelligent surveillance
systems, autonomous driving cars, image-based sensing systems, and traffic monitoring
systems, can be degraded. In recent decades, sand-dust has been identified as a threat
to human life and health. It also has an adverse effect on outdoor vision applications.
In sand-dust weather conditions, captured images appear overall to be yellow or even
red, because the radius of sand-dust particles is much larger than that of haze and fog
particles [1]. Therefore, sand-dust images adversely affect various remote computer vision
systems.

Figure 1 shows sand-dust image examples and their corresponding atmospheric light
images and histograms. As shown in Figure 1, the acquired images appear to be overall
yellow or even red because blue and green light is absorbed by sand-dust particles much
more easily than red light. The aim of sand-dust image enhancement is real-time correction
of these severe color casts and improvement of image contrast and detail. Since sand-dust
images have different color distribution characteristics from hazy or underwater images,
direct application of haze removal [2–5] or underwater image enhancement methods [6–8]
to sand-dust images can lead to unsatisfactory results. Thus, sand-dust image enhance-
ment is a more challenging problem than conventional dehazing or underwater image
enhancement.
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the convex sum is obtained from the standard deviation (SD) of the color channels. 
We show that this method preserves the consistency of the variance of chromatic 
channels. In addition, we propose a background luminance-preserving image nor-
malization method for maintaining the coincidence of the mean of each color chan-
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• Enhancement—A dehazing framework is adopted to enhance color-corrected sand-
dust images. The saturation-based transmission map estimation [4] is modified using 
the gamma correction technique. An image-adaptive gamma value is used to esti-
mate the transmission map; 

• Final color correction—We present a color pixel correction algorithm based on the 
cross-correlation of chromatic histograms to reduce reddish artifacts remaining in the 
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Figure 1. Sand-dust image and corresponding atmospheric light images and chromatic histograms.

Recently, the amount of research on the enhancement of sand-dust images has been
increasing. A physical image degradation model is frequently used for enhancing sand-
dust images. The atmospheric scattering model (ASM) [9] is commonly used in sand-dust
image restoration algorithms. Other popular approaches utilize various color correction
algorithms customized to sand-dust weather conditions to enhance images. Machine
learning-based enhancement approaches have not yet been actively pursued because there
is no large benchmark dataset of sand-dust images. Various sand-dust image enhancement
methods are briefly reviewed in the following section.

This paper presents a novel color correction-based sand-dust image enhancement
method. The proposed method consists of three main states, namely initial color correction,
enhancement, and final color correction.

The main contributions of this paper are as follows:

• Initial color correction—A novel color correction algorithm is introduced using the
convex sum of the red or blue channels based on the green channel. The weight for
the convex sum is obtained from the standard deviation (SD) of the color channels. We
show that this method preserves the consistency of the variance of chromatic channels.
In addition, we propose a background luminance-preserving image normalization
method for maintaining the coincidence of the mean of each color channel;

• Enhancement—A dehazing framework is adopted to enhance color-corrected sand-
dust images. The saturation-based transmission map estimation [4] is modified using
the gamma correction technique. An image-adaptive gamma value is used to estimate
the transmission map;

• Final color correction—We present a color pixel correction algorithm based on the
cross-correlation of chromatic histograms to reduce reddish artifacts remaining in the
enhanced images.

• The proposed method generates reasonable enhancement results in a wide variety of
sand-dust images.

The remainder of this paper is organized as follows. Section 2 provides a brief review
of sand-dust image enhancement methods. The motivation for this work is presented in
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Section 3. The proposed algorithm is presented in Section 4. In Section 5, the performance
of the proposed method is compared to that of several existing methods using experimental
results. Section 6 presents the conclusion.

2. Related Works
2.1. Image Degradation Model-Based Approaches

Image degradation model-based approaches mainly adopt the ASM, which is widely
used for dehazing and underwater image enhancement. However, because the sand-dust
images have a different color veil from the hazy or underwater images, the ASM is often
applied with various color correction methods.

Huang et al. [10] presented a visibility restoration technique based on the dark channel
prior (DCP) [2]. To prevent insufficient estimation of haze thickness, a haze thickness
estimation module was proposed based on a Laplacian-based gamma correction, and the
actual scene color was restored using the Laplacian-based white patch retinex technique.
However, the algorithm produced a bluish artifact for most sand-dust images. The artifact
appeared to exist because the weak blue channel and the strong red channel were not
considered in the ASM. Yu et al. [11] proposed a sand-dust image enhancement method
using the ASM and information loss constraint. Although this method accurately estimated
the atmospheric light by iterating it to compensate for the color shift, the shortcoming
was the emergence of halos. Shi et al. [12] presented a DCP-based image enhancement
algorithm for halo elimination. The color components in the Lab color space were used to
remove the color shift. Furthermore, the improved DCP was used to remove haze in the
RGB color space. Finally, the brightness component in the Lab color space was stretched
to enhance contrast. This method effectively improved the visibility of sand-dust images;
however, the colors in recovered images were faint.

