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Abstract: Nowadays, with the increased numbers of video cameras, the amount of recorded video
is growing. Efficient video browsing and retrieval are critical issues when considering the amount
of raw video data to be condensed. Activity-based video synopsis is a popular approach to solving
the video condensation problem. However, conventional synopsis methods always consists of
complicated and pairwise energy terms that involve a time-consuming optimization problem. In this
paper, we propose a simple online video synopsis framework in which the number of collisions of
objects is classified first. Different optimization strategies are applied according to different collision
situations to maintain a balance among the computational cost, condensation ratio, and collision cost.
Secondly, tube-resizing coefficients that are dynamic in different frames are adaptively assigned to a
newly generated tube. Therefore, a suitable mapping result can be obtained in order to represent the
proper size of the activity in each frame of the synopsis video. The maximum number of activities
can be displayed in one frame with minimal collisions. Finally, in order to remove motion anti-facts
and improve the visual quality of the condensed video, a smooth term is introduced to constrain
the resizing coefficients. Experimental results on extensive videos validate the efficiency of the
proposed method.

Keywords: video synopsis; collision cost; tube resizing; motion anti-facts

1. Introduction

Nowadays, a huge number of video cameras are used for security purposes for 24 h
per day. These cameras produce an enormous amount of video material. The power of
video over still images is the ability to represent all sorts of dynamic activities. Although
the captured videos contain useful information for applications in security monitoring and
criminal evidence, the storage, management, and control of huge amounts of recorded
video are becoming more and more difficult. Efficient video browsing and retrieval are
time-consuming due to the inherent spatio-temporal redundancies [1,2], where some time
periods may have no activity or have activities that occur only in a small image region.
Therefore, video condensation techniques have been widely investigated in the literature
over the last decade. According to the different basic units of extracted condensed video,
current video condensation methods can be divided into two categories: activity-based
video synopsis and frame-based condensation techniques.

Frame-based video condensation aims to generate a short video that contains useful
information by selecting frames with important content (e.g., moving objects). The gener-
ated video is usually composed of a set of representative video frames (also known as key
frames) or video fragments (also known as key fragments) that have been stitched together
in chronological order to form a shorter video. While frame-based video condensation
is straightforward to implement, its performance is quite limited. These techniques lose
either the temporal or semantic context of activities in surveillance videos [3].

Another popular approach to solving the video condensation problem is video synop-
sis. Unlike frame-based video condensation approaches, the activities of interest are shifted
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in the time domain to obtain a video representation that is more compact [4]. While the
temporal compaction is made possible by compromising the chronological time between
object tubes, the dynamics of each object are preserved in this process. Meanwhile, the
synopsis video is also an index for the original one by pointing to the original time of
each activity. Video synopsis techniques achieve higher efficiency than frame-based video
condensation techniques because of their more detailed video analysis.

Placing different object tubes with the least collision in a limited video length is crucial
to the performance of a video synopsis, as this can lead to the loss of important content
and cause a chaotic viewing experience, which would decrease the efficiency and visual
quality for surveillance applications. Displaying the maximum number of activities in one
frame with minimal collisions means a greater computational complexity. Currently, the
most common methods of online video synopsis are carried out by optimizing complicated
energy functions [5], which have not evolved to meet the needs of surveillance applications.

In this paper, we propose a simple online video synopsis framework that considers
collision reduction, tube resizing, and smooth stitching. The condensation ratio, collision
cost, and visual quality of the condensed video are important in video synopsis technologies.
In the proposed method, the number of collisions of objects is classified first; then, different
optimization strategies can be applied according to different collision situations in order to
maintain a balance among the computational cost, condensation ratio, and collision cost.
If this is within an acceptable range, i.e., L <= RC[i] < H, the corresponding object will
be scaled down to avoid collisions at time position i. In order to display more activities in
one frame with minimal collisions, the tube-resizing coefficients are changed at different
time positions. Therefore, a suitable mapping result, which is determined adaptively in
optimization procedure, can be obtained in order to represent the proper size of an activity
in each frame of the condensed video. Moreover, in order to remove motion anti-facts and
improve the visual quality of the synopsis video, a smooth term is adopted to constrain the
resizing coefficients.

