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Abstract: Indoor localization problems are difficult due to that the information, such as WLAN
and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor
localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular
rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the
problems of insufficient computing resources and long delay caused by high complexity of location
calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation
updating and position selection are iteratively executed using the fusion data, which gradually reduce
uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing
uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition,
this method has an advantage in that it does not rely on any infrastructure such as base stations
and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic
fingerprint and the deviation of the sensor measurement. The experimental results show that our
algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results
are relatively stable. It meets the basic requirements of indoor location-based services (LBSs).

Keywords: indoor localization; multisensor fusion; magnetic fields; sensors; Kalman filter; PDR;
edge computing

1. Introduction

The demand for indoor positioning technology is becoming more and more impor-
tant in recent years. With the popularity of wireless communication technology and the
rapid development of intelligent terminals, wireless positioning technology has become a
popular research focus [1]. Recent advancements in the Internet of Things (IoT) have led
to the emergence of new applications, one of which is positioning, commonly known as
localization. Localization, in its simplest terms, is the process of making something local
to an area, which can be achieved through the use of indoor positioning systems (IPSs)
and location-based services (LBSs) [2]. Many applications which build on LBSs require a
precise indoor location to improve their service quality, for example, the smart shopping
mall, smart museum’s navigation for tourists, indoor navigation from fire zone to safe zone,
etc. [3]. Automatic mobile robots are also widespread; the industrial operation vehicle
has been widely applied [4], which can be a good example. In addition, the household
robot cleaners are providing reliable services for families, which also facilitate the gradually
increasing LBS market. Moreover, indoor localization technology also plays an important
role in elderly care, disaster management, and assistance [5]. COVID-19 has been spreading
globally since December 2019. Indoor localization technology can effectively monitor the
trajectory of infected persons and realize the contact and track tracing of infected persons,
which is of great significance for the implementation of precise prevention and control
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policies [6]. Indoor location-based services have drawn much attention in the past decades
because position information is essential for providing intelligent services in various fields
in the context of Internet of Things [7]. Many IoT applications will require seamless and
ubiquitous indoor/outdoor localization and/or navigation of both static and mobile de-
vices. Traditional short-range communication technologies can quite accurately estimate
the relative indoor location of an IoT device with respect to some reference points, but the
global location (i.e., longitude–latitude geographic coordinates) of these devices remains
unknown, unless the global location of the reference points is also known. Emerging
long-range IoT technologies can provide an estimate of the global location of a device (since
the exact locations of their access points are normally known); however, their accuracy is
deemed very low, especially for indoor environments [8]. In order to provide better indoor
services, the navigation system needs to know the precise location of humans or devices [4].
Although the Global Positioning System (GPS) is a good choice for outdoor localization, it
cannot provide the required LBS for indoor environments. This is because in most indoor
environments, the concrete structure blocks the GPS signal, so GPS is not able to provide
indoor positioning with satisfactory accuracy [9]. Indoor localization technologies still
need to be more efficient and reliable to guarantee the positioning under complex building
structures [10]. A number of indoor localization systems have been proposed in recent
years [11–13], which use different techniques [14].

Recently developed technologies for indoor navigation can be divided into two cate-
gories [4]. One category uses absolute positioning, and the other uses relative positioning.
In general, absolute position is estimated using external devices and signals, such as ultra-
sonic [15], WiFi [1], Bluetooth [16], and radio frequency identification (RFID) [17]. Relative
positioning, such as an encoder system and an inertial navigation system (INS) [18], uses
sensors to measure motion and relative position. These sensors can also be installed in mo-
bile devices and robots. Based on these sensors, a variety of indoor positioning technologies
have emerged.

In absolute positioning, wireless fingerprint-aided positioning methods are popular.
They focus on improving the positioning accuracy as well as real-time performance [19].
To be specific, fingerprint-aided methods record the signal fingerprints of each position
and store it in the fingerprint database for future matching. From previous works we can
conclude that there are two main ways to improve the fingerprint positioning accuracy:
by increasing the fingerprint density [20], and by improving the positioning algorithm
or model [21]. However, increasing the fingerprint density will reduce the real-time per-
formance of systems, because in this case, both the direct interpolation location [22] and
the probability distribution location [23] need more fingerprint matching time. In other
words, when running on a limited hardware environment such as a mobile device, the time
consumed by fingerprinting methods cannot meet the requirements of real-time local-
ization. In this case, before fingerprint matching, we can employ a K-means clustering
algorithm [24] to improve the positioning process. The clustering method is used to ensure
the accuracy of the system, greatly reducing the positioning time and effectively improving
the real-time performance.

In addition, some signals such as WiFi and Bluetooth may be affected by attenuation,
multipath fading, and human obstruction [1], which may result in a decrease in positioning
accuracy. Another drawback is that some absolute positioning systems using these signals
require some hardware infrastructure, such as routers or beacons, to be installed in the
building [24]. Taking all these problems above into consideration, we need to find a stable
and inexpensive signal for mobile devices. The geomagnetic field is refracted by structures
such as pillars, steel structures, and fixed large objects. The fingerprint map navigation
with geomagnetism is able to estimate absolute position without infrastructure. Therefore,
compared with the traditional WiFi and RFID signals, magnetic signals are suitable for
indoor positioning.

On the other hand, a relative positioning system does not require a complex hardware
infrastructure, as the required sensors have been widely installed in the mobile device, for,
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the gyroscope and accelerometer. Positioning methods based on these sensors are popular
among recent studies, as these sensors are available everywhere, which means they are
fairly user-friendly [1]. A widely used relative positioning method with these sensors is
pedestrian dead reckoning (PDR), to measure the user motion pattern and finally find the
walking trajectories or locations. Current position would be determined according to the
previous position of pedestrians [25]. Some location-related factors of PDR, including the
initial point, the detected step length, and the walking direction, will affect the accuracy of
the positioning result [26]. In addition, different implementations of PDR have a different
form of these factors.

However, PDR can empirically provide high positioning accuracy in short distance.
This is because sensor drift is a common problem in the PDR system [27]. When estimating
distance and direction, inertial sensors always have some small measurement errors and
signal noise, such as slight body movement, which will further exacerbate this problem [4].
It drifts along the walk distance because the method would use the relevant location in-
formation. In other words, the longer the user walks, the worse the estimation will be.
PDR and other relative positioning methods commonly suffer from sensor drifts; thus,
they may have divergence problems due to cumulative error. Thus, some PDR systems
use a map-matching mechanism to calibrate these errors [28]. To solve this problem, some
recent studies combined fingerprint-based absolute positioning and PDR method, to make
them complement each other, reducing cumulative error and achieving better positioning
accuracy. For example, attitude and heading reference systems (AHRSs) fuse observation
from inertial sensors and magnetic sensors for accurate orientation determination [29].
A simple and effective fusion algorithm is needed in order to achieve real-time implemen-
tation on a limited-resource mobile platform. Filter algorithms, such as Kalman filter, are
commonly used in tracking and localization topics, as they can easily fuse the observation
and prediction [9]. Using Kalman filter to combine PDR and fingerprint map positioning
involves two steps. The first step leads to position prediction, and this primary prediction
could be updated at the second step, with the help of fingerprint map positioning and
PDR. GeoLoc applies the lightweight Kalman filtering algorithm for fusion estimation of
fingerprint map matching and PDR.

