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Abstract: Deformation analysis or point movement checking is the basis for monitoring ground or
engineering structures. There are several approaches to conducting deformation analysis, which
differ from each other in measurement techniques or data processing. Usually, they are based on
geodetic observables conducted in at least two epochs. As such measurements are not “immediate”,
it might so happen that a point (or some points) displaces during measurement within one epoch.
The point movements might be continuous or sudden. This study focuses on the latter case, where
rockburst, mining damages, or newly formed construction faults might cause displacement. To study
this, an observation set consisting of measurements performed before and after point displacements
is needed. As the actual observation division stays unknown, this can be called pseudo epochs. Such
a hypothetical observation set requires special estimation methods. In this work, we examined Msplit

estimation and robust methods. The first approach’s advantage is that it provides two variants of
the network point coordinates (before and after point movements), hence showing dynamic changes
in the geodetic network. The presented empirical analyses confirm that Msplit estimation is a better
choice that results in better and more realistic outcomes.

Keywords: displacement analysis; pseudo epochs; Msplit estimation; robust estimation; Monte
Carlo simulations

1. Introduction

Monitoring dams, bridges, or other buildings and engineering structures is essential
for their operation. Deformation or displacement analysis is often based on surveying
measurements, built-in autonomic sensors, or a combination of these approaches [1]. De-
formation analysis with geodetic methods is based on the displacement of object points
being part of a geodetic network or measured by techniques providing mass measurements
(such as terrestrial or airborne laser scanning). Here, the displacement of object points
is determined between at least two moments of time; hence, the deformation analysis
is conducted in two (or more) so-called measurement epochs [2–6]. However, classical
geodetic observations, namely, measurements of angles, distances, height differences, or
GNSS observables, are not “immediate” at all network points. Thus, it requires some time
to perform measurements [7,8]. Generally, one assumes that the network points (reference
and object ones) are stable (undisplaced) during the measurements of each epoch. The
question then arises, what if any point (or some points) is not? It is evident that such
displacements would affect the observation set, with some observations relating to the
stage before displacements and other observations relating to the stage after displacements.
As all observations belong to one epoch, we can call such subsets observations of the first
or second pseudo epoch; however, in practice, we do not know the assignment of each
observation to either of the pseudo epochs. This problem arose, for example, in [9]. In
such cases, one sudden ground movement is caused by occurrences such as a rockburst
or mining damages. Newly formed construction faults, such as wall cracks or fissures,
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may also cause this problem. Undoubtedly, the unrecognized division of measurements
into pseudo epochs would also affect further computations, such as deformation analysis.
This would indeed happen if one applied the usual approach based on the least squares
method without any statistical tests or analyses detecting “outlying” observations (in the
problem considered here, the observations of one of the pseudo epochs could be regarded
as outliers). The issue of detecting (or dealing with) outliers in deformation analysis or
separating them from network deformation has been addressed in several publications,
e.g., [10–13]. Generally, in the context of pseudo epochs, one can apply a robust estimation
method or other alternative methods that deal with an observation set consisting of the
mentioned subsets.

In the first case, any robust M-estimation can be applied, e.g., the Huber method,
the Hampel method, the Tukey method, the Danish method, or the IGG scheme [14–21].
The main difference between the mentioned robust M-estimation methods concerns their
influence functions, which describe how the estimator responds to outliers. The other
approach is R-estimation [10,22] based on rank tests. Two types of R-estimates are worth
noting: R-estimate of the expected value and R-estimate of the shift between two samples.
In the basic variants, these estimates are called the Hodges–Lehmann estimates (HL) [22].
Additionally, another variant of R-estimates, i.e., the Hodges–Lehmann weighted estimates
(HLW) [10], can be used when observations have different accuracies.

An alternative approach might be the application of Msplit estimation, which is a
development of M-estimation. This method was created to estimate the location parameters
(more generally, the parameters of the split functional models) when an observation set
is an unknown mixture of realizations of different random variables. In such a case, a
classical functional model is split into (at least) two competitive functional models. It is
also noteworthy that before the estimation process, there is no a priori information on
how the observation set is divided into the respective subsets. The assignment of each
observation to either of the observation groups is carried out automatically during the
iterative process. The novelty of such an approach is that competitive functional models
also mean competitive versions of parameters and observation errors. Concerning the
issue of point displacement between measurements in the same epoch, one competitive
functional model can be assigned to each pseudo epoch; hence, point coordinates before
and after point displacement can be estimated in one estimation process. The basic Msplit
estimation variant is called the squared Msplit estimation (SMS) [23]. It can be derived
under the assumption that observation errors are normally distributed. Another variant of
Msplit estimation is the absolute Msplit estimation (AMS), which is based on the L1 norm
condition [24,25]. The development of Msplit estimation has led to some modifications of
SMS or AMS methods [26–30], which have already been applied in deformation analysis
and displacement detection [23,25,27–34].