Sand-dust images have a weak blue component and a strong red component. There-
fore, the conventional DCP approach cannot effectively remove sand-dust effects from
images. Gao et al. [13] proposed a model-based sand-dust image restoration algorithm
using the blue channel prior (BCP), which inverted the blue color component. The at-
mospheric light and the transmission map were estimated using the BCP. However, this
method failed to recover degraded images with heavy sand-dust effects. Cheng et al. [14]
employed blue channel compensation and used guided image filtering to enhance sand-
dust images. The blue channel technology was used to improve image contrast and white
balancing technology was exploited to resolve the color distortion. Multilayer decompo-
sition and multiscale fusion technologies were used to restore important faded features
and edge information. This approach generated reasonable enhancement results. However,
the results for sand-dust images with severe color casts were unsatisfactory. Recently,
Shi et al. [15] introduced an enhancement algorithm based on red and blue channels. To
correct the color cast and enhance the visibility of a sand-dust image, the method pro-
posed a red channel-based correction function for correcting color casting error and a blue
channel-based dust particle removal for eliminating sand-dust particles. The method was
fast; however, some restored images exhibited over-enhanced colors. Lee [16] presented a
color balancing method using the singular value decomposition and an adjustable DCP
to enhance color-balanced sand-dust images. However, this method did not completely
remove dust veils and dimmed colors from the enhanced images.

2.2. Color Correction-Based Approaches

The main problem of sand-dust image enhancement is severe color shifts or casts. The
general color correction-based algorithms [17,18] are not directly applicable to adjusting the
color shifts or casting in sand-dust images. Therefore, color correction approaches adopted
to sand-dust weather conditions are required to enhance sand-dust images.

Fu et al. [19] proposed a single image-based enhancement method for sand-dust im-
ages utilizing a fusion strategy. They generated two images with different brightness levels
by applying two different gamma corrections to the same sand-dust image. The enhanced
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image was obtained by fusing the two gamma-corrected images with three weighted maps
that represented sharpness, chromaticity, and prominence. The enhancement was rea-
sonable in weak sand-dust conditions. However, the method failed to enhance images
with heavy sand-dust effects. Yan et al. [20] adopted a global fuzzy enhancement [21] and
band-limited histogram equalization for sand-dust image enhancement. In this method, a
partially overlapped sub-block histogram equalization [22] was applied to further enhance
image details. Although the contrast of restored sand-dust images was improved, the
overall enhancement effect was unsatisfactory. Al-Ameen [23] introduced an enhancement
algorithm based on tuned tri-threshold fuzzy intensification operators, which were applied
to images with a different threshold for each color channel. However, the method did
not fully eliminate color casts. Wang et al. [24] proposed a sand-dust image enhancement
algorithm in the Lab color space. Two chromatic components were combined to perform
color correction and saturation stretching. In addition, a fast local Laplacian filtering was
employed to the lightness component to enhance image details. However, this method
produced blueness in the enhanced images.

In recent years, Shi et al. [25] proposed a normalized gamma transformation-based
contrast-limited adaptive histogram equalization for sand-dust image enhancement in the
Lab color space. The contrast of the lightness component of the sand-dust images was
enhanced using the contrast-limited adaptive histogram equalization [26], followed by a
normalized gamma correction operation. For chromatic components, a gray-world-based
color correction method was adopted. It generated reasonable sand-dust images. However,
the performance was poor for severely degraded images, where it was unable to remove
dust haze. Park et al. [27] presented an effective sand-dust image enhancement method
using successive color balance with coincident chromatic histograms. This method intro-
duced a pixel-adaptive color correction algorithm based on the SD of chromatic histograms,
followed by a green-mean-preserving normalization technique. Furthermore, a histogram
shifting method was introduced to make the red and blue histograms overlap with the
green histogram as much as possible. It provided a reasonable restoring performance in
terms of both subjective and objective measures. Gao et al. [28] proposed a color balance
technique to restore sand-dust images in the Lab color space. In the first step, the lost value
of the blue channel was compensated using the green channel. The brightness component
in the Lab color space was decomposed by guided filtering to obtain the detail compo-
nent. A nonlinear mapping function and a gamma function were also applied to the detail
component to enhance the image detail information. This method is suitable for real-time
applications and can also be applied to restore underwater and hazy images.