Although a lot of work has been carried out in this area, some common critical issues
still need to be explored and resolved to enhance the accuracy and effectiveness of our
method. Problems are mainly regarding cold start [30] and error accumulation [15], which
are also the common causes of positioning errors. The cold start problem means that the
positioning results are inaccurate at the beginning of the positioning, and the accuracy will
be improved with the increase of walking distance. The reason for cold start problems is
that the algorithm cannot be corrected without the location information of the previous
steps. By using fusion with fingerprint positioning, we find that cold start problems can
be avoided to some degree, especially at the beginning stage of the positioning. Error
accumulation often occurs in the later stage of trajectory tracing, and both measurement
data and inappropriate parameters of method would cause positioning failure. In terms of
data sources, the sensor measurement noise will lead to large cumulative error; thus, the
location error would be increased at the later stage of positioning.

The indoor localization technology mentioned above provides high-precision position-
ing, but the complex localization algorithm requires more processing time and increases
the power consumption of the equipment. On the other hand, it also faces great challenges
in some time-delay sensitive scenarios. Traditional cloud computing provides powerful ser-
vice capabilities such as storage, memory, and computing power for IoT devices. However,
due to the long distance and high delay, the system reliability is weak. Due to the central-
ization of the cloud server, the system has single point of failure and network congestion.
Cisco has come up with the concept of MEC, which can scale the computing resources of
the cloud located at the edge of the network to solve the problems of insufficient computing
resources and latency in indoor positioning [31].
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In order to solve the above problems and improve positioning performance, GeoLoc
proposed an iterative uncertainty elimination algorithm that combined magnetic field map
navigation and Kalman filter PDR. Its main contributions are as follows:

• The uncertainty of candidate position estimation is proposed to solve the cumulative
error problem. The experimental results show that GeoLoc can successfully reduce
the cumulative error.

• Inspired by particle filter, this paper introduces the concept of path candidate set to
enhance the robustness of localization. To guarantee fault tolerance, GeoLoc employs
adaptive location candidate set for magnetic fingerprint matching.

• Since GeoLoc only applies the sensor of the mobile phone, no other hardware needs
to be deployed, and it has the advantages of low time complexity and self-regulation.

• To solve the cold startup problem, users only need to walk a few steps to obtain
accurate positioning results.

The organization of the rest of the paper is as follows: Section 2 lists previous localization
models. In Section 3, we explain our approach and model architecture. Section 4 presents the
implementation and experiment results. Section 5 is dedicated to the conclusion.

2. Related Work

Many methods have been proposed for indoor localization over the past decade. Our
work is based on previous studies of fingerprint map matching, step length estimation, and
filtering positioning.

Commonly applied indoor positioning technologies make use of a wide range of
sensor data, from methods using RFID [17] or WLAN [32] to SLAM-based [33] systems.
P. Bahl et al. [34] proposed a radio frequency (RF)-based system using consuming infras-
tructures. In addition, infrared [35], Bluetooth [36], and ultrasonic technology [16] have
been applied in indoor positioning systems. Ref. [37] used GSM signal positioning, but the
precision can only reach 10 m, which cannot meet the requirements of indoor positioning
environments. Although some of these methods with corresponding signals have achieved
relatively high accuracy, they all rely heavily on infrastructures. However, because of en-
ergy consumption of infrastructure, they are difficult to use in practical problems, and they
may be ineffective when signals are weak. Therefore, indoor positioning methods that are
not dependent on infrastructure, for example, mobile-device-sensor-based systems, are
widely accepted.

In recent years, machine-vision-based localization methods have also been extensively
studied. This method is made available by using camera data of a mobile device. The 3D
model of machine vision can be constructed from the visual aspects of the interior; thus,
theoretically, high positioning accuracy would be achieved [38]. However, the application
of professional camera equipment is expensive. To process pictures, a large amount of
computing resource is needed as well, so it is not suitable for common indoor scenarios
with a mobile phone. The image location method is simple and easy to implement, but it is
difficult to calculate the distance between objects because of the lack of depth information.
Only an auto focus system can solve this problem [39].

Geomagnetic field is a popular data type selection for fingerprint map. Because of
the influence of the steel frame structure on the indoor magnetic field in the modern
building, the inhomogeneous indoor magnetic field is formed, resulting in the difference
of the magnetic field in different positions. Therefore, it is possible to make use of the
uniqueness and stability of the magnetic field in the indoor environment. Some studies
have begun to explore geomagnetism for positioning. Magnetic indoor local positioning
systems (MILPSs) [40] have been proposed. MILPSs provide accurate and reliable artificially
generated magnetic field maps, which cover the most basic infrastructure, and use the
fewest facilities to complete the indoor positioning system of the whole building. These
solutions show great prospects. With the development of artificial intelligence, ref. [41]
proposed a magnetic-based indoor localization system using deep learning technologies,
which uses a robot carrying a smartphone to collect magnetic field data in an indoor
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environment. Vision-based technology is used to track the position of the robot and use
a neural network to automatically understand the relationship between magnetic field
readings and position. The technology can potentially be integrated with other global
indoor positioning systems to improve accuracy. The geomagnetic fingerprint-based
method has high positioning accuracy, but it needs to establish the fingerprint database or
map in advance. Through comparison, GeoLoc uses geomagnetic data after the deflection
angle transformation to construct the geomagnetic fingerprint map.

In some fusion systems, map-matching mechanisms play a role [25] to calibrate the
sensor errors caused by PDR. There are two ways to calibrate errors. The first attempt
is to match user trajectories to the nearest intersection and road on the map, while the
other way uses map information to filter out locations that users are unlikely to walk,
such as walls and obstacles. Both techniques require a detailed scaled map of the building.
Carlos E et al. [42] described the necessity of developing a geomagnetic fingerprint map,
and presented an improved positioning method on a smartphone platform. Because the
computing resources of mobile devices are very limited comparedto computers, the main
purpose of this work was to reduce the amount of data stored and processed. To achieve
this, a genetic algorithm (GA)-based [10] method was proposed by them, to select the
feature and find the location of the user. This algorithm achieved good results in the
experiment but it is time-consuming.