In this work, we aimed to compare two approaches to the problem of the possible
existence of pseudo epochs. The following methods were analyzed in the first approach:
the least squares estimation (LS), the Huber method (robust M-estimation as example), and
Hodges–Lehmann weighted estimation (R-estimation as example). In the second approach,
we examined both the squared Msplit estimation and the absolute Msplit estimation variants.

2. Models, Foundations, and Algorithms of Methods Applied

Let us consider the following linear model that is often used for geodetic measurements:

y = AX + v (1)

where y is the observation vector n× 1, A is the full rank coefficient matrix n× r, X is the
parameter vector r× 1, and v is the measurement error vector n× 1. The LS estimator X̂LS
of the parameter vector can be computed as follows:

X̂LS =
(

ATPA
)−1

ATPy (2)
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where P is the diagonal weight matrix n × n. Here, we assume that the observations
are independent; however, if they are not and the weight matrix is not diagonal, the
solution remains the same. A similar solution computed in an iterative process concerns
M-estimators. Here, we consider the Huber method, so the estimator X̂H of the parameter
vector is determined as follows [16,35,36]:

X̂H =
(

ATWA
)−1

ATWy (3)

[W]ii = [P]ii · w(v̂i) (4)

where W is the diagonal matrix of weights n× n, w(v̂i) is the weight function related to a
variant of M-estimation and 1 ≤ i ≤ n, v̂i is the standardized error of ith observation, and
[◦]ii is the ith diagonal element of a matrix. The standardized error can be computed in the
following way:

v̂i =
vi
σvi

(5)

where σvi is the standard deviation of the error that can be computed by applying the
approximation of the covariance matrix of errors in the following well-known form:

Cv = σ2
0

(
W−1 −A

(
ATWA

)−1
AT
)

(6)

where σ2
0 is the variance of unit weight [37]. Another way to determine the error standard

deviation is based on the application of Monte Carlo simulations [38]. The new version of
the matrix W is computed in each subsequent iterative step based on the standardized errors
from the previous iterative step (in the first iterative step W = P). Here, we use the Huber
method, where the weight function is written in the following general formula [16,35,36]:

w(v̂i) =

{
1 for |v̂i| ≤ c
c
|v̂i |

for |v̂i| > c (7)

where c is the positive constant defining the interval of acceptable standardized measure-
ment errors. We assume that c = 2 in the numerical tests, which is often used in practice [17].
The constant c can also be computed using Monte Carlo simulations as the critical value
related to the associated probability level [38].

Another robust estimator that can be applied in the context of this paper is the Hodges–
Lehmann weighted estimator of the expected value ÊHLW(Xj

)
, where 1 ≤ j ≤ r. The

general formula proposed in [10] is as follows:

ÊHLW(Xj
)
= medw

(
zk + zl

2

)
(8)

where medw(◦) is the weighted median operator, and zk and zl are the elements of a
sample of size s (1 ≤ k ≤ s, 1 ≤ l ≤ s). In the context of this paper, the sample is created
separately for each point coordinate (e.g., horizontal X or Y or vertical H) and consists
of the coordinates computed by applying the raw observations and the reference point
coordinates in all possible independent ways [10]. For example, in the case of a leveling
network, one can compute the object point height by adding the respective measurements
to the height of the chosen reference point; in a horizontal network, this can be achieved
using angular or linear intersections, resections, or just a polar method.

The last method considered here, Msplit estimation, requires other assumptions and
algorithms. Generally, the method in question is a development of M-estimation derived
under the assumption that an observation set is an unrecognized mixture of the realization
of two (or more) random variables that differ in location parameters [23]. Such an as-
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sumption leads to the split of the functional model from Equation (1) into two competitive
ones [23,25]:

y = AX + v⇒
{

y = AX(1) + v(1)
y = AX(2) + v(2)

(9)

where X(m) are versions of the parameter vector, and v(m) are versions of the measurement
error vector; m = 1 or 2.