The rest of this paper is organized as follows. Section 2 describes the related work
on video condensation methods, emphasizing their novelty and contributions to the field.
Section 3 explains the proposed online video synopsis method. The experimental details of
the proposed method and the corresponding results are presented in Section 4. We finally
discuss the conclusion in Section 5.

2. Related Works

Video synopsis is a popular approach to solving the video condensation problem,
and it provides activity-based video condensation instead of frame-based techniques, such
as video fast-forward [6], video abstraction [7], video montage [8], and video summa-
rization [9]. The video fast-forward method introduced in [6] can skip some unnecessary
frames. However, it is easy to lose frames with important information, such as fast-moving
objects. N. Petrovic et al. [10] adopted an adaptive fast-forward approach in order to
decrease the loss of fast activities. After that, some criteria for extracting key frames were
proposed [11]. Generally speaking, frame-based video condensation is straightforward to
implement through the extraction of key frames, although the short videos that are gener-
ated lose activities’ temporal and semantic context, which is important in video browsing
and retrieval.

The purpose of video synopsis is to provide a short video representation while preserv-
ing the essential activities in the original video. Activity-based video condensation was first
proposed by Rav-Acha et al. [12–14] under the concept of video synopsis, in which most of
the activities in the original video are condensed into a shorter period by simultaneously
showing multiple actions, even if they originally occurred at different times. The process
of video synopsis includes two major phases: (i) online activity generation and storage
in a tube; (ii) a response phase for generating a short video on the basis of background
generation [15], tube rearrangement, and object stitching. The first phase belongs to the
tasks of video object segmentation [16,17], moving object detection [18], and tracking in
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computer vision. The background extraction algorithm ViBe that was adopted in the online
video synopsis framework was introduced in [15]. It stores a set of values for each pixel
at the same location or in the neighborhood. Then, ViBe compares the set to the current
pixel value in order to determine whether that pixel belongs to the background and adapts
the model by randomly choosing which values from the background model to substitute.
Finally, when the pixel is found to be part of the background, its value is propagated into
the background model of a neighboring pixel. While the background of the original video
is complex, deep-learning-based object-tracking methods can be used to generate object
tubes [19].

Optimization of the energy function is the most important part of video synopsis,
and it aims to find the best rearrangement of extracted tubes in order to display most
of the activities in the shortest time period. In order to reduce collisions and increase
the condensation ratio, tube rearrangement is decided by the optimization module, and
it guarantees the minimal cost for each of the tubes considered. Many spatio-temporal
analysis methods have been proposed. Optimization approaches can be further divided into
two classes: online and offline. Most video synopsis methods employ offline optimization
for all generated tubes in order to find the global optimum. Xu et al. formulated the
optimization problem of activities in terms of set theory and adopted the mean shift to
solve it. However, temporal consistency was not considered in the tube rearrangement
in this study. It was found that the particle swarm algorithm (PSO) could reach the
global minimum solution, but with a lower computational cost. The PSO was used to
solve the energy minimization function and to generate a synopsis video [20]. However,
offline optimization methods are complicated and time-consuming. In recent studies,
online optimization that applied rearrangement with each new activity was increasingly
employed to find the local optimum. Online video synopsis enables tube rearrangement
at the time of detection without any wait before starting optimization [21,22]. Huang
et al. [23] emphasized the importance of online optimization techniques and proposed a
maximum a posteriori probability (MAP) estimation in order to decide on the temporal
locations of an incoming tube without prescreening the entire video. However, their
proposed method completely ignored activity collision situations in order to improve the
runtime performance. Activity collision is still the biggest challenge in video synopsis.
Ruan et al. [24] proposed a novel graph-based tube rearrangement approach for online
video synopsis in order to reduce collisions between tubes. Solutions such as simulated
annealing [25], fuzzy C-means aggregation [26], and minimized sparse reconstruction [27]
were also used to rearrange different tubes during optimization. Li et al. [28] proposed a
video synopsis technique in order to decrease the collisions between moving objects’ tubes.
The tubes were rearranged in the temporal domains, and the sizes of the objects were scaled
down if a collision was detected. A metric representing the down-scaling factor of each
object was used in the optimization step. However, for each tube, the metric was constant;
then, the down-scaling operation decreased the visual quality and produced more block
anti-facts that might disturb the user in surveillance applications.