2.3. Machine Learning-Based Approaches

Machine learning-based techniques are widely applied in the field of image enhance-
ment. However, machine learning-based methods have not yet been studied in earnest in
the field of sand-dust image enhancement. Recently, a varicolored end-to-end dehazing
network [29] was proposed to improve various types of varicolored hazy images. This
network comprised a haze color correction module which generates a color balanced hazy
image and a visibility improvement module to recover a haze-free image. Li et al. presented
a semi-supervised varicolored dehazing network [30] based on a physically disentangled
joint intra- and inter-domain adaptation paradigm. They exploited the knowledge of the
ASM that estimated the atmospheric light to determine the color distortion degree. These
two networks were useful against weak color veils; however, they did not effectively re-
move strong sand-dust veils. Lang et al. proposed an unsupervised learning algorithm [31]
that used a histogram-based color correction image as an input to improve sand-dust
images. This method generated acceptable image results; however, it often produced
over-enhancement of faint colors in the restored images.
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3. Motivation

Various color balance techniques, such as gray-world assumption (GWA) [32], shade-
of-gray (SOG) [33], max-RGB [34], and gray-edge [17], can be used as an initial step in
sand-dust image enhancement. Recently, Ancuti et al. [35] presented a color channel
compensation (3C) method, which can be applied as a pre-processing or post-processing
step of various image enhancement tasks. In addition to these methods, color correction
algorithms specializing in improving sand-dust images have been proposed in combination
with various image enhancement methods. However, almost all enhancement techniques
do not perform successfully in cases of extreme color distortion, and over-enhancement
frequently appears for strongly attenuated colors. In this paper, we investigate why the
conventional color correction methods based on the mean of color channels frequently fail
to adequately enhance sand-dust images.

Figure 2 presents the color correction results for a sample sand-dust image yielded by
various compensation methods. As shown in Figure 2, the mean values of the red, green,
and blue channels of the sample sand-dust image are 220, 155, and 71, respectively. These
mean values represent a typical sand-dust image with a weak blue channel and a strong
red channel. The GWA, SOG, and max-RGB methods tend to make the means of the red
and blue color components similar to that of the green channel. However, the SD of the
weak blue channel increases (from 22 to 49 for GWA, 45 for SOG, and 41 for max-RGB),
which produces a bluish corrected image. For this reason, the corrected image has a bluish
or slightly purple tint. The 3C method tends to change the blue and red histograms to
match that of the green channel, but the SD value of the blue channel does not significantly
increase. Because the corrected image exhibits narrow chromatic histograms, it may be
dimmed.
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The GWA, SOG, and max-RGB methods work on the same assumption that a dif-
ferent order of the Minkowski norm of the reflectance in a scene is achromatic. These
color correction algorithms only consider the coincidence of chromatic means of the three
channels, but not the SDs of the color channels. The 3C method is based on balancing two
opponent color pairs toward the origin. All methods tend to equalize the mean of each
color component. In most cases, during the sand-dust image color correction, the SD of
the blue channel increases significantly when the weak blue channel is strengthened. This
produces bluish or purplish images. Figure 3 presents color-compensated sand-dust image
examples. As shown in Figure 3, the GWA, SOG, and max-RGB algorithms fail to recover
severe color shifts in reddish sample images. The 3C method does not successfully enhance
the sand-dust images, either.
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In summary, we can conclude that the results of sand-dust image enhancement largely
depend on the adopted color correction method. The existing color correction algorithms
only consider the coincidence of the chromatic means of the three channels, but not the
SDs of the color channels. In most cases, the SD of the blue channel increases significantly
during the strengthening of a weak blue channel. In this paper, we introduce a novel
color-correction based on chromatic SD consistency to enhance sand-dust images with a
small color shift.
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4. Proposed Method
4.1. Initial Color Correction

Let Ic (c∈{r,g,b}) be a color channel of image I, and let Ic(x) be the pixel value of Ic at
spatial location x. Bold characters represent matrices or color pixel vectors and non-bold
italic characters imply scalar variables. In this paper, we introduce a convex sum method
for compensating the color values based on the SD of a given color channel Ic. Let Ic,SD be
the first corrected color channel using the SD weight obtained by the following operation:

Ic,SD(x) = αc Ic(x) + (1− αc)Ig(x) (1)

where αc is a weight defined as follows:

αc =
σm

σc + σg
(2)

where σm = min(σc,σg). If σm = σc (σg > σc), it indicates that Ic is a weak channel, such as
the blue channel in a sand-dust image. In this case, color channel Ic with a low SD will be
significantly affected by the green channel. On the contrary, color channel Ic will not be
strongly affected by the green channel if σm = σg (σg < σc). This situation can produce a
strong red component in the sand-dust image.