The main objective of Msplit estimation is to assess parameter versions. It can be done
by solving the optimization problem, which is equivalent to minimizing the objective
function. The two Msplit estimation variants considered here, i.e., the squared and absolute
Msplit estimation, can be written as follows:

ϕSMS

(
X(1), X(2)

)
=

n
∑

i=1
v2

i(1)v
2
i(2)

ϕAMS

(
X(1), X(2)

)
=

n
∑

i=1

∣∣∣vi(1)

∣∣∣∣∣∣vi(2)

∣∣∣ (10)

The competitive Msplit estimates of the parameter vectors, namely, X̂(1) and X̂(2), are
determined in the iterative process by applying the modified Newton method [23]. Two
variants of Msplit estimation require different computing algorithms, which stem from the
differences in the objective functions and their derivatives [25]. SMS estimation uses the
traditional iterative process given in the following form [24]:

Xj
(1) = Xj−1

(1) + dXj
(1) = Xj−1

(1) −
[
H(1)

(
Xj−1
(1) , Xj−1

(2)

)]−1
g(1)

(
Xj−1
(1) , Xj−1

(2)

)
Xj
(2) = Xj−1

(2) + dXj
(2) = Xj−1

(2) −
[
H(2)

(
Xj
(1), Xj−1

(2)

)]−1
g(2)

(
Xj
(1), Xj−1

(2)

) (11)

H(1)

(
X(1), X(2)

)
=

∂2 ϕ(y;X(1),X(2))
∂X(1)∂XT

(1)
= 2ATw(1)

(
v(1), v(2)

)
A

H(2)

(
X(1), X(2)

)
=

∂2 ϕ(y;X(1),X(2))
∂X(2)∂XT

(2)
= 2ATw(2)

(
v(1), v(2)

)
A

(12)

g(1)

(
X(1), X(2)

)
=

[
∂ϕ(y;X(1),X(2))

∂X(1)

]T
= −2ATw(1)

(
v(1), v(2)

)
v(1)

g(2)

(
X(1), X(2)

)
=

[
∂ϕ(y;X(1),X(2))

∂X(2)

]T
= −2ATw(2)

(
v(1), v(2)

)
v(2)

(13)

w(1)

(
v(1), v(2)

)
= diag

[
w(1)

(
v1(1), v1(2)

)
, . . . , w(1)

(
vn(1), vn(2)

)]
w(2)

(
v(1), v(2)

)
= diag

[
w(2)

(
v1(1), v1(2)

)
, . . . , w(2)

(
vn(1), vn(2)

)] (14)

where dX(m) are increments to the parameter vector, H(m)

(
X(1), X(2)

)
are Hessians,

g(m)

(
X(1), X(2)

)
are gradients, w(m)

(
v(1), v(2)

)
are matrices of the weight, diag(◦) is the

diagonal matrix; m = 1 or 2. The necessary weight functions of SMS estimation are as
follows [23]:  w(1)

(
vi(1), vi(2)

)
= v2

i(2)

w(2)

(
vi(1), vi(2)

)
= v2

i(1)

(15)

The iterative process ends for the iterative step t for which both g(1)

(
Xt−1
(1) , Xt−1

(2)

)
= 0

and g(2)

(
Xt−1
(1) , Xt−1

(2)

)
= 0 or at least they are close enough to 0, and the parameter changes

between the subsequent iterative steps are smaller than the assumed tolerance [24,25].
Hence, finally X̂(1) = Xt

(1) = Xt−1
(1) and X̂(2) = Xt

(2) = Xt−1
(2) [23,25].
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AMS estimation requires a parallel iterative process:

Xj
(1) = Xj−1

(1) + dXj
(1) = Xj−1

(1) −
[
H(1)

(
Xj−1
(1) , Xj−1

(2)

)]−1
g(1)

(
Xj−1
(1) , Xj−1

(2)

)
Xj
(2) = Xj−1

(2) + dXj
(2) = Xj−1

(2) −
[
H(2)

(
Xj−1
(1) , Xj−1

(2)

)]−1
g(2)

(
Xj−1
(1) , Xj−1

(2)

) (16)

The way of computing the Hessians and gradients is similar to Equations (12)–(14);
however, following the objective function of AMS estimation presented in Equation (10),
one should use the weight functions in the following forms [25]:

w(1)

(
vi(1), vi(2)

)
=


−|vi(2)|

2vi(1)
for vi(1) < 0

|vi(2)|
2vi(1)

for vi(1) > 0

w(2)

(
vi(1), vi(2)

)
=


−|vi(1)|

2vi(2)
for vi(2) < 0

|vi(1)|
2vi(2)

for vi(2) > 0

(17)

The conditions for ending the parallel process are the same as in the traditional
one. The differences between the presented algorithms concern the starting points and
computing the estimates in subsequent iterative steps (compare Equations (11) and (16)).
There is one starting point in the traditional iterative process (usually LS estimates of the
parameters) and two different starting points in the parallel iterative process. A detailed
description of the Msplit estimation variants and algorithms and the relationship between
their objective, influence, and weight functions can be found in [23,25].