3. The Proposed Method

In this section, we will introduce the proposed online video synopsis framework
in detail, which considers various issues such as collision reduction, tube resizing, and
smoothing. Using this framework, a suitable mapping result can be obtained in order to
represent the proper position of a newly generated tube in the synopsis video. Meanwhile,
the resizing coefficients of the corresponding tube, which are dynamic in different frames,
can be adaptively determined.

3.1. The Optimization Framework

In traditional offline video synopsis, objective functions always consist of complicated
and pairwise energy terms that involve a time-consuming optimization procedure. There-
fore, a simplified objective function according to the characteristics of online video synopsis
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is first defined. Let E be the energy function and let M represent the mapping from the
original video to the condensed video. Then, the energy function in the framework can be
defined as

E(M) = λ · Ec(M) · Er(M) + Es(M) (1)

where Ec(M) and Er(M) represent the collision cost and the cost due to the tube resizing,
respectively. λ is a weighting factor. Obviously, the purpose of tube resizing is to offer
possibilities for collision reduction. The balance between collision reduction and visual
quality is important, which means that the resizing operation should be dynamic. Es(M)
is another term for smoothing the scale variations of tubes between two frames in the
synopsis video in order to suppress motion artifacts.

(1) Collision Term Ec(M): In the condensed video, when a collision occurs between
two tubes, the collision term is used to calculate the sizes of the collision areas of the entire
regions in which collisions occur. For example, when tube o and tube p collide in the
synopsis video, according to their positions in the original video, we calculate the size
of the area of the intersection between the circumscribed rectangles of the corresponding
foreground regions. The collision term can be formulated as

Ec(M) = ∑
o,p∈O

∑
o′∈O∗ ,p′∈P∗

Rect
(
o′
)
∩ Rect

(
p′
)

(2)

where Rect(·) denotes the calculation of the size of the bounding rectangle’s area. O is the
set of all current tubes and O∗ is a set of new tubes with a new time index and resizing
factors that correspond to the mapping result of tube o.

(2) Resizing Term Er(M): In order to reduce the effects of collisions in the synopsis
video, scaling down every object in a scene before rearrangement is an effective treatment.
However, a down-scaling operation for a tube with a constant metric may decrease the
visual quality and introduce more anti-facts in the condensed video. Scene changes are
obvious for a tube that is temporally shifted in a video synopsis. In this study, a resizing
term is introduced in order to penalize the cost of scaling down an object, and this can
prevent excessive shrinking through minimization. The resizing term can be defined as

Er(M) = ∑
xo∈X

M

∑
i

exp

(
δ(

xi
o
)2

)
· exp

(
η

Rect(oi)

)
(3)

where xo denotes the resizing coefficient of object o, and it is modified in a specific interval
given by X. In our experiments, the interval is between 0.4 and 1, i.e., X = [0.4, 1]. M

denotes the tube’s length. The component exp
(

δ

(xi
o)

2

)
is defined in exponential form to

prevent the resizing coefficient from closing to the left of the interval. When this happens,
the component sharply increases to achieve a suppressive effect. Instead, when a collision
between two objects occurs, it would be better if the size of the larger object could be
reduced. The second component exp

(
η

Rect(oi)

)
takes this situation into account. Suppose

that the other variables remain the same; then, the larger area of oi achieves a smaller
value of exp

(
η

Rect(oi)

)
. Hence, this increases the possibility and ratio of shrinking for larger

objects. In other words, a reduction in the size of smaller objects is more penalized than a
reduction in the size of larger ones. δ and η are two tuning parameters.