ChengKai Huang [43] proposed a magnetic map-matching algorithm and an improved
pedestrian dead reckoning algorithm (IPDR). This improved pedestrian dead reckoning
provides efficient indoor navigation. In the work of Sheng Guo [44], using geomagnetic
sensor signals for indoor positioning, a novel multilevel link node model containing
geometric and topological information was proposed to construct a magnetic field strength
(MFS) sequence fingerprint database. By using this database, a combination of dynamic
time warping (DTW), pedestrian dead reckoning (PDR), and k-nearest neighbor (kNN)
hybrid methods were usedto achieve effective MFS sequence matching and accurate indoor
positioning. The above two methods are effective ways to obtain and use the built-in sensors
of the smartphone for different indoor navigation. Therefore, they require less infrastructure
cost to implement. In their work, the step and direction are estimated using magnetometer
and gyroscope sensors to find the user’s movement. However, sometimes sensors are
affected by metal objects in the indoor environment; in other words, the gyroscope sensor
will also be disturbed by the sensor drift problem [10]. Sometimes the IPDR method
cannot provide accurate location for users; therefore, some methods use filter methods to
smooth the observation. Ref. [45] presented a novel map-matching method using rasterized
maps. By modifying the recursive cycle of the Bayesian filter, the computationally efficient
map filter can be designed as an alternative method for particle filter map matching.
The introduced map is also used to generate scores for a multiple hypothesis testing
(MHT) approach that can find the correct initial position and heading of the pedestrian
trajectories. While the experimental results serve as a proof of concept for the designed map
filter and the self-initialization method, they do not prove the correctness of pedestrian
long-distance walking.

In some scenarios, particle filter [46] has a fair result, but the time complexity of it
is another severe problem. As a nonlinear and non-Gaussian estimation, particle filter
sometimes has a better performance than Kalman filter, but in indoor localization environ-
ments, Kalman filter methods play a role since the indoor motion models of the user are
relatively simple and can be transformed to linear and Gaussian formats [47]. A method
of self-positioning magnetic field mapping based on particle filter is studied to solve the
cumulative error problem by introducing uncertainty estimation [48]. The specific mode of
particle propagation in these systems is fixed, such as the speed limitation. The particle
motion would not depend on the help of other positioning systems. However, if the move-
ment of a moving object is not in a fixed position, the estimation of particle propagation
is inaccurate and inefficient. The time complexity of particle filter positioning also cannot
meet the real-time requirement. Ref. [49] utilized KF algorithm for sensor fusion; the study
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fused the accelerometer and gyroscope data for pitch and roll estimation, and fused magne-
tometer and gyroscope data for heading estimation. The study used the complementary
features of two kinds of sensors and fundamentally addressed the accumulated errors that
exist in PDR; the experimental results showed that it achieves better performance. Ref. [50]
proposed a fusion algorithm combining EKF (extended Kalman filter) and PF (particle
filter) to fuse the information obtained from the PDR module and the magnetic fingerprint
module. The proposed algorithm can improve the inherent blindness and solve particle
degradation issues in the traditional PF scheme. Furthermore, reducing the number of
particles had little impact on the accuracy of the fusion algorithm. Thus, we examined
some popular methods using Kalman filter with particle filter in the Experiments section.

GeoLoc implements indoor positioning around smartphone sensors without any
requirements of the external equipment. In terms of the fault tolerance of positioning
methods, many methods cannot tolerate irregular motion, such as the change of the moving
direction, because they will introduce noise and random errors. GeoLoc, with the aid of
the transformed magnetic fingerprint map, can avoid some errors caused by the random
changes of direction of the mobile phone. As a result, mobile users can use their own
mobile phones while using location services and walking as usual. Because GeoLoc
partially tackles the partial cumulative error and cold start problem by combining PDR and
fingerprint matching, it has an accurate estimate for both short- and long-distance walking.
In addition, GeoLoc also uses a new dynamic motion model to improve the PDR; thus, the
tracking results are better than the vanilla-PDR-based methods and the Kalman-filter-based
methods. Then, we propose an iterative uncertainty elimination algorithm for GeoLoc.
First, we use the geomagnetic data to match a certain range of positions. The weight
of every candidate position point in each region is evaluated. Then, based on the data
of the accelerometer and the gyroscope, the user’s step model, including step size and
direction estimation, are also obtained. By modeling the noise (or uncertainty) of the sensor
measurement, measurement error is reduced and confidence degree is increased. In the
candidate set, some low probability positioning results under the threshold will be filtered
out, and through the feedback of position estimation results at previous steps, the direction
and step size estimation will be updated and become more precise by iterative adjustments,
so the uncertainty and error of these estimates will gradually decrease. Finally, GeoLoc
uses the Kalman filter to smooth the track result and the result path (or path set) of the
geomagnetic matching to obtain the final location result. As shown later, in the Experiments
section, GeoLoc has good performance and can meet the needs of indoor positioning.

3. Algorithm Design

We divided the localization process into procedures, including matching, filtering, and
orientation estimation. Formula (1) shows vector X, the state of GeoLoc, including position
vector, position P, and angle vector orientation O.

X = [P, O]T (1)

Our final target is approximating the real trajectory of the user. First, we collect
geomagnetic data, then build a map for matching in offline phase. Because of the low
discernibility of magnetic matching, the user should take some steps to obtain the final
position, and the fewer, the better.

First, we construct a transformed magnetic fingerprint map as follows, and a sequence
of data, including magnetic and gyroscope recording. For each step in trajectory data,
GeoLoc will match the magnetic value of the step with the help of the transformed mag-
netic map, then execute optimizing the estimation, and make the decision of orientation.
GeoLoc assigns elementary estimation of the next step, using a fusion of matching results
and transforming of orientation with previous position. Then, after all steps have their
intermediary estimation, we filter the trajectory on every step repeatedly. Finally, we find
the closest trajectory to the real user trace. The model structure is shown in Figure 1.
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Figure 1. The model structure of GeoLoc.

We collected magnetic signals on the fifth and sixth floors of the information building
at Northeastern University in China. We painted a grid of 40 × 40 cm on the floor. Inside
each cell in the grid, we collected fingerprints at a different sampling rate, rotating the
phone at a 45-degree angle to capture samples in all directions. Magnetic intensity values
of uncollected locations were estimated by bilinear interpolation. We collected the mag-
netograph data 10 times over two months, and took the average value of the magnet at
each location as the true magnet value at the corresponding location. The test phones were
Samsung Note 4 and Meizu Note 6. By default, the Meizu phone will be our follow-up
test tool. In Section 3, we verify two fingerprint construction methods, respectively. Af-
ter verification, the Euler angle of the triaxial accelerometer is projected to the direction
of gravity.

3.1. Transformation of Magnetic Fingerprinting with Z-Axis Projection

A built-in three-axis magnetic field sensor is common in modern mobile phones, and
provides us with a convenient way to record magnetic value. This kind of sensor detects
magnetic field in x, y, and z directions, where X points to the geographic north pole, Z
represents the opposite direction to gravity, and Y is orthogonal to both X and Z. The sum
of squares as total magnitude is calculated, shown in Formula (2).

Due to the difficulty of measurement of the continuous magnetic variation, our map
building method firstly splits the fingerprint database into a grid according to its location.
Then, we focus on finding the factors that influence the magnetic field readings in every
location grid. As is generally known, magnetic field readings are quite stable over time,
but would also change significantly within an limited range.Figure 2 elaborates an intu-
itional example where some positions may have a similar magnet value, which means
that duplication is a common phenomenon in the magnet value matching process. It is
unavoidable that the misjudgment of magnetic observation exists.



Sensors 2022, 22, 9032 8 of 28

Figure 2. Walking recorded in a straight line with corresponding magnet value. It can be seen that
magnetic values around 65 µT and 73 µT have more possibility to be observed. Observation near
these values would introduce errors to estimation.