Considering the problem of pseudo epochs, the competitive versions of the parameter
vector should reflect the point displacements. One should expect one version to correspond
to the point coordinates before displacements and the second version to after the point
movements. Such a “double” solution is different than in the robust M-estimation, where
the only solution is supposed to be free of the negative influence of “outliers” resulting
from unexpected point displacements.

3. Empirical Tests
3.1. Simulated Leveling Network

The first numerical test concerned a leveling network presented in Figure 1. This
network included two reference points A and B and seven object points 101, 102, 103,
104, 105, 106, and 107 (points with unknown heights). We let 20 height differences hi be
measured with the standard deviation of 1 mm twice in one measurement epoch; hence,
we had 40 observations. Without loss of generality, one can assume that the theoretical
heights of all network points equal 0 mm; therefore, theoretical height differences between
every point pair also equal 0 mm.

To examine the two approaches presented thoroughly, we considered several variants
of point displacements. We assumed that only points 101 and 102 were unstable in all
variants. We took the values of ∆H101 = 10 mm and ∆H102 = 20 mm in Variants I
and II, which differed from each other in the number of measurements performed after
the displacements of the points. In Variant I, the second measurements of the height
differences h1, h3, and h7 were measured after the point displacements; in Variant II, the
first measurements of the height differences h3, h7, and the second measurements of the
height differences h1, h3, h4, h7, and h9 were measured after the point displacements.

In the classical approach, the observations measured after the point displacements
should be regarded as outliers, contrary to Msplit estimation, where such a subset should be
related to the second competitive functional model. One should realize that in practice, we
do not know which points are displaced and which observations are performed before and
after the point displacements; thus, we cannot divide observations into subsets a priori.
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We examined how such an affected observation set influenced the estimation results
by applying crude Monte Carlo method. Hence, we assumed that the observations were
normally distributed and simulated 5000 observation sets in each variant in Mathcad
15.0. Such a number of simulations guarantees the error is approximately 0.56% in crude
Monte Carlo simulations, e.g., [39], which seems sufficient in the context of this paper.
We examined how the methods mentioned previously, namely, LS estimation, the Huber
method with the steering parameter c = 2, HLW estimation, and two variants of Msplit
estimation (SMS and AMS methods), dealt with the problem of pseudo epochs. Because
the accuracy of all observations was the same, we assumed that the weight matrix P was
equal to the identity matrix I. The starting vector X0

(1) of the iterative processes of Msplit

estimation of Equations (11) and (16) was based on the heights of the reference points and
the theoretical height differences; hence, its elements were equal to 0 mm. The starting
vector X0

(2) (for AMS estimation) was computed by adding 10 mm to each element of the

vector X0
(1) [24].

The histograms of the estimated heights of the chosen network points obtained in
Variant I are presented in Figure 2. The histograms were determined for the heights of the
object points that moved, namely, 101 and 102, and one chosen stable point, namely, 104.
The histograms obtained for the other stable points were very similar to the histogram of
point 104 height; hence, they are omitted here.

In Variant I, the best results were obtained for the Huber method, where the height
estimates were robust against outlying observations. LS estimation was not robust; hence,
its results were not acceptable, especially for unstable points. The other robust method
(HLW) also did not provide correct results, especially for point 101. This was due to the
location of outliers and the low breakdown point of the method in the case of a small
number of observations (independently computed point heights in this case) [11]. Note
that we had 6 independent ways to compute the heights of point 101, 8 ways for point 102,
and 12 ways for point 104, which determines the size of the samples in Equation (8).

Following the split functional model of Equation (9), we had two competitive solutions
in Msplit estimation, namely, the competitive point height estimates reflecting two pseudo
epochs. The histograms obtained for the estimated heights of unstable points showed
that Msplit estimation detected the point displacements correctly (the histograms coincided
with all simulated point heights). The situation was different for the estimated height of
point 104 (similar histograms were obtained for the rest of the stable object points). The
first solutions of both variants seemed correct; the histogram coincided with 0 mm. The
histograms of the second solutions were generally proper; however, they seemed slightly
skewed to the right, especially in the case of SMS estimation.
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Histograms of the estimated point heights obtained in Variant II are presented in
Figure 3.