We will now analyze the effect of the proposed color correction using the SD weight
shown in (1). The variance of corrected channel Ic,SD is calculated as follows:

σ2
c,SD = α2

c σ2
c + (1− αc)

2σ2
g + 2αc(1− αc)σcσgρc,g, (3)

where σc,1 is the SD of Ic,1, and ρc,g is the correlation coefficient between channels Ic and Ig.
When Ic is fully decayed or uniform, σc = 0 and αc = 0. Thus, Ic,SD equals Ig. On the other
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hand, when σc = σg, then, αc = 1/2. In this case, the variance of Ic,SD (σc = σg) is simply
calculated as follows:

σ2
c,SD

∣∣∣
σc=σg

=
1 + ρc,g

2
σ2

g . (4)

As can be seen, even if σc = σg, the variance of the corrected channel is not always the
same as that of the green channel but rather depends on the correlation coefficient ρc,g.

To further examine the effectiveness of the proposed color correction method, it is
useful to consider (3) in terms of the SD ratio. Let rc be the SD ratio of the corrected channel
to that of the green channel, that is the following:

rc =
σc

σg
. (5)

When σg > σc, we notice that σm = σc and 0 < rc < 1. Substituting σc = rcσg and σm = σc
into (3), we obtain the following:

σ2
c,SD =

r4
c + 2ρc,gr2

c + 1

(1 + rc)
2 σ2

g . (6)

In the proposed algorithm, the green channel is not changed in this step, thus,
σg,SD =σg. The SD ratio of the corrected channel, when σg > σc, rc,SD (σg > σc), is calculated
as follows:

rc,SD(σg > σc) =
σc,SD

σg,SD
=

√
r4

c + 2ρc,gr2
c + 1

1 + rc
. (7)

When σg < σc, σm equals σg and rc > 1. In a similar way, the SD ratio of the corrected
color channels can be obtained as follows:

rc,SD(σg < σc) =
σc,SD

σg,SD
=

√
2r2

c (1 + ρc,g)

1 + rc
. (8)

The term in the numeration in (7) can be rearranged to give the following:

r4
c + 2ρc,gr2

c + 1 = r4
c − 2r2

c + 1 + 2ρc,gr2
c + 2r2

c = (r2
c − 1)

2
+ 2r2

c
(
1 + ρc,g

)
. (9)

When σg > σc, 0 < rc < 1. Thus, the term (r2
c − 1)2 in (9) is very small. Therefore, we

can use the following approximation:√
(r2

c − 1)2 + 2r2
c
(
1 + ρc,g

)
1 + rc

≈

√
2r2

c
(
1 + ρc,g

)
1 + rc

. (10)

From (10), we can notice that rc,SD(σg > σc) ≈ rc,SD(σg < σc). In conclusion, we can
expect that the SD ratio of the compensated channel to the green channel is controlled by
nearly the same condition regardless of illumination.

When rc is 0.5, it indicates that the SD of a certain color channel is half the SD of the
green channel, that is σc = 0.5σg. From (7), the SD ratio of the compensated color channel
becomes 0.833 when ρc,g = 1. The SD of this color channel changes to 0.833 of the SD of the
green channel. Thus, the SD of a weak channel is increased using the proposed method.
On the other hand, consider the case of σc = 2σg, that is, rc = 2. This case can represent
correcting a strong red channel. Using (8), we obtain the value of rc,SD = 1.333. The SD of a
strong red channel, which initially was twice the SD of the green channel, is reduced to
1.333 of the SD of the green channel.

Park et al. [27] proposed a green-mean-preserving image normalization technique
for sand-dust image enhancement based on the assumptions that all the color values are
nearly equivalent and the color in each channel averages to gray over the entire image.
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This simple approach can effectively remove the color veil from sand-dust images. In this
paper, we present a modified green-mean-preserving image normalization method based
on the preservation of background luminance. The proposed normalization algorithm can
prevent the color of the corrected image from fading.

Let B(x) be the background-luminance-preserving factor, defined as follows:

B(x) =
Ir(x) + Ig(x) + Ib(x)

Ir,SD(x) + Ig,SD(x) + Ib,SD(x)
. (11)

Let Ic,BLC(x) be the background luminance-compensated color-corrected channel,
which is calculated as follows:

Ic,BLC(x) = Ic,SD(x) B(x). (12)

If the background intensity of Ic,SD is increased by the color correction of (1), B(x) is
smaller than 1. Therefore, the background intensity of Ic,SD remains the same as that of
the input color channel Ic. In the opposite case, B(x) is greater than 1, and the background
intensity is maintained. Let Ic,LP(x) be the corrected color channel obtained using the
background luminance-preserving image normalization, defined as follows:

Ic,LP(x) =
Ic,BLC(x)− µ(Ic,BLC)

pctp(Ic,BLC)− pctq(Ic,BLC)
+ µ

(
Ig,BLC

)
, (13)

where µ(z) is the mean of z, pctp(z) is the p-th percentile of z, and q = 100− p. The percentile
operation is used to remove outlier pixels from the corrected sand-dust image.