(3) Smooth Term Es(M): In order to avoid motion anti-facts in the generated short
video, another smooth term Es(M) is introduced in order to allow the resizing coeffi-
cients to vary systematically and smoothly in the temporal domain. This can be achieved
by minimizing the second-order differences in the corresponding variables, which are
expressed as

Es(M) = ∑
xo∈X

M−1

∑
j=2

(
2xj

o − xj−1
o − xj+1

o

)2
(4)
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By incorporating object segmentation and tube extraction, a video synopsis framework
that integrates the simplified energy function illustrated in Equation (1) is obtained. The
online framework is shown in Figure 1.

Figure 1. The online video synopsis framework.

There are three variables to be determined when minimizing the energy function
E(M), i.e., the position variable, resizing coefficient variable, and speed variables. The
energy function given in Equation (1) is a mathematical relationship in which the values
of these dependent variables are determined. In order to achieve a condensed video with
a high quality in real time, the controlled variable processing technique is employed. For
example, we can keep the position variable and resizing variable constant (controls) during
optimization according to the speed variable. At that time, the position variable and
resizing variable are also known as constant variables or simply as ’controls’. After that, we
minimize the energy function according to the resizing coefficient variable and control the
other two variables, and so on. Based on the processing technique, the optimization problem
is degraded into univariate function optimization problems. The graph-cut optimization
method [29] or the simple simulated annealing approach [30] can be applied in order to
solve the optimization problem. The procedure of optimization with simulated annealing
is shown in Algorithm 1.

Algorithm 1: Procedure of optimization.
Input: The number of iterations n_iters.
Output: A good solution of L∗.

1 Initialization L0: L0 is initialized by random samples.
2 while Tn > Tmin do
3 for i = 1, 2, . . . n_iters do
4 • Generate x0

′ with a slight disturbance from X;
5 • Generate E′(M) with a new x0

′;
6 • ∆ f ← E′(M)− E(M);
7 • sample t ∼ [0, 1];
8 if ∆ f < 0 then
9 Ln = Ln

′;
10 end

11 if t > e−
∆ f
Tn then

12 Ln = Ln−1;
13 end
14 end
15 • Tn ← α · Tn−1;
16 end



Sensors 2022, 22, 9046 6 of 14

3.2. Implementation Details

A time label t0 was assigned to a tube T in the tube buffer (also known as a tubelet)
Gset with a capacity of P. t0 represents the time position at which the start frame of T
appears in the synopsis video. When the time labels of each tube in the tubelet Gset are
different, the collision situation is also different. In addition, the collision of a tube is also
related to the size of the object. Therefore, we adopted two thresholds, L and H, according
to the number of collisions of a tube to choose a reasonable time label for the tube and a
resizing factor for the object. A number of collisions that is less than L indicates that the
collisions are within the acceptable range and that no adjustments are required. When the
number of collisions is greater than L but less than H, we resize the corresponding object
to avoid some of the collisions. The resizing coefficient

(
xi

o
)∗ in Equation (1) is adaptively

determined through optimization. Otherwise, when the number of collisions is greater
than H, we directly update the time label to be tnew, which means that the tube will be
placed on the next frames of the existing condensed video. The main concern is that if
the time label of tube T remains the same as that of t0 in this situation, then the resizing
coefficient of T will become very small and cause a significantly decreased visual quality in
the synopsis video. In a word, there are three phases in the proposed online video synopsis
algorithm, namely, the adjustment, addition, and subtraction phases.

Adjustment phase: As discussed previously, when the number of collisions according
to the tube T in the container Gset is between L and H, the dynamic resizing coefficients of
the object in the temporal domain are determined and adopted to avoid collisions and have
a guaranteed visual quality. The overview of the adjustment phase in the video synopsis is
shown in Figure 2.

Tube addition phase: When a new activity tube Tnew is extracted from the original
video, it is added to the container Gset. Then, the time label of Tnew is determined by
traversing the length of Gset, which is updated by Te − Ts, as illustrated in Figure 3.

For the tubes in Gset, all collisions are recorded in a vector RC, where RC[i] denotes
the number of collisions that occur for Tnew at the time position i. After that, the smallest
index i in RC is such that RC[i] < L is achieved and Ts = i. If no i such that RC[i] < L can
be found, then the smallest index i such that L <= RC[i] < H is selected as a compromise.
Otherwise, the tube Tnew is directly arranged on the next frame of the existing synopsis
video. The processing of the new tubes is described in Algorithm 2.