The conventional methods failed to estimate the heights of the unstable points. Only
estimates of the heights of point 104 were close to the theoretical value (the best results were
obtained for HLW estimation). The histograms obtained for the point heights estimated
by Msplit estimation were generally located correctly. However, the histogram of the
first solution of AMS estimation obtained for point 101 was bimodal, with a very small
second mode located at the other solution. This time, the histograms obtained for point
104 seemed less skewed to the right than in Variant I. It followed the general feature of
Msplit estimation, where it is easier to distinguish two groups of observations when there is
a smaller discrepancy in the number of observations in the groups in question.

In the first two variants, the displacements of points 101 and 102 were relatively
high. Next, we considered the simulated displacements whose values were at the same
magnitude as the measurement accuracy. Thus, we considered Variants III and IV for which
∆H101 = 3 mm and ∆H102 = 2 mm. Similarly to Variants I and II, we assumed that the
second measurements of the height differences h1, h3, and h7 were measured after the point
displacements in Variant III. In contrast, in Variant IV, the first measurements of the height
differences h3 and h7 and the second measurements of the height differences h1, h3, h4, h7,
and h9 were measured after the point displacements.

Figure 4 presents the histograms obtained in Variant III.
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Figure 3. Histograms of estimated point heights in Variant II.

The results of all conventional methods were very similar, resulting from small values
of outliers (observations performed after the point displacements); hence, the robust
methods did not consider them to be outlying. Only solutions obtained for point 104 were
taken as correct, and the solution for point 102 was very close to the true value. For Msplit
estimation, the histograms for the estimated height of point 101 were broad; however, the
maximum frequencies seemed to coincide with simulated point heights. In the case of
point 102, the first solutions of SMS and AMS estimation were correct. The histograms of
the second solutions were bimodal, with a minor mode located at the wrong solution. In
the case of histograms of point 104, the first solutions of both variants seemed correct but
the second solutions were not. This was due to the low observations performed after the
point displacements.

The histograms of the estimated point heights in Variant IV are presented in Figure 5.
The results of all conventional methods were very similar to each other. However, none
of the methods provided satisfactory results. Only the histograms obtained for the height
of point 104 were located close to 0 mm. This was due to the fact that most of the height
differences between that point and the other network points were measured at the first
pseudo epoch. The histograms obtained for Msplit estimates of the heights of points 101 and
102 showed that Msplit estimation detected the point displacements better than in the
preceding variant. This was due to the higher number of observations in the second
pseudo epoch, which helped to correctly separate the pseudo epochs. The histograms
obtained for point 104 had modes close to 0 mm for both Msplit estimation variants and
competitive solutions.
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The presented histograms gave only general information about estimation results.
The crude Monte Carlo simulations allowed us to compute some descriptive parameters.
We applied the median and the root-mean-square deviation (RMSD). The median here
describes the central tendencies of the estimates. The mean values of estimates were
omitted. They are usually equal to the respective medians or differ from them by no more
than 0.2 mm.

On the other hand, RMSD describes the accuracy of the estimates, and it can be
computed in the following way [25,40]:

RMSD =

√√√√5000

∑
i=1

(
X̂MC

i − X
)2

5000
(18)

where: X̂MC
i is the estimated parameter in the ith simulation, and X is the simulated

parameter. For the conventional method, for each point, X = 0 mm. In the case of Msplit
estimation, X = 0 mm for the first solution X(1). However, for the second solution X(2),
X = ∆H101 = 10 mm, X = ∆H102 = 20 mm, or X = ∆H104 = 0 mm in Variants I and II and
X = ∆H101 = 3 mm, X = ∆H102 = 2 mm, or X = ∆H104 = 0 mm in Variants III and IV.

Table 1 presents the medians of the estimated point heights, whereas Table 2 shows the
RMSDs of the estimates. In Variant I, the tables confirm that the Huber method provided
the correct results and LS or HLW estimation did not. They also prove that Msplit estimation
might be able to distinguish between the first and second pseudo epochs. What is more, it
could assess the point displacements correctly. However, Msplit estimation provided worse
assessments of X(2) for the points that were not displaced during the measurements (see
the results obtained in the case of point 104, especially RMSDs). This might be due to the
small number of observations performed after the point displacements.
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Table 1. Medians (mm) of the chosen object point height estimates from simulations.