Because all information from three axes are used, it prevents us from imposing con-
straints on the orientation or placement of the phone, even if the phone is placed in a
trouser pocket, a bag, or just handheld. Ref. [51] verified that this method is efficient under
different occasions.

|m| =
√

x2 + y2 + z2 (2)

Formula (2) would guarantee the orientation to be error-free during fingerprint map
construction. However, this method would give more duplicate magnetic location infor-
mation. The elements in each fingerprint point will drop from three to one, reducing the
uniqueness of each fingerprint, and the result is that the magnetic values will be all positive.
Thus, this kind of projection will bring us an unbalanced geomagnetic map. In large indoor
environments, the fingerprint positioning may need more time to converge to the right
location [52].

Another method to record magnetic values is implemented with the aid of an ac-
celerometer [53]. Because the irregular orientation of the phone is recorded by the ac-
celerometer in IMU, we can use the offset of the three-axis data generated Euler angle
to project irregular orientation to the real value. Due to the bias that exists in the readings of
the sensors, estimation of the angle of rotation with respect to magnetic north pole always
contains errors. Thus, a complete 3D magnetic reading along the world’s real reference
frame cannot be accurately calculated. The idea is that we can employ other sensors’ in-
formation to adjust the Z-axis direction. The rotation angle with respect to the world’s
Z-axis can be estimated by sensing the direction of gravity [53]. The magnetic recording
along the world’s (reference frame’s) Z-axis can be obtained by projecting the 3D magnetic
readings onto the world’s Z-axis provided by the gravity vector. Expression (3) shows this
idea [54], employing the offset of three-axis data generated Euler angle to project irregular
orientation to the real value.

mz = ~m� (−~g/|~g|) (3)

where ~g is the gravity vector and ~m is the magnetic vector measured by phone. The trans-
formed Z-axis data employ Euler angle as projection of magnetic Z-axis data.

Note that if the biases are removed, both measurement methods work reliably. Oth-
erwise, in the presence of sensing bias, the projection onto the Z-axis will be interfered
with by a constant offset. However, the magnitude value always depends on a signal value
among x, y, and z, due to the fact that the magnitude function (sum of squares) is not a
linear function with respect to the readings. That is the reason why this feature is more
reliable than calculating the magnitude of the 3D readings [55].
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When this transformation is employed in map construction, we cannot directly use
step magnetic observation in the matching phase. That means that the magnetic map
and the step trajectory data should apply the same transformation in the same test case.
Comparison experiments using two kinds of magnetic map show that the transformed
fingerprinting method has a better performance, especially in short-distance localization.

3.2. Estimation with Eliminating Uncertainty

Quantifying the uncertainty, in this case the measurement of error distribution, is an
essential way to reduce localization error. The fingerprint map-matching model makes pre-
cise revisions of uncertainty based on new data we gathered, then the following matching
model is proposed.

Here, we assume that the possibility of fingerprint matching results should follow a
certain distribution. In the first step, we just assign the matching result a random position
that follows Gaussian distribution in the map, shown withprobability density function
(PDF) (4).

f (P)

=
1√

(2π)k|Σ|
exp[−1

2
(P− µ)TΣ−1(P− µ)] (4)

where µ denotes the exact matching result; in other words, the most possible position by
observation. Σ represents covariance matrix, which would decide radius and inclination in
uncertainty boundary. The uncertainty boundary of one step forms an ellipse area, with the
major (long) axis pointing to the next possible orientation. That means that matching
results take the past and future orientation into consideration. In the following steps,
the mean and variance, in other words, the orientation and radius of our possibility ellipse,
will be adjusted iteratively by fusion of estimation, including magnetic observation and
motion model.

Figure 3 figuratively describes the boundary of a circle-shaped possibility field, formed
by candidate points in the magnet map. The resulting area would be presented as several
2D Gaussian distributions. By considering a combination of all of the possibilities, we
finally obtain the conjunction distribution as posterior.

Figure 3. Uncertainty eliminates algorithm diagram explanation. From left to right is the user’s
motion estimation. The colors of the fan-shaped area and circle area denote the uncertainties. In each
step, the searching space, acreage in the figure, is diminished.

Note that in the beginning, model estimation is not available, so at first, we define a
specific number of start points nearest to the initial magnetic observation, which constrain
the maximum number of possible paths in our result.

With the user walking, a common problem in long-distance matching is that in one step
there may be no points that meet the magnetic requirement and orientation requirement.
That means that this position or path is no longer reasonable for the next step’s estimation
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and prediction. We can tolerate the error of that path by adding a threshold, or just
discarding the single path, to keep the correctness of the resulting set paths.

The next phase is choosing a method to correct the estimation we obtained in the
previous phase. Filter methods, such as Kalman filter, are a common choice for smooth
tracking and correcting estimation. Results and initial observation by magnetics will
iteratively influence motion model. GeoLoc adopts the Kalman filter method combined
with PDR and geomagnetic matching as prior knowledge to continuously update the
estimation of the current state.

Then, we need to define coefficients of the Kalman filter first before we use it. The
transform matrix and predict matrix here are given by experience. According to our motion
assumptions, the speed of the user is several constant values, so the next prediction of our
linear system is given by prediction in k− 1 and velocity.

Another factor in the filter algorithm is external influence, for example, acceleration
motion caused by the outside world. As a parameter in the Kalman filter, we just list it and
assign it a zero vector with our assumption.

The goal of using the Kalman filter is that we want to obtain as much information
from our measurements as we can. Covariance matrix P reveals the implicit relationship
among variables. In our case, taking uncertainty into consideration and uncertainty in the
previous step, updating of P willbe described in the following formula.

In the beginning, we assign a random constant value to P, because we should let P
finally converge to an domain-related constant, in this case, user position. The next task is
refining the estimation with new measurements. The transformation from sensor reading
to track state is modeled by an observation matrix H, as presented in Equation (5):

~µexpected = Hk x̂kΣexpected = HkPkHT
k (5)

Equation (6) shows that the at kth step, the current state vector x̂ is predicted from the
state of the last moment with transformation A, coupled with the input from the outside
world, which is Bu. Empirically, B is a zero vector.

x̂−k = Ax̂k−1 + Buk−1 (6)

The prediction process increases the new uncertainty Q, coupled with the previous
uncertainty, presented in Equation (7):

P−k = APk−1 AT + Q (7)

Both models of prediction and observation have uncertainty following Gaussian
distribution. By combiningGaussians we obtain the Kalman gain matrix K in (8):

Kk = P−k HT(HP−k HT + R)−1 (8)

where R is also the noise of GeoLoc. We balance the prediction and observation using this
gain; on top of that, we update P, which represents the uncertainty in this step, shown in
(9) and (10):

x̂k = x̂−k + Kk(zk − Hx̂−k ) (9)

Pk = P−k − Kk HP−k Xk (10)

x̂k is our new best estimation, and we can then feed it (along with Pk) back into another
round of predict or update as many times as we like. The result using Kalman filter
always outputs a smoothness trace and high precision at localization, since we adopt noise
elimination and dynamic motion.