Figure 4 illustrates the results of the green-mean-preserving normalization and the
proposed background-luminance-preserving image normalization methods. Each normal-
ization algorithm is followed by the color correction technique of (1). As shown in Figure 4,
the normalization results of a non-severe sand-dust image (the first column in Figure 4) are
similar. However, the two normalization algorithms achieve different correction results
for severe sand-dust image samples. The results using Park et al.’s [27] method produce
grayish corrected images, where the red component is particularly strongly reduced. On the
contrary, the proposed normalization technique generates more colorful correction images.
From this comparison, it can be concluded that the background luminance preservation
can effectively ensure the consistency of the mean of the color channels.
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Finally, we exploit the well-known image adjustment algorithm to stretch the dynamic
range of pixels, which results in image brightening. The last color corrected image, Ic,CCF(x)
is calculated by the following:

Ic,CCF(x) =
Ic,LP(x)−min

c

(
min

x
Ic,LP(x)

)
max

c

(
max

x
Ic,LP(x)

)
−min

c

(
min

x
Ic,LP(x)

) . (14)

In this study, we discard color pixel values greater than 99% and smaller than 1%.

4.2. Enhancement Based on Dehazing Technique

Almost all of the sand-dust image enhancement methods use color correction and
ASM-based dehazing techniques. In this paper, we adopt the saturation-based transmission
estimation algorithm [4] and modify it using the gamma correction prior (GCP) [36] in the
enhancement step to improve the quality of sand-dust images.

In the ASM [9], the degraded image is represented as follows:

Hc(x) = Jc(x)t(x) + Ac(1− t(x)), (15)

where Hc(x) is the degraded channel, Jc(x) is the original color channel, Ac is the atmospheric
light estimated from Ic, and t(x) is the transmission map. If estimates of t(x) and Ac are
available, Jc(x) can be recovered from a single image as follows:

Jc(x) =
Hc(x)− Ac

t(x)
+ Ac. (16)

In [4], the transmission map is calculated using the intensity and saturation compo-
nents as follows:

t(x) = 1− KH(x)
(

1− SH(x)
SJ(x)

)
, (17)

where KH(x) is the intensity of the degraded image H normalized by A, and SH(x) and
SJ(x) are the saturation components of H and J in the HSI color space, respectively.
Here, t(x) is a function of a single saturation value SJ(x). However, estimating SJ(x)
is challenging. For a color pixel Gc(x) at location x in the HSI color space, the inten-
sity is defined as KG(x) = (Gr(x)+ Gg(x)+ Gb(x))/3, while the saturation is calculated as
SG(x) = 1 − mG(x)/KG(x), where mG(x) is the minimum pixel value at location x. We
modify t(x) in (17) using the definitions of intensity and saturation as follows:

t(x) = 1− KH(x)

1−
1− mH(x)

KH(x)

1− mJ(x)
KJ(x)

 = 1− KH(x)
KJ(x)mH(x)− KH(x)mJ(x)
KJ(x)KH(x)− KH(x)mJ(x)

. (18)

In this study, two unknown values, KJ(x) and mJ(x), are estimated using the GCP. The
GCP is introduced into the dehazing framework, and then used to estimate the transmission
map. We simplify the GCP to the following form:

Vc(x) = Hc(x)
Γ, (19)

where Vc(x) is the processed virtual pixel and Γ is the gamma correction factor. Here, Vc(x)
is used as an efficient initial image to estimate the transmission map and is successfully
applied to enhance hazy images. Therefore, two unknown values KJ(x) and mJ(x) in (18)
are estimated using the intensity and minimum values of V at location of x as follows:

KJ(x) ≈ KV(x), (20)

mJ(x) ≈ mV(x), (21)
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Finally, the transmission map is estimated as follows:

t(x) ≈ 1− KH(x)
KV(x)mH(x)− KH(x)mV(x)
KV(x)KH(x)− KH(x)mV(x)

. (22)

Figure 5 shows a virtual image obtained using the simplified GCP for a sample
hazy image with ground truth. As shown in Figure 5, haze is effectively removed from
the obtained virtual image, which demonstrates a reasonable restoration of intensity and
minimum values. However, it also exhibits poor restoration of color, manifested by dimmed
color in the corrected images. The mean squared error (MSE) between the ground truth (J)
and hazy image (H) is 9.93. The MSE between the ground truth (J) and gamma-corrected
virtual image (V) is reduced to 4.71. Furthermore, the MSE between Kv and KJ is 3.45, and
the MSE between mv and mJ is 2.32. In conclusion, a virtual image V can effectively be used
as an initial image to estimate the transmission map.
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Figure 5. Virtual image using GCP for a sample hazy image with ground truth. Intensity and
minimum images for three images and mean squared error values corresponding to hazy and virtual
images for ground truth are drawn.