Variant Point LS Huber HLW SMS X̂(1) SMS X̂(2) AMS X̂(1) AMS X̂(2)

Variant I
101 2.0 0.0 4.1 −0.1 10.1 −0.1 10.0
102 4.1 0.1 0.9 −0.1 19.9 0.0 20.2
104 1.3 0.0 0.2 0.0 3.0 −0.1 1.0

Variant II
101 6.8 6.8 9.1 0.9 10.1 0.4 10.1
102 11.4 11.6 10.6 0.9 20.0 0.3 20.0
104 1.8 1.8 0.2 0.9 0.0 0.3 0.0

Variant III
101 0.8 0.6 1.0 0.9 1.6 0.4 1.9
102 0.3 0.3 0.4 −0.1 1.5 −0.1 1.4
104 0.2 0.1 0.1 −0.2 0.8 −0.1 0.7

Variant IV
101 1.6 1.6 1.8 0.8 2.5 1.0 2.4
102 1.1 1.1 1.4 0.3 2.1 0.4 2.1
104 0.3 0.3 0.1 0.2 0.2 0.2 0.1

In Variant II, the best results, i.e., the medians closest to the theoretical values, were
obtained for AMS estimation. Empirical accuracies for Variant II showed that Msplit estima-
tion could deal with the existing pseudo epochs better than the conventional methods when
the number of observations carried out after the point displacements was more significant.
Even the Huber method, which succeeded in Variant I, could not manage a higher number
of outlying observations.
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Table 2. RMSDs (mm) of the chosen object point height estimates from simulations.

Variant Point LS Huber HLW SMS X̂(1) SMS X̂(2) AMS X̂(1) AMS X̂(2)

Variant I
101 2.1 0.6 4.1 1.2 1.4 1.2 1.9
102 4.1 0.5 1.0 0.9 1.0 0.9 1.0
104 1.4 0.4 0.4 1.0 5.1 1.0 4.7

Variant II
101 6.9 6.8 9.1 3.9 1.2 2.7 1.7
102 11.4 12.2 10.7 3.9 0.7 3.1 0.7
104 1.9 1.8 0.4 3.9 1.4 2.1 2.7

Variant III
101 1.0 0.9 1.1 1.7 2.1 1.6 2.1
102 0.5 0.5 0.6 0.8 1.6 0.8 1.6
104 0.4 0.4 0.4 0.9 1.3 0.8 1.2

Variant IV
101 1.7 1.7 1.9 1.7 1.6 1.8 1.6
102 1.2 1.2 1.5 1.0 1.0 0.9 1.0
104 0.4 0.4 0.4 1.0 1.2 1.0 1.1

In Variant III, the outcomes obtained were worse. Msplit estimation variants had a
problem correctly distinguishing between the two pseudo epochs. When the displacement
during measurements was small and close to 0 mm, the classical robust methods and
LS estimation gave better results than the Msplit estimation variants. However, it is hard
to consider them as satisfactory in the example given (mainly results obtained for the
unstable points).

In Variant IV, the median values obtained pointed out that the Msplit estimation vari-
ants characterized the actual locations of the network points better than the conventional
methods. There were no significant differences between RMSDs for all methods considered
for the estimated heights of points 101 and 102. For point 104, the conventional meth-
ods were more accurate. This was due to the small simulated displacements of points
101 and 102.

3.2. Simulated Horizontal Network

The second numerical example concerned the simulated horizontal network estab-
lished for deformation analysis. The simulated horizontal network is presented
in Figure 6. It consisted of three reference points, A (XA = 100 m, YA = 100 m),
B (XB = 50 m, YB = 200 m), and C (XC = 110 m, YC = 250 m), and two object points,
101 and 102 [10]. The observation vector included independent observations: 12 dis-
tance measurements (each distance was measured twice) and 16 horizontal angles at the
measurement epoch. The assumed accuracies of the observations were 0.002 m and 0.0020 g,
respectively; hence, the weight matrix was P = 0.002−2 · I (for the LS method or M- and
Msplit estimation, one can assume P = I).

We let object point 101 be displaced during the measurements and assumed that
the change of the coordinates X101 and Y101 of the object point 101 equaled 40 mm and
20 mm, respectively. These values corresponded to the coordinate differences between
two measurement epochs in a previous paper [10]. The set consisted of two observa-
tion subsets (the measurements before and after the point displacement). The theoret-
ical values of the observations of the first pseudo epoch were computed using the co-
ordinates of three reference points and the theoretical coordinates of the object points
101 (X101 = 250 m, Y101 = 190 m) and 102 (X102 = 230 m, Y102 = 240 m). In contrast, the
theoretical observations of the second pseudo epoch were computed by taking into account
the shift of point 101 (X101 = 250, 040 m, Y101 = 190, 020 m).
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Like in the previous example, we considered two variants that differed from each
other in the number of observations in both pseudo epochs. In Variant I, the distances
d101−B and d101−C and horizontal angles α101−B−C and αB−C−101 were measured after point
101 displacement. In Variant II, the distances d101−B and d101−C and horizontal angles
αA−B−101, α101−B−C, αB−C−101, and αA−C−101 were measured after point 101 displacement.