Figure 2. Overview of the adjustment phase in Gset with a capacity of P = 3.
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Figure 3. Tube addition phase. The length of Gset is updated by Te − Ts.

Algorithm 2: Pseudocode for the addition of new tubes.
Input: Tnew.

1 Initialization : Gset, assuming that the number of new tubes is N.
2 for i = 1, 2 . . . N do
3 if RC[i] ≤ L then
4 adding Tnew to Gset;
5 end
6 if L < RC[i] ≤ H then
7 simulated annealing();
8 Gset.clear();
9 end

10 if RC[i] > H then
11 adding Tnew to Gset as the last tube;
12 end
13 if Gset.size() == P then
14 remove();
15 end
16 end

Tube subtraction phase. If the tubelet Gset reaches the upper limit of its capacity P,
the tube with the smallest time tag in Gset is removed and rearranged in the condensed
video. The tube subtraction processing reduces the computational time taken for the video
synopsis in order to achieve real-time performance.

3.3. Temporal Consistency Constraints

Temporal consistency is another important problem in video synopsis; it aims to group
related activities and display them together in the synopsis video in order to provide
a better understanding of the scene for the user. In this work, a temporal consistency
constraint was defined to maintain the time relationship between two moving objects. Let
d(o, p, t) represent the Euclidean distance between two activities o and p in the t-th frame
of the original video. The temporal consistency between o and p can be defined as

D(o, p) = exp
(
−min{d(o, p, t)}

ω

)
(5)
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where ω is a parameter for adjusting the distance metric according to the average size of
the objects. In the computation, the adjustment parameter is set to ω = 40. In addition, the
relative temporal relationship between o and p is defined as

R(o, p) = exp
(∥∥∥(ts

o − ts
p

)
−
(

ts
o∗ − ts

p∗
)∥∥∥) (6)

where ts
o and ts

p denote the start times of two different activities, o and p, in the original
video, respectively. Similarly, ts

o∗ and ts
p∗ are the start times of the corresponding objects o∗

and p∗ in the synopsis video. If activities o and p do not start at the same frame, another
relative temporal relationship R′(o, p) =

(
ts
o − ts

p

)
·
(

ts
o∗ − ts

p∗

)
can be used to measure the

relative temporal relationship between o and p.

4. Experiments

To evaluate the performance of the proposed video synopsis framework, many experi-
ments were conducted on multiple surveillance videos. Firstly, a brief description of the
surveillance video data used in our experiments is presented.

4.1. Experimental Setup

Dataset: Five surveillance videos were used in our experiments. The first (4514 frames)
and the second videos (3950 frames) were provided by Nie et al. in [31] and Li et al. in [28],
respectively. The other two videos were captured by surveillance cameras on the Shantou
University campus. The third video with 9390 frames showed a road area with many
pedestrians and vehicles. Moving objects in all directions appeared, and they moved across
a wide range of areas. The fourth video, which had 970 frames, showed a corner of the
campus, including pedestrians and cars whose trajectories were almost straight. More
details about the dataset are given in Table 1.

Table 1. Information on the dataset.

Video Num #Frame #Object Size

Video1 4514 14 368 × 276
Video2 3950 18 480 × 384
Video3 9390 42 368 × 276
Video4 970 11 720 × 480
Video5 4660 27 268 × 276

Evaluation Metrics: At present, there are three evaluation metrics that are used to
measure the quality of video synopsis models. They are the metrics of collision cost (CC ),
temporal consistency (TC ), and condensation ratio (CR ). In this paper, we define another
evaluation parameter in order to measure the spatial utilization of frames in the synopsis
video and we called it the frame compact ratio (FCR ).

Collision Cost (CC): In a condensed video, when a collision occurs between two tubes,
the collision cost is calculated by counting the number of pixels within the collision areas.
Usually, the collision cost is an important component of the energy function in a video
synopsis model, as illustrated in Equation (2).