To obtain V using (19), the value of Γ is determined. Large Γ values are typically
suitable for images with heavy haze (we actually use normalized pixel values between 0 and
1), while small Γ values can be used for of lightly hazed images. In this paper, we present
a simple method for determining an image-adaptive Γ value to obtain a virtual image.
The image-adaptive Γ value for each hazy image is determined as a simple exponentially
increasing function of the image mean value with the maximum (Γmax) and minimum
(Γmin = 1) limits, as follows:

Γ = peµ(H) + q. (23)
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where p and q are the coefficients that determine the shape of the exponential function, which
are easily calculated using two conditions of (µ(H),Γ) = (0,Γmin) and (µ(H),Γ) = (1,Γmax).

In the ASM of (15), the enhanced image is obtained by replacing Hc with Ic,CCF of (14)
to calculate Ac,CCF, tCCF(x), and ΓCCF. We can, thus, produce an enhanced image by using
Ic,CCF in (16), as follows:

Ic,E(x) =
Ic,CCF(x)− Ac,CCF

tCCF(x)
+ Ac,CCF, (24)

where Ic,E(x) is the enhanced sand-dust image.
Figure 6 shows the enhanced images produced by applying (22) with µ(Ic,CCF) and

the corresponding ΓCCF value when Γmax is assumed as 2. As shown in Figure 6, Ic,CCF
images are enhanced with different ΓCCF values. As the value of Γmax increases, a stronger
enhancement is achieved. However, a strong enhancement can cause the red pixels to
stand out. To prevent this, we introduce a simple color compensation algorithm using
cross-correlation to achieve the coincidence of chromatic histograms.
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Figure 6. Enhanced images produced using the proposed dehazing method. Mean values of color-
corrected images and corresponding gamma values are shown for Γmax = 2.

4.3. Final Color Correction

The enhancement process increases the image contrast and colors. As shown in the
sample images at the bottom of Figure 6, some color components, especially red, can
be strengthened through the enhancement process. It is known that the overlap area
of the color histograms reflects the variation in the color temperature of the image, and
the maximum overlap area is responsible for the standard color temperature. Therefore,
histogram shifting algorithms [27,37] make the red and blue histograms overlap the green
histogram as much as possible. However, the shifting methods based on the maximum
overlap area have a limitation of the shifting range because the computational cost increases
rapidly as the shifting range increases. In this paper, we introduce a novel chromatic
histogram coincidence method using the cross-correlation technique with no restriction on
the range of shifting with the same computational cost.

Before performing the cross-correlation operation, the green-mean-preserving nor-
malization method [27] is applied to the enhanced image Ic,E(x), which generates I′c,E(x).
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To avoid the effect of background luminance, the background-normalized pixel value for
I′c,E(x) is obtained as follows:

In
c,E(x) =

I′c,E(x)
I′r,E(x) + I′g,E(x) + I′b,E(x)

, (25)

where In
c,E(x) is the normalized pixel value. Let hc,E be the histogram function of In

c,E(x)
with 256 bins and let hc,E(k) be the number of pixels with a value of k (0 ≤ k ≤ 255). The
cross-correlation between the green histogram, hg,E, and the other color histogram, hc,E, is
defined as follows:

Agc(τc) = ∑
k

hg,E(k)hc,E(k + τc), (26)

where Agc(τc) is the cross-correlation, and τc (−255 ≤ τc ≤ 255) is the lag parameter. We
assume that the coincidence of the chromatic histograms occurs when the Agc(τc) value
reaches its maximum. The maximum lag τc,max is obtained as follows:

τc,max = argmax
τc

Agc(τc). (27)

Using τc,max, the final color corrected image is computed as follows:

Ic,CCL(x) = I′c,E(x) + τc,max, (28)

where Ic,CCL(x) is the final enhanced sand-dust image. According to the definition of
cross-correlation, τg,max is always 0, which results in no shift in the green histogram

Figure 7 shows several examples of the resultant enhanced image samples using the
final color correction algorithm. In the corrected image with a light sand-dust effect in
the first column from the left, the maximum lag values corresponding to the red and blue
histograms are negligible. The enhanced image in the second column has τr,max = −15
and τr,max = 1, which results in a reduced red component, indicating a more robust image
enhancement. In the last column, an enhanced image with a slightly reduced red and
slightly strengthened blue channel is demonstrated. In conclusion, the cross-correlation-
based final color correction strategy can adaptively shift the chromatic histograms and
fine-tune the color cast.
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4.4. Summary of Proposed Method