Assuming that the observations were normally distributed, we simulated the observa-
tion set 5000 times in Mathcad 15.0. We also compared the following estimation methods:
LS estimation, the Huber method with the steering parameter c = 2, HLW estimation, and
the two variants of Msplit estimation (SMS and AMS methods). The starting vector X0

(1)
of the iterative processes of Msplit estimation of (11) and (16) was computed based on the
coordinates of the reference points, “raw” measurements dA−101, dA−102, α101−A−C, and
α102−A−C and the simple trigonometric functions as proposed in [24]. The starting vector
X0
(2) (applied in AMS estimation) was computed by adding 0.040 m to each element of the

vector X0
(1).

During the estimation process, the increments dX101, dY101, dX102, and dY102 were
calculated. As only point 101 was displaced during the measurements, we have presented
only results for that point.

The histograms of dX̂101 and dŶ101 obtained in Variant I are given in Figure 7.
Although only four observations were made after point 101 displacement in this

variant, both variants of Msplit estimation correctly indicated the shift. However, the
histograms of dŶ101 for the second solutions X̂(2) were broad; their modes were close to
20 mm. The conventional methods failed except for the Huber method, for which the
estimator histograms were pretty well located (nevertheless, the histogram of dŶ101 was
slightly shifted to the right).

In Variant II, two more measurements were carried out after the point displacements.
Histograms of estimated increments to point 101 coordinates are shown in Figure 8.
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The results showed that all conventional methods did not deal with the higher num-
ber of outliers. The histograms indicated that the methods could not “tell” the regular
observations from the outliers. Once again, the histograms showed that Msplit estimation
distinguished between the two pseudo epochs, and the results obtained corresponded to
point 101 displacement.

As outlined in Section 3.1, we computed some descriptive statistics from the crude
Monte Carlo simulations. Tables 3 and 4 present the medians and RMSDs of the estimates
of increments to point 101 coordinates. In Variant I, the medians and RMSDs confirmed the
conclusions from the simple analysis of the histogram locations. The Huber method gave
entirely satisfactory results, which meant that the four observations carried out after point
101 displacements were regarded as outliers, and their influence on the estimation results
was significantly reduced. RMSDs obtained for the Huber method were like those of the
Msplit estimation variants (the solution X̂(1)). The medians showed that Msplit estimation
correctly assessed the point displacements. Thus, Msplit estimation distinguished the first
pseudo epoch from the second one.

Table 3. Medians (mm) of the estimates of increments to point 101 coordinates from simulations.

Variant Estimator LS Huber HLW SMS X̂(1) SMS X̂(2) AMS X̂(1) AMS X̂(2)

Variant I
dX̂101 −4.4 0.6 18.8 −0.1 39.8 −0.2 39.9
dŶ101 0.0 1.6 6.6 0.0 19.2 0.2 19.4

Variant II
dX̂101 13.2 1.2 38.2 −0.1 40.0 −0.3 40.0
dŶ101 0.6 7.5 12.6 0.1 20.1 0.5 20.2
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Table 4. RMSDs (mm) of the estimates of increments to point 101 coordinates from simulations.

Variant Estimator LS Huber HLW SMS X̂(1) SMS X̂(2) AMS X̂(1) AMS X̂(2)

Variant I
dX̂101 12.8 1.3 18.8 1.3 2.0 1.3 2.0
dŶ101 4.7 2.5 7.1 2.6 5.3 2.5 5.4

Variant II
dX̂101 13.2 1.7 38.2 1.2 1.8 1.3 1.8
dŶ101 1.7 7.8 12.8 2.7 4.1 2.8 3.5

The statistics obtained in Variant II confirmed the conclusions concerning the con-
ventional methods. In many cases, they did not deal with the existence of two pseudo
epochs. The results for both variants of Msplit estimations were similar and slightly better
than in Variant I. The medians for Msplit estimation showed that the point shift was ade-
quately assessed. This was due to the fact that more observations were carried out after
the displacement of point 101; hence, it was easier for Msplit estimation to correctly assign
measurements to two pseudo epochs.