3.3. Localization Refinement with Dynamic Motion Model

To build a flexible motion model for indoor localization, we discretize motion data into
step intervals instead of just recording at a particular frequency (e.g., every 0.5 s), so that
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the uncertainty elimination algorithm can achieve great performance. The accelerometer
data are gathered and processed in real time. The implementation is intended to be device-
agnostic, using the sampling rate of the sensor in the device. Ref. [52] gives a robustness
motion model which can endure the unexpected orientation and step changes, but it is
hard to implement in practice because of the high time complexity. In our model, we break
the continuous motion into some common patterns. Formula (11) gives a brief description
of the dynamic motion model.

Xk+1
O = Xk

O + ∆Xk
O + σk

wO

Xk+1
P = Xk

P + lstep

[
cos(∆Xk

O)
sin(∆Xk

O)

]
+ σk

wP

(11)

where lstep is the step length, ∆Xk
O is the user’s heading changes between k and k + 1 step,

and σk
w is Gaussian noise. The step length lstep is not a constant value in the motion model,

and it is estimated dynamically during localization.
For motion discretization and steps separation, it is common to employ the zero-

crossing algorithm [56] to divide the trajectory into k steps. A simple variety of the zero-
crossing algorithm is implemented in the Android operating system to detect the number
of steps. We know that the vertical acceleration signal crosses the zero line twice ev-
ery step. In the experiment, we would decide whether it is precise enough to use in
indoor localization.

Based on previous work [32], the following aspects are used to judge whether the user
is in walking state:

(1) We only count the crests and troughs over the threshold that we set.
(2) There are specific maximum time intervals between two steps of the human body

constrained by reflex nerve, so we filter the unrealistic narrow wave as noise.
(3) Precision also depends on device sensitivity. In real localization situations we have

to make the frequency of the sensor uniform.
The orientation of the next step is determined by observation of the gyroscope in-

dicator. After obtaining our estimation of current position, it is common to assume that
we still have a lot of steps data which can help to calibration the localization result. We
employed an enhanced pedestrian dead reckoning (PDR) to derive the complete state; refer
to X = [P, O]T. Position P was already been calculated, so in the current step, the next
orientation D should be then described with gyroscope data.

Similarly, the orientation would be modeled with uncertainty: p(Dk) ∼ N(∆d, σ2),
where ∆d can be derived from residual error of model estimation and observation, and
the value of σ would be determined by model iteration, which will be discussed later.
As we mentioned above, errors of gyroscope measurement also need to be included. For a
specific estimate point in one step, all possible next positions with orientation form a fan-
shaped area, whose center is the current position. The observation, however, has a higher
possibility as the true orientation. The other orientations around it with a small-scope angle
difference would have relatively lower possibilities.

The first state would affect the performance of GeoLoc as a whole, which means that
initial parameters in D, such as angles and confidence level, can also be parameters which
would be adjusted later.

Then, in the iteration phase, we should make sure that the angle of candidate orienta-
tions and radius are not increasing unconstrained. Thus, we need to adjust the noise and
variance accompanied by walking. The formula below expresses this in detail.

O0 = dOk −ωok−1 × ∆d <= Ok+1 <= Ok + ωok−1 × ∆d (12)

where O is a vector of scalar radian value; for each item in O, it follows a different Gaussian
distribution. It is easy to imagine that in one step the candidate orientations compose a
fan-shaped area, with step length ∆d as its radius and uncertainty ωok−1 as its angle.
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In addition, this phase can automatic modify its uncertainty level. The idea of this
method is to improve prediction performance by making full use of observation data in
previous steps. Due to the convergence of this procedure, GeoLoc would keep iterating
until a maximum or minimum threshold is reached [57]. When the uncertainty and also
the candidates are too large, we just reject the amount over reasonable scope. Thresholds
are hyperparameters so we can modify them in practice. The whole process is presented in
Figure 3.

Note that ωok−1 is uncertainty following Gaussian distribution. We use the results
obtained from the last two phases to adjust parameters in (13):

recti f icationk = d( f ilterk, matchingk) (13)

where reci f icationk is the offset between observation and prediction in Kth step, f ilterk is
position after filter process, and matchingk is the origin matching result position in the
map. In this case, d denotes a function calculating Euler distance explained later. We
apply this rectification to uncertain parameters σ in Gaussian distribution iteratively with
Equations (14): [

σωpk
σωok

]
∝

recti f icationk
recti f icationk−1

×
[

σωpk−1

σωok−1

]
(14)

Ideally, σ would descend progressively and converge to a constant, meaning that we
generally believe our observation has some error with constant value, or even that no error
occurs at all (Algorithm 1).

Algorithm 1 Algorithm.

1: procedure BUILDING
2: parameters← initial value
3: map← geomagneticmap
4: stepData← trajectorydata
5: end procedure
6: procedure MATCHING
7: using geomagnetic threshold
8: if stepData[current].magnet not in map then return false
9: end if

return P1 ← possible position area
10: end procedure
11: procedure FILTERING
12: Input past trajectory
13: Output smooth trajectory, prediction
14: end procedure
15: procedure MOTION MODEL
16: for step in stepData do
17: using angle, speed in previous steps, add uncertainty
18: if prediction positions by inference not in P1 then return false
19: end if

return P2 ← intersection of prediction and P1
20: end for
21: end procedure
22: procedure HANDLING OUTLIER POSITIONS AND ERROR
23: Input each trajectories, estimation points
24: Output trajectory, point by correction
25: end procedure
26: procedure EVALUATION
27: Compute euclidean metric between test path and train, using DTW to compare trajectory
28: Compute euclidean metric of final position
29: end procedure
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3.4. Outlier Positions Detection and Error Handling

For one path, consider that the model’s estimation described above is out of expecta-
tion; some corrective mechanisms should exist, such as indicators, to judge whether the
path is worth exploring or we should just abandon it. Error-prone problems are as follows:

1. In the prediction phase, results of orientation and position are out of the map boundary.
2. Distance from the current observation to the last one is much further than previ-

ous distances.
3. No point in the map can be matched.
4. Orientations have a totally different result area with matching results.
5. Misestimation of turning position. Thus, a series of points would be misjudged.
These items have high likelihood to occur, but assumption without them can guarantee

a uncomplicated degree. While we leverage PDR and Kalman filter in this work, we
considered manually adding some rules to overcome them. For question 1, we move the
out-boundary point to the closest boundary point, then perform the next check and process.

Question 2 offers the choice to discard the point or the path, which means we use
prediction only in this step, and see the result in the next step. A valid problem 2 is
described below:

x̂k − xk−1 �
1

k− 1

k−1

∑
i=1

xk − xk−1 (15)

We change the threshold as a variable to solve problem 3, and if there is still no
magnetic observation result, we just discard this candidate route. By employing the
iterative uncertainty elimination algorithm, problem 4 nearly disappears; we can also add
the uncertainty to obtain orientation. Problem 5 is hard to solve; we just include landmark
as a primary plan. Some factors and problems are ignored here, but these items remain and
should be quantized and applied as our future work.