Figure 8 shows the steps in the entire algorithm of the proposed sand-dust image
enhancement method. For a given sand-dust image Ic, the first corrected color channel Ic,SD
is obtained based on the SD weight using (1). The initial color correction is performed, using
(13) and (14) in a row. In the enhancement step, the atmospheric light, Ac,CCF, is estimated
using Tang et al.’s [38] method. We essentially use (17) to estimate the transmission
map, tCCF. It is known that dehazing results are unaffected by different Ac,CCF estimation
methods [4]. The enhanced image Ic,E is computed using (24). The restored image Ic,CCL
undergoes final color correction strategy and is obtained using τc,max and the pixel sift
algorithm based on (28).
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5. Simulation Results

To verify the effectiveness of the proposed sand-dust image enhancement method, we
test it on 245 sand-dust images [27]. The performance of the proposed approach is compared
to those of five state-of-the-art algorithms, namely, fusion-based enhancement (FBE) [19],
visibility enhancement via tri-threshold fuzzy intensification operators (TFIO) [23], halo-
reduced dark channel prior (HRDCP) [12], normalized gamma transformation (NGT) [25],
and successive color balance (SCB) [27]. The codes for the five sand-dust image enhance-
ment methods were downloaded from their respective project sites, and the code of the
proposed algorithm and sand-dust image dataset are available in [39].

5.1. Computation Time

The proposed method was implemented on an Intel i7–107000K CPU @ 3.80 GHz
processor with 48 GB RAM without multithreading acceleration. The code was written
in non-optimized Python in the Linux Ubuntu 18.04.6 LTS environment. The comparison
methods were implemented in the same environment. The execution time was averaged
over 10 runs. The durations of image reading and writing were excluded.

Table 1 lists the execution times for various image sizes. As shown in Table 1, on the
average, FBE, TFIO, and HRDCP require long execution times, while SCB and NGT execute
the required operations faster than the remaining methods. The execution times of our
algorithm are generally short for small images and achieve the third rank for large images.
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Table 1. Execution times of various sand-dust image enhancement methods (Unit—second).

Image Size

Method 640 × 360 1000 × 750 2000 × 1091 4032 × 3024

FBE [19] 0.160 0.644 2.187 9.856
TFIO [23] 0.034 0.221 1.834 28.807

HRDCP [12] 1.095 4.306 14.128 64.767
NGT [25] 0.048 0.192 0.582 2.696
SCB [27] 0.214 0.232 0.443 1.433

Proposed method 0.051 0.233 0.775 3.828

5.2. Ablation Study

The proposed method comprises three steps. We first used various quantitative mea-
sures to evaluate the effectiveness of the proposed method by examining the results of each
step. Because there are no commonly agreed-upon quantitative evaluation measures for
sand-dust images, we adopted the following four popular non-reference quality measures
to examine the approximate tendency of quantitative image quality achievement: the natu-
ralness image quality evaluator (NIQE) [40], no-reference perception-based image quality
evaluator (PIQE) [41], blind/referenceless image spatial quality evaluator (BRISQUE) [42],
and no-reference image quality metric for contrast distortion (NIQMC) [43]. Smaller NIQE,
PIQUE, and BRISQUE, values represent better image qualities, whereas, for NIQMC, the
reverse is true.

Table 2 presents average quantitative metric values according to the progress of each
step. As the step progresses, the NIQMC score gets better, while the PIQE score gets worse.
On the other hand, two quantitative values, including NIQE and BRISQUE, exhibit the
highest score when only Step 1 (Ic,CCF) is applied. These two metric values degrade slightly
in Step 2 (Ic,E) and then achieve better scores in the final step (Ic,CCL).

Table 2. Average quantitative metric values for all test images according to the progress of each step.

Step NIQE PIQE BRISQUE NIQMC

Step 1: Ic,CCF 3.378 42.554 31.768 5.415
Step 2: Ic,E 3.417 43.776 32.202 5.483

Step 3: Ic,CCL 3.404 44.155 32.141 5.537

Figure 9 illustrates the intermediate results of the presented enhancement process.
The SD weight-based correction algorithm is designed to obtain the chromatic variance
consistency. Therefore, the intermediate image Ic,SD has not yet removed the sand-dust veil,
as shown in the second row of Figure 9. The sand-dust veil is removed after applying the
proposed background-luminance-preserving image normalization algorithm. The obtained
image Ic,CCF can be used as an enhanced result when the hazy effect on the sand-dust image
is weak. To eliminate the hazy effect, we introduce the dehazing framework. The result
of the fourth row of Figure 9 shows the result Ic,E of performing haze removal on Ic,CCF.
Because the dehazing is basically accompanied by image sharpening, color information
can be distorted. Therefore, the proposed method finally uses the pixel shifting method
to remove color distortion caused by the haze removal. The fifth row of Figure 9 presents
the final corrected result Ic,CCL. The result images are enhanced, and slight color casts are
restored. From the results of the ablation study, it is believed that the quantitative metric
values for enhanced sand-dust images do not yet have great reliability. Therefore, we
compare our method with the existing methods based on the subjective image quality even
though the quantitative metric values are reduced.
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5.3. Qualitative Comparison