4. Discussion

The empirical tests showed the main differences between applying the conventional
methods and Msplit estimation when object points might move during measurements within
one epoch. Loss or preservation of information about point displacements is essential. The
examples presented in this paper prove that conventional methods may not manage point
displacement during measurements. When applying robust M-estimation, observations
from one pseudo epoch (before or after point displacements) should be assumed to be
outliers. The robust methods can provide correct results only when the number of outlying
observations (usually the group of observations performed after the point displacements) is
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small enough. We would surely lose information about point displacements by “ignoring”
such a group of observations. We would also not know if the estimation results related
to the first or the second pseudo epoch. By applying Msplit estimation, one can preserve
the information about point displacements and keep track of point movements during the
measurement epoch. Msplit estimation is used to determine two competitive versions of the
parameters, such as the two versions of the object point coordinates (before and after the
point displacement) in this case. In the given examples, both variants of Msplit estimation
distinguished the two groups of observations. Moreover, they correctly assessed the point
displacements between the pseudo epochs. Comparing the results obtained for the Msplit
estimation variants, one can suggest applying the AMS method rather than SMS estimation
for the problem addressed in this paper.

Robust estimation methods are not the only way to deal with outlying observations.
Another option is statistical testing in the global or local case [41,42], which is supposed
to indicate outlying observations. The flagged observations should be rejected from the
observation set, hence eliminating their influence on the results. The procedure of statistical
testing is also performed in deformation analysis. However, distinguishing outliers from
displacements might be a problem [13]. It is also important to realize that there is no uni-
versal test for detecting outliers and, in fact, no rigorous tests for multiple outlier detection
in least squares estimation [43]. Considering the problem of pseudo epochs, one should
almost always expect that there is more than one observation regarded as an outlier (related
to the pseudo epoch for which the number of observations is lower); hence, the application
of statistical test might fail. On the other hand, even if the outliers are flagged correctly,
one is losing information about the point movements during measurements, contrary to
the application of Msplit estimation. Talking about statistical procedures in deformation
analysis, one should also mention testing the statistical significance of displacements,
namely, CT (applying χ2 distribution), FT (involving Fisher–Snedecor distribution), or
GCT (global congruence test) [14,44–46]. Undoubtedly, undiscovered point displacements
will surely disturb all procedures mentioned. In further studies, it would be interesting to
compare the proposed method to the statistical testing mentioned. We would also consider
heterogeneous cases where observations have different accuracies and/or are correlated.

The efficacy of robust estimation or statistical tests for data cleaning is also problem-
atic when the magnitude of point displacements during measurements is similar to the
observation accuracies. Variant IV in the first test showed that Msplit estimation was able to
detect the displacements of such a magnitude only when the number of observations in
both pseudo epochs was high enough.

The approach presented in this paper concerns point movements that are sudden
and happen once in the epoch. If there are more such movements, one should consider
Msplit(q) estimation, where q is the number of expected pseudo epochs. The squared Msplit(q)
estimation was presented in [33] and the absolute Msplit(3) estimation in [25]. Such an
application would require further empirical analysis, especially for efficacy related to the
minimal number of observations in each pseudo epoch. Another problem is when a point
(or points) moves continuously during measurements. In this case, the approach based on
the pseudo epoch seems problematic, and deformation analysis would probably require
permanent measurements and other estimation methods [47–49].

5. Conclusions

If they occur, the displacements of object points during one measurement epoch
stay undetected at the stage of measurements. Sudden and discrete point movements
might mainly concern large networks where the number of observations is high; hence, a
longer time is required for measurements. Pseudo epochs might also occur in networks
established to determine terrain surface deformations resulting, for example, from uplifts or
mining damages, where the vertical displacements might be sudden and have a relatively
high magnitude. Pseudo epoch analysis based on Msplit estimation application seems
reasonable and advisable in such networks or objects of such characteristics. The efficacy
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of the proposed procedure depends on the magnitude of displacements and the number
of observations in each pseudo epoch (the higher the displacement magnitude and the
more similar the numbers of pseudo epoch observations, the more reliable the results are
expected to be).

Deformation analysis is a complicated procedure that is sensitive to unexpected and
undetectable disturbances, such as outliers, instability of possible reference points, etc.
Thus, procedures for detecting outliers or checking the stability of reference points are
always used. For the same reasons, one might apply the procedure proposed in this paper
to check object point movements during measurements and assess the displacement values.
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