Temporal Consistency (TC): The temporal consistency metric is used to measure
whether the correlations between activities in the original video are preserved in the
condensed video [28]. Therefore, the TC is defined as:

Et(o∗, p∗) =


D(o, p) · T(o, p), to ∩ tp 6= φ

0, to ∩ tp = φ, T′(o, p) > 0

exp
(∥∥∥ts

o∗ − ts
p∗

∥∥∥/σ
)

, otherwise
(7)
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Condensation Ratio (CR): The CR is expressed as the ratio of the total frames of the
condensed video to the total frames of the original one, and it is used to measure the video
compression efficiency by using the following formula:

CR =
#Framesynopsis

#Frameoriginal
× 100% (8)

Frame Compact Ratio (FCR) FCR is defined as follows

FCR =
#Pixel f oreground

#Pixeltotal
× 100% (9)

where the ratio of the foreground pixels to the total pixels in the synopsis video is calculated
to measure the spatial utilization of the video condensation. The frame compact ratio and
collision cost provide important perspectives on the impact of the condensation process.

4.2. Parametric Analysis

Experiments were conducted to evaluate the influences of parameters, such as the
tubes’ container capacity P, the upper bound H, and the lower bound L for the collision
cost. As illustrated in Figure 4a, when the capacity of tubelet P increased, the frame
compact ratio (FCR) also increased because of the growth of the number of tubes that
could be accommodated in the tube buffer and the range of time tags for the selected
tubes. However, when P was too large (e.g., P ≥ 10), the trends of the FCR were not
evident, since P was already saturated and the rearrangement of tubes does not need to
consider the influence of P in this situation. On the other hand, the collision cost (CC)
gradually decreased as the tubelet capacity P increased, since the tubes could be rearranged
more sparsely.

(a) (b) (c)

Figure 4. Frame compact ratio (FCR) and collision cost (CC) as a function of (a) container capacity P,
(b) the lower bound L, and (c) the upper bound H.

Figure 4b shows that the FCR decreased and the CC increased when the lower bound
L in Algorithm 2 increased. The reason for this was that a larger L meant that more
tubes were classified into the case in which L <= RC[i] < H was satisfied. The solution
of the optimization in this case did not change the time positions of the tubes. Hence,
the rearrangement of the tubes was more concentrated in both the spatial and temporal
domains. Instead, as shown in Figure 4c, the influence of the upper bound H on the frame
compact ratio was not obvious, although the impact on the CC was similar to that of L
because the change in H had little effect on whether a tube would be re-categorized as a
case in which L <= RC[i] < H. This only affected the number of tubes in cases where
RC[i] > H.

In order to evaluate the contribution of dynamic tube resizing in the online video
synopsis, experiments were conducted by using the traditional online video synopsis
method without a tube-resizing operation, and this was compared with our proposed
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condensation method via dynamic and adaptive online tube resizing. Figure 5 shows the
results of the synopsis of Video2 from the dataset.

(a) (b)

Figure 5. Frames in the synopsis video: (a) without a tube-resizing operation; (b) with dynamic and
adaptive online tube resizing.

The images were both located in the 435th frame of the condensation videos from the
two different methods. From Figure 5b, we can see that the sizes of the moving objects
(e.g., the white car) were adaptively adjusted in order to avoid collisions. In contrast, the
object size remained the same in the whole synopsis video from the traditional online video
synopsis method, as illustrated in Figure 5b. Consequently, the frames in the condensation
video that was generated by using the proposed method contained more useful information.
Our method achieved a much higher frame compact ratio. The averaged results of the
frame compact ratio (FCR), as well as the respective temporal consistency (TC) and collision
cost (CC), are presented in Table 2. Note that the maximum number of activities were
displayed in one frame with minimal collisions because of the adaptive calculation of the
tube-resizing coefficients according to newly generated tubes. It was indicated that our
method that generated synopsis videos via dynamic and adaptive tube-resizing operations
achieved a significant improvement in the frame compact ratio (FCR), temporal consistency
(TC), and collision cost (CC) in comparison with the traditional online video synopsis
method without a tube-resizing operation, as shown in Table 2. Meanwhile, the correlations
between the activities in the original video were well preserved in the condensed video.