We qualitatively compare the proposed enhancement method to the five conventional
methods. Figure 10 shows a qualitative comparison of our results on sand-dust images
with letters added after capturing with those of the five existing methods. As shown in
Figure 10, FBE removes a reddish color veil; however, color shifts occur and the color of the
letters is not restored (white letters change to bluish). The letters in the images enhanced
by TFIO are unchanged because this algorithm fails to remove the color veils from the
sand-dust images. The HRDCP method does not effectively enhance the sand-dust images.
Although the restored images obtained using this method have a high contrast, they show
color cast and dimmed colors, and look unnatural. In addition, the restored letters exhibit
a severe bluish artifact. Here, NGT effectively removes sand-dust veils. However, the
enhanced images have a low-contrast, dimmed colors, and bluish letters. The SCB approach
produces reasonable qualitative results with a small color cast, high contrast, and good
brightness. However, this algorithm fails to fully restore the color of letters in the images. In
comparison, the proposed method produces the best qualitative results with high contrast,
good brightness, and nearly perfect restoration of letters in the images.

Because there are no ground truths for the sand-dust images used in the comparison,
the letters or logs added after image capturing can serve as a reference for comparing the
performance of various enhancement methods. From this point of view, it can be seen that the
proposed sand-dust image enhancement scheme is the best among the compared methods.

The enhancement results of sand-dust images with a considerable number of color
veils are presented in Figure 11. The FBE method occasionally fails to restore sand-dust
images and, thus, its image enhancement performance cannot always be guaranteed. The
TFIO and HRDCP methods do not remove sand-dust veils and generate poorly enhanced
images. The NGT method produces enhanced images with dimmed colors and does not
fully restore degraded images. The SCB approach provides reasonable restoration results.
Nevertheless, small color distortions and over-enhanced color components are noticeable.
However, the restored images obtained using the proposed method do not show color casts
and have an acceptable contrast and brightness comparable to the SBC.
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Figure 12 shows the enhancement results for almost fully reddish sand-dust images,
referred to as “red-storm” images. The FBE, TFIO, and HRDCP methods do not restore
the red-storm images at all, and these produce unnatural images. The NGT restoration
is insufficient. SCB does not fully remove reddish veils and occasionally produces bluish
artifacts. The proposed method does not restore red-storm images perfectly; however,
it enhances the degraded images to an acceptable level. Because the enhancement of a
red-storm image is a very difficult task, the proposed algorithm can be considered to have
performed acceptably.
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5.4. Quantitative Comparison

Table 3 shows a comparison of the four average quantitative metric values for all
245 test images. The proposed algorithm has the best average NIQE score. The SCB
method has the second best NIQE score, and TFIO achieves a good NIQE score despite
severe color distortion. The FBE, HRDCP, and NGT methods achieve NIQE scores similar
to the subjective image qualities shown in Figures 10–12. The SCB method achieves the best
average PIQE and BRISQUE score values, followed by the proposed method. As shown in
Table 3, the highest NIQMC scores are obtained by the proposed algorithm and FBE. The
proposed method and SCB show the best performance when considering the scores of four
quantitative measures.
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Table 3. Average quantitative metric values for all test images.

Method NIQE PIQE BRISQUE NIQMC

FBE [19] 3.741 47.854 34.747 5.450
TFIO [23] 3.474 46.255 36.538 5.071

HRDCP [12] 4.123 46.111 32.034 4.786
NGT [25] 3.525 47.582 34.565 4.626
SCB [27] 3.472 43.938 29.465 5.379

Proposed method 3.404 44.155 32.141 5.537

6. Conclusions

Typical color correction methods aim at achieving chromatic mean consistency. How-
ever, achieving the mean consistency and guaranteeing good image enhancement per-
formance when there are severe color distortions, such as those in sand-dust images, is
challenging. In this paper, we proposed a novel color correction method that can achieve
both the consistency of the chromatic variances and the coincidence of the chromatic means.
We also mathematically demonstrated that the SD-based weighted convex sum method
can match the variance of the chromatic components. The dehazing-based enhancement
process using the image-adaptive gamma correction prior for estimating the transmission
map was presented. Finally, the cross-correlation-based chromatic histogram shift algo-
rithm was proposed to eliminate the remaining small color distortion from the enhanced
images. The performance of the proposed method was compared to that of several existing
sand-dust image enhancement algorithms. Experiments demonstrated that the proposed
color correction algorithm was suitable for enhancing sand-dust images with severe color
distortion.
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