When applied to smartphone tracking, motion estimation usually incurs much more
noise than robots, such as step miscounting, step length estimation error, or change of
heading offset (i.e., the difference between user heading and phone heading). These errors
tend to lead to localization failure.

4. Experiment and Results

In this section, we illustrate the results of experiments on an implementation of
the model, then analyze them. Misjudgments might come from every procedure, so
experiments in this paper were designed to test them separately. After the whole procedure
is finished, we use the sum of Euler distance in every step position from prediction to
ground truth as error of the model. Our experiment results are considered under other
result evaluation methods, which are mentioned in the evaluation part, which may have a
different performance, so we compare these indicators as well.

For our experiments design, we propose the following issues that experiments should
focus on: (1) To what degree does the different user trajectory influence GeoLoc perfor-
mance? (2) How many motion estimation errors can GeoLoc tolerate? (3) How well do
the landmark and different magnetic fingerprint maps perform? (4) How well does the
iteration algorithm perform and monitor converge status? (5) How well does the algorithm
perform under different parameter situations? (6) Performance comparison of GeoLoc with
different types of localization models.

4.1. Experiments Preparation

In the evaluation phase, we applied the Euclidean metric in GeoLoc. Notice that
GeoLoc returns a whole trajectory, so error of the whole trace can be calculated as an
important indicator. This means that we consider all points we estimated, using mean
value of error of them, shown in (16). Another indicator would simply be the distance
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between ground truth and estimation value of the last position. We employ the two in the
following experimental part.

d =

∥∥∥∥∥ candidateSet

∑
k=randomChoice

GroundTurthk − Estimatek

∥∥∥∥∥
2

(16)

We chose several numbers of trajectories from the candidate set randomly as our final
estimation. The mean error of these trajectories would be our evaluation result. In addition,
we sum up every position’s distance between real trace and estimation, which are also
obvious indicators.

We also employ the dynamic time warping (DTW) method as an option evaluation
method. DTW is a well-known technique for aligning two time series sequences with
similar patterns but with amplitude and time differences. It has been widely applied in
speech processing, sensor data classification, and data mining [51]. The magnetic signatures
collected by steps can be classified as time series data, because they were collected at certain
time intervals. When we walk along the similar trajectory, we would observe that the
signatures follow a similar pattern. We can use that pattern to compare the test traces, so
a huge difference between two signatures means a huge error in this localization process.
The ground truth pattern can be generated from the magnetic map we built, then our
results—candidate trajectories—are compared with it. Figure 4 shows the similarity of five
different paths of a same corridor. We can see that if the corridor is divided into five paths,
we can clearly see that the closer the path is, the closer the trend of data is. In the same way,
even if the path distance is far away, the similarity of the data is considered to be different.

1 

 

 

Figure 4. Five different paths of the same corridor.

4.2. Performance of Building Fingerprint Magnet Maps

The feature of this article is to realize the function of accurate indoor positioning
without relying on the basic environment, so we have to use the technique of location
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fingerprinting, and the invariance of the data is the most important for fingerprint posi-
tion. Geomagnetic data are very suitable for this application scene, and can be used as
fingerprint data. Because, in the indoor environment, buildings and some internal facilities
are relatively fixed, and the effect on the Earth’s magnetic field is also relatively fixed,
the geomagnetic data are very stable, and will not change with time, as shown in Figure 5.

Figure 5. Magnetic field data at different times.

We collected magnetic data in Northeastern University’s Information Building on
the fifth and sixth floors, and examples are shown in Figure 6. The building structure is
mainly reinforced concrete, which offers a stable and characteristic magnet distribution.
Inside the building, there are small floorsand adjacent corridors in these floors, as classic
geographical features. We segmented the test ground into several square grids, to generate
a detail-oriented magnetic map. Figure 6 was collected in an indoor environment with an
area of about 6.4 m × 6.4 m in the location of the information building, and the data are
relatively sparse. After using the interpolation method, the density of the data is improved,
which greatly reduces the pressure of data acquisition.

Figure 6. Example magnetic fingerprint map of the 6th floor.

It is generally accepted that, although stable enough, magnetic values still have
inconstancy to some extent. One reason is that the magnetic field would change over time.
Thus, we first collected data 10 times during 1 month, taking the average of magnetic
values in each position. Afterwards, we obtained several versions of the magnetic map.
The physical relative location was also recorded to tag the sensor readings with their
corresponding location, under a coordinate system we set. These maps have the same
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tendency in general, and each data point fluctuates around the mean value.We used
sample mean as real magnet value in corresponding positions, under the assumption that
the confidence interval of the mean value can guarantee a relatively precise magnetic
value.The reliability of the magnetic map was also attested.

Another variation of the magnetic map is using a transformed Z-axis of magnetic
value [55]; since the transformation readings along the Z-axis are independent of the phone
or the user’s orientation and gesture, we can apply them as magnetic information for each
location. The transformation mainly uses the concept of Euler angle, by projecting the
3D magnetic readings onto the world’s Z-axis provided by the gravity vector (three-axis
accelerometer) obtained previously.

There are well-known methods for measuring the direction of gravity based on ac-
celerometer and gyroscope sensors, such as combining the information from gyroscope
and accelerometer (usually using a Kalman filter) to obtain more accuracy and less delay.
We used the APIs already implemented on Android phones [58].

Correspondingly, magnetic readings in the step trajectory also need to be transformed
into Z-axis format. We used the comparison test to verify the reliability of this approach.
We tested the validity of Z-axis transformation by comparing it with quadratic mean of
magnetic value, calculating DTW distance as a benchmark. Magnetic track data using data
from all axes are shown in Figure 7. It can be observed that only an offset would affect the
projection on the Z-axis, while the overall magnetic values are not constant. The calibration
effects are shown in Figure 8. Using DTW to measure the difference between the two
sequences, we can conclude that the data after projection to Z-axis would achieve a higher
precision, because test cases match the pattern of the template.

Figure 7. Magnetic trajectory data using all axes’ data.

Both the two methods of magnetic construction, sum of square and transformed Z-axis
value, were implemented, and we used algorithms comparison to evaluate these methods.

Due to the different mobile phones having some inherent differences, such as the
frequency of adoption rate, the algorithm must have the ability to adapt to a variety of
models of mobile phone. We used different smartphones at the same location to measure
the results. The results are shown in Figure 9. Although the results of different mobile
phone measurements are different in value, the data difference is stable in general. Based
on the above findings, we believe that a certain threshold can be used to adapt to different
mobile phones when the geomagnetic data are matched.
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Figure 8. Magnetic trajectory data only using transformed Z-axis value.

Figure 9. Geomagnetic data of different mobile phones in the same position.

Because of the different users’ height, users may also place their phones in any pocket.
In other words, the height of users holding mobile phones is different. Therefore, it is
necessary to explore the influence of the height of the mobile phone relative to the ground
on the geomagnetic value. We tested the change of geomagnetic value at different heights
at the same location, and the test results are shown in Figure 10.