Table 2. Comparisons between the evaluation metrics of the results of the synopsis of Video2 from
(a) the traditional method without tube resizing and (b) the proposed method with dynamic and
adaptive online tube resizing.

Methods FCR(%) TC CC

Without resizing 0.96 1.25× 1033 24,949
Ours 1.30 8.73 × 1023 9113

4.3. State-of-the-Art Comparison

The results of comparisons on the datasets with state-of-the-art methods are presented
in Table 3. Among these methods that were selected for comparison, the methods proposed
by Li et al. in [28] and by Nie et al. in [31] are offline video synopsis methods. Another
selected online video synopsis approach was that proposed by Ruan et al. in [24].
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Table 3. Comparison of the averaged results with those of state-of-the-art methods on the whole
dataset.

Methods CR (%) FCR (%) TC CC Total Time (s)

Li [28] 10.0 2.10 7.69× 109 1.11× 106 69.23
Nie [31] 11.0 8.70 2.67× 105 2.82× 104 3953.33

Ruan [24] 10.0 1.10 3.52× 1016 1.28× 108 36.73
Ours 9.00 1.80 8.89× 107 3.91× 106 39.76

As shown in Table 3, the computational cost of the online method in [24] was the
lowest because it generated a synopsis video without resizing operations. However, the
experimental results showed that the proposed algorithm had good real-time performance
too, since the proposed online method enabled tube rearrangement at the time of detection
without any waiting before starting optimization. In our proposed online video synopsis
framework, a suitable mapping result could be obtained to represent the proper size of an
activity in each frame of the condensed video. Hence, in terms of the condensation ratio
(CR), our method outperformed the previous state-of-the-art methods.

Offline video synopsis methods always try to find the global optimum for all generated
tubes. Hence, they can have the best rearrangement of the activities in order to display them
in a short time period and easily achieve good performance in terms of the frame compact
ratio (FCR) and collision cost (CC). It is noted the method proposed by Nie et al. [31] had
the best performance in terms of the FCR and CC. However, it is complicated, and more
than one hour was required to generate a synopsis video, which is impractical for real-
world scenarios. On the other hand, our online method achieved a performance that was
comparable to that of another offline method by Li et al. [28], and the computational time
was shortened to half, as indicated in Table 3. Compared with the online video synopsis
method given in [24], our method was able to achieve better performance on all key metrics,
with almost the same computational complexity.

To analyze the condensation results of different synopsis methods more intuitively,
we displayed some frames from the synopsis videos that were generated using the original
Video1. As shown in Figure 6, we had the following findings: (1) More related activities
were grouped and displayed together in the synopsis video generated by our method and
by the method of Nie et al. [31], providing a better understanding of the scene for the
user; (2) more activities were rearranged in a frame of the synopsis video to achieve a high
frame compact ratio for our method and the method of Li et al. [28]. Our method avoided
many collisions because of the dynamic tube resizing. (3) The proposed method reduced
the optical motion anti-facts due to the smooth term of the resizing coefficients that was
introduced in the video condensation model.
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Li et al. Nie et al. Ruan et al. Ours

Figure 6. Frames from the synopsis videos that were generated by using different methods on Video1
[24,28,31].

5. Conclusions

In this study, a simple online video synopsis framework was formulated. The proposed
framework does not require any user interaction or prior models; it can condense activities
in an original video into a shorter period by simultaneously showing multiple actions,
and it can do so in real time. Different optimization strategies are applied according to
different collision situations in order to maintain a balance among the computational cost,
condensation ratio, and collision cost. Resizing coefficients are determined adaptively and
dynamically in the optimization procedure; then, a suitable mapping result can be obtained
to represent the proper size of an activity in each frame of the short condensed video.
Finally, the maximum number of activities can be displayed in one frame with minimal
collisions. The proposed online video synopsis framework can achieve a condensed video
with a low collision cost. However, collisions cannot be completely avoided, and this
degrades the visual quality of some frames in the synopsis video. Meanwhile, temporal
consistency will be considered in the tube rearrangement in a future study.
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