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Abstract: Recently, autonomous driving technology has been in the spotlight. However, autonomous
driving is still in its infancy in the railway industry. In the case of railways, there are fewer control
elements than autonomous driving of cars due to the characteristics of running on railways, but there
is a disadvantage in that evasive maneuvers cannot be made in the event of a dangerous situation. In
addition, when braking, it cannot be decelerated quickly for the weight of the body and the safety of
the passengers. In the case of a tram, one of the railway systems, research has already been conducted
on how to generate a profile that plans braking and acceleration as a base technology for autonomous
driving, and to find the location coordinates of surrounding objects through object recognition. In
pilot research about the tram’s automated driving, YOLOv3 was used for object detection to find
object coordinates. YOLOv3 is an artificial intelligence model that finds coordinates, sizes, and classes
of objects in an image. YOLOv3 is the third upgrade of YOLO, which is one of the most famous
object detection technologies based on CNN. YOLO’s object detection performance is characterized
by ordinary accuracy and fast speed. For this paper, we conducted a study to find out whether the
object detection performance required for autonomous trams can be sufficiently implemented with
the already developed object detection model. For this experiment, we used the YOLOv4 which is
the fourth upgrade of YOLO.

Keywords: objection detection; YOLOv4; tram; autonomous driving

1. Introduction

Along with eco-friendly energy, autonomous driving is the most popular technology
in the transportation industry. Various companies are developing autonomous driving
technology, which in turn is in progress with the advancement of artificial intelligence.
Autonomous driving is being studied not only in the transportation field, but also in various
fields from urban design to social acceptance. Autonomous driving is classified into level 5,
but so far, level 5 autonomous driving has not been implemented. Autonomous driving of
automobiles has been actively developed, but autonomous trams have not been studied as
much. Although trams run on public roads such as automobiles, they have some obvious
differences, as they use tracks, sensors, and steel wheels. Since trams run on an installed
track, there are few control elements, but there are clear disadvantages in that they have
fewer options in an emergency. Therefore, problems may arise when autonomous driving
technology used in automobiles is applied to trams [1–4].

In the reference [5], it was argued that autonomous driving of the railway system
should increase cognitive distance and performance through the appropriate fusion of
other sensors. As a result of applying and testing various sensor fusion methods to the
railway system, it was explained that it is necessary to improve accuracy by using deep
learning. Additionally, to find out the current status of research on autonomous trams, we
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investigated previous studies. As a result of this investigation, we confirmed that research
on the method to create a profile for braking and acceleration and research on finding the
location coordinates of nearby objects through object detection were completed. In this
research, we checked that YOLOv3 was used for object detection to find object coordinates.
YOLOv3 is an artificial intelligence model to position bounding boxes and classify objects
in an image. YOLOv3 is the third upgrade of YOLO based on CNN, which is one of
the most famous object detection technologies. YOLOv3′s object detection performance
is characterized by ordinary accuracy and fast speed. Due to these characteristics, the
YOLO application model is widely used with a camera in object detection technology
and research [6]. AI models in data processing and analysis are keep upgraded. In this
reference [7], the article proposes a multimodal deep learning (MDL) model that use the
several feature maps to analyze several images for the same object. The model achieved
higher accuracy by using CNN to the feature maps that obtained by multi-modality learning
(MML) and cross-modality learning (CML).

In this paper, we conducted a study to find out whether the object detection perfor-
mance required for autonomous trams can be sufficiently implemented with the currently
developed object detection model. For this experiment, we used the YOLOv4 object de-
tection model and used the dataset MS COCO and BDD 100K. The YOLOv4 model has
improvements in accuracy and speed from YOLOv3. In the experiment, by using the BDD
100K dataset, it was checked whether problems were caused by physical differences even
if learned through images taken from cars. In addition, it was possible to confirm which
dataset was more suitable by comparing it with the object detection model using the MS
COCO dataset [8,9].

The paper is organized as follows. In Section 2, the basic descriptions of datasets and
YOLOv4 are explained. Section 3 describes the experimental and evaluation methods, the
overall experimental process, and the analysis of experimental results. The conclusions are
summarized in Section 4.

2. Materials and Methods
2.1. Dataset

The MS COCO dataset is a representative dataset that tests object detection perfor-
mance and is used in various competitions. This dataset has 80 classes and includes various
images for each class. Unlike previously published image datasets (PASCAL VOC dataset,
ImageNet dataset, etc.), the MS COCO dataset provides an image that includes multiple
objects of various sizes. Conversely, when learning is performed using a dataset in which an
object is mainly located in the center of an image, it is often difficult to recognize an object in
a real environment. MS COCO, which learns from datasets with different sizes (especially
if there are many small objects) and multiple objects, can perform object detection smoothly
in real environments. Figure 1 is a sample of MS COCO datasets [10].
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The BDD 100K dataset is an image-based dataset created to recognize objects that
can be variables for autonomous driving. This dataset mainly uses images captured by a
camera installed in a vehicle and