Figure 10. Geomagnetic data at different heights from the ground at the same location.
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From Figure 10, we can see that when the smartphone is at different heights from the
ground, the geomagnetic value is changed, and the geomagnetic data from 1 m, 0.5 m, 0.3 m,
and 0 m are different. Compared with the 0.3 m and 0 m location data, the data from the
0.5 m location data and the 1 m location data have higher similarity, so we believe that the
lower the height difference at one location, the higher the similarity of the geomagnetic data.

4.3. Evaluation of Step Trajectory Pattern

Then, step data are collected during user walking. In the step dataset, errors would
also be accumulated via step counter process and calculating process. This means that the
trajectory data should be preprocessed by step before being applied.

To build the step trajectory dataset, we walked many paths in the whole area, randomly
picking initial positions of the building with a smartphone in hand. The observation
trajectory information can be calculated via different methods, such as several checkpoints
given by step counter along the paths, while assuming constant walking speed between
each two points. The target of this phase was to obtain clear data of every step, including
steering angle.

In [59], a turning detection model was employed to make localization system indepen-
dent ofthe gesture. To test the effectiveness of GeoLoc in complex motions, we planned
some daily motion paths as our test cases. Supposing the path in real localization problems
would be regular, we used straight segments with no, one, and two turnings, representing
motion patterns regarding walking straight and turning around. The robustness of GeoLoc
in turning cases is shown with CDF in Figure 11.

Evaluation methods using all points in the path show that the more turns the user
takes, the more errors occur in all algorithms. GeoLoc has the advantage that the estimation
of the final position is relatively better than the normal Kalman filter.

Figure 11. Figure shows CDF with localization error. The left curves represent steps with turns,
the right denote the track at the same length without any turn. We can see that 80% of the errors
occurred in less than 2.5 m.

4.4. Effect of Errors Using Motion Model

We need to process step data before we use them. When walking along a hallway,
the data we collected are continuous. We have several methods to discretize our data,
to make them suitable for different algorithms. A common method is dividing them by
a specific time slot, and dividing by step gives us convenience to use PDR, because PDR
is a discretized algorithm using relative position. Therefore, we focus on step counting
methods to discrete step data.

Step counting is the foundation of the motion model. If there is a large cumulative
error in step counting, the effect on positioning process in later stages can be disastrous.
The above method also shows a better step precision, as shown in Figure 12. The transverse
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axis in the diagram represents the true steps of the walk, and the longitudinal axis represents
the step precision. It can be seen from the diagram that the algorithm can reach a precision
of more than 90%, and it is sufficient to establish the PDR model in the room. The Meizu
mobile phone, which has a higher frequency of data, will show a better effect than the
Samsung mobile phone.

Figure 12. Step detection precision histograms under five repetitions.

By comparing the performance before and after the use of the step counter, it is obvious
that our step counter model has enough precision to be used in indoor localization. The
step counter also reduces the misjudgment of PDR in the next phase.

The estimation of the step length has always been a very difficult subject. As the step
is constantly changing in the course of walking, this article will constantly modify the step
length in the process of positioning. The step length is related to the speed and frequency
of human walking, so it is also associated with the accelerometer. The specific length of
each step can be estimated from the readings of the accelerometer. The above experimental
data were mainly collected by the same person, so acceleration variation at different step
sizes are valid for step length estimation.

Figure 13 shows the change of the acceleration after the user walks in different steps.
The figure with an asterisk identifies the change step of 60 cm acceleration, and the bar
logo showsthe change in acceleration to 80 cm step. It is obvious from the diagram that the
larger the step size is, the greater the amplitude of the accelerometer is.

Figure 13. Acceleration variation at different step sizes.



Sensors 2022, 22, 9032 20 of 28

Some localization systems [59] and pedometers build a complicated relationship
between a motion model and step length. Therefore, in GeoLoc, we also suppose that
different users have different walking styles. Formula (17) directly gives the rules found
in the paper [51] according to many experiments. N represents the number of samples
collected in a walking cycle, while A represents the accelerate value at sample k. To use the
formula N, weneed calibration first. This formula establishes the relationship between the
accelerometer and the step size, and the next work is based on this conclusion.

Stride(m) = 0.98 ∗ 3

√
∑N

k=1|Ak|
N

(17)

The specific error results after calibration are shown in Figure 14. The X-axis in the
graph is represented in six different scenarios. Y represents the difference between the
estimated step length and the actual step length, and the unit is represented by M. The upper
and lower two edges of each box in the graph represent the maximum and minimum of
the error. The upper and lower edges of the rectangle in the box represent 75 and 25 sub-
positions, respectively, and the middle line in the rectangle represents the middle error.
In addition, there are several plus signs above each box to indicate the exception value in
the estimation process. It can be seen from the diagram that the difference between the
estimated step length and the actual step length is very small. Even if some exceptions are
taken into account, the error of the step length is negligible.

Figure 14. Box plot of stride estimation error.

Comparison tests of robustness among different models are illustrated with CDF in
Figure 15. The figure shows the cumulative distribution 16 and orientation 5. Exemplar
tracks were obtained by the same person from the same walking path. We can see that
the localization accuracy fluctuates with the initial steps, in Figure 16, then the similar
pattern is shown. If the geomagnetic threshold is too small, it is hard for the pure PDF
method to obtain a high localization accuracy, while GeoLoc can achieve high precision
rapidly. The average localization error can decrease to 2 m in 80% of situations when the
step modelis introduced.



Sensors 2022, 22, 9032 21 of 28

Figure 15. CDF among different models, plain Kalman filter, and GeoLoc.

Figure 16. Average error varies with the length of trajectory change.

4.5. Performance under Different Parameters and Landmark

Indoor localization models require a rapid precise positioning result after necessary
short movement. Filtering and matching of the algorithm’s complexity also restrict the
longest path we walked.Alongside the adjusting of other parameters in our algorithm,
we tested the system’s performance under different lengths we walked. For an intuitive
description of these tests, floor plan and trajectory localization are listed in Figures 17 and 18.
It shows that converging in a corridor is faster than the turning paths, and the more turning
there was, the more error that occurred, since turning action would temporally decrease
localization accuracy. However, if the turning was obtained correctly, the localization
process would speed up and increase the precision.

Then, we can choose a proper value as threshold of length under these parameters’
combination, according to Figure 16. It comes down to relationship between errors and
length of walking. Total lengths less than 5 m have a huge change of accuracy because
landmark in this case has the most important weight above all factors, and it has a limited
length because of the physical limits of the map. For total step length above 5 m, the de-
creased tendency is obvious. The minimum number is around 5.5 m, which means that the
balance of prior knowledge and predict information have been achieved.

To analyze the mechanism, here we consider amount of error reducing during certain
steps as converging speed. Matching phase is performed as checkpoints along the path,
to correct the positioning result. Due to the amount of information used, the precision of
the two are different. After the data collection phase is finished, all information could be
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used; in addition to more accurate results, the two problems described above can be solved
to some extent.

1 

 

 

Figure 17. Floor plan of 5th floor.

Figure 18. Floor plan of 6th floor, with estimation and true trajectories. The triangle line, or the
polygonal line, represents normal Kalman-filter-based localization; the straight line with regular
turning represents the test walking path, and the line with the red five-pointed star shows the results
of GeoLoc.

For the iteration phase of the algorithm, there are circumstances that no results or no
reasonable results produced. This is due to the possibility of not converging at all, brought
by the algorithm’s uncertainty. Even in most cases, the final estimation path converged to
the correct path. That means that GeoLoc does not guarantee certain localization accuracy
in rare cases. A common case leading to early convergence is that matching results provide
regular and useful prior information, while convergence fail chance can be significantly
increased if using matching disturbance prior information.

With regard to magnetic matching threshold and other parameters in different places,
we tested GeoLoc in various indoor environments. In GeoLoc, the matching phase was
most affected because of the widely distributed magnet value of different physical char-
acteristics. In other words, we can obtain more accurate matching results rapidly by only
setting a relatively small threshold of matching scope. For example, we built magnet fin-
gerprint maps for pillars, vendor machine, and corridor with pillars, as shown in Figure 19.
Significant distinctness appeared among these magnetic maps; we can see that there are
many points with the same geomagnetic field strength in normal ground and distinctive
magnetic field of these physical features as landmarks [9]. Note that in the map, the valley
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around x = 0 represents the building wall with elevator. In the X-axis section, the shape
is obviously a plateau, which means that it can be identified out of other areas. Previous
work [9] used a landmark to make the matching process more expeditious and accurate.
These building features can generate a discrimination map for localization. Therefore, in
the Y-axis section, a common pattern of magnet value corresponding to building features
appeared. Specifically, there are two elevator doors in position at about y = 15 and y = 9,
a pillar in y = 2, and they have ridges in the map separately. The vendor machine repre-
sents a valley in the magnetic map. x = 0 has the most difference because it is the nearest.
In y = 8, there are steel doors, so a peak appears.

Figure 19. Magnetic map near landmarks: lift, vendor machine, and corridor, separately.

Figure 20 shows the distribution of average localization errors of our model under
different landmarks, with the same parameters, such as geomagnetic threshold and walking
pattern. We can see that the 80th percentile error of landmarks was within 1.2 m, and the
value of normal place was within 1.6 m. From the figure, we can conclude that error around
landmarks is nearly equal to normal ground. We can conclude that the test path along these
landmarks tends to give a more reasonable and accurate result.

Figure 20. Comparison CDF of localization results around landmark. GeoLoc still has a slight advantage.

4.6. Overall Performance Evaluation

We then evaluate the overall performance of GeoLoc. The problems remaining are
mainly cold start and error accumulation problems, which commonly occur in localization
models. Here, we use the evaluation method with final point measurement, called point
distance error. In the experiment shown in Figure 18, we apply the measurement method
to every point.

Cold start problems concern the issue that the model cannot draw any estimations
for users or items about which it has not yet gathered sufficient information [60]. Results
shows that due to the help of matching and landmark, 72% of misjudgment in the first
five steps are under average distance error.Error accumulation occurs in the later stage of
trajectory; for data sources, errors in the gyroscope sensor will result in large accumulated



Sensors 2022, 22, 9032 24 of 28

errors in estimation; for models, values of threshold and parameters lead to underfitting
and overfitting, which is another main reason for accumulated error. Figure 21 shows the
precision using the GeoLoc algorithm to locate in different paths. It can be seen from the
graph that the location accuracy of this algorithm is relatively low at the beginning because
of the cold start problem, and the error is about 5 m, which means that at the initial time,
the accuracy of acquiring initial position by geomagnetism is not high, and the algorithm
hascold start. With the continuous movement of users, the accuracy of positioning is
increasing. When the user moves around 20 m, the positioning error falls to about 1 m.
The algorithm in this paper has similar trends in the location accuracy under multiple
paths, and most of the errors are within 2–4 m, so we can say that the algorithm is relatively
stable. Therefore, this article is effective for the improvement of the PDR model.

Figure 21. Precision of GeoLoc on different paths.

In this paper, the particle filter algorithm is also included in the comparison of the
algorithm experiment. In the experiment, we compared the PDR algorithm, the GeoLoc
algorithm, and the particle filter algorithm proposed in this paper, in which the particle
filter was implemented using 1000 particles and 5000 particles, respectively [61].

The results were obtained in a finite number of steps (10 steps) tested along the corridor,
and the path was linear. Experimental results are shown in Figure 22. It can be seen that
GeoLoc has the smallest positioning error and faster convergence than other methods.

Figure 22. Relationships between step number and positioning error using different positioning methods.

The contrasting results are shown in Figure 23. The X-axis of the graph shows the
distance of the location, and the Y-axis indicates the error of the positioning. From Figure 23,
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we can see that the positioning error of the PDR model increases with the increase of
distance, and the location error of the algorithm in this paper is decreasing continuously.
It can be seen from the diagram that the error of using 5000 particles is less than the use
of 1000 particles. In comparison, the accuracy of this algorithm is higher than that of the
particle filter in most cases. That means that the more complex the model is, the better the
result is. Only a suitable model can obtain better results.

Figure 23. Comparison experiment of positioning accuracy.

In terms of location timeliness, a particle filter is originally used in Monte Carlo. If the
number of particles is too high, it will greatly affect the efficiency of the algorithm. Figure 24
shows a box map of the time complexity of the location. The X-axis represents the selected
algorithm, and the Y-axis indicates the time of the algorithm. From Figure 24, we can see
clearly that the time spent in the PDR algorithm is determined because of the calculation
process, and the time complexity is also increasing with the increase of particle number.
The time complexity performance of the algorithm presented in this paper is far more than
the particle filter algorithm.

Figure 24. Comparison experiment of localization time.

5. Conclusions

In this paper, we present an indoor localization model using geomagnetic data on
a smartphone platform. The indoor environment is complex and turbulent, and inertial
measurement unit (IMU)-based systems require a simple time complexity, so our model
is capable of distinguishing user trajectory with a high accuracy. This is owing to the
fact that our algorithm is robust with respect to a deviation in step size or orientation
estimation. For the error caused by human steps, we employed an augmented pedestrian
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dead reckoning (PDR) motion and step model, reducing median error by about 0.8 m.
Compared with the method only employing PDR or filter, our model solved the cold start
and accumulated error problem to some degree. The experimental results also show that
using only Z-axis data would give us a better precision. Our model aimed to perform in a
user-friendly localizationwhere the user would be required to walk only a short distance,
and our test results returned a satisfactory precision of around 5.5 m walking length,
with precision around 2 m achieved.

This work only uses part of the sensors in smartphones, and our system requires
prepared fingerprint data, so it is very time-consuming in the real world. In the future,
we will consider integrating more built-in sensors of smartphones to improve accuracy,
and designing new fusion algorithms to improve the accuracy of indoor positioning.
In addition, simultaneous localization and mapping (SLAM) framework or crowdsourcing
methods are used to construct the geomagnetic fingerprint map. Future work will also
involve evaluating our model in a larger number of buildings to find potential parametric
patterns, such as thresholds for matching phases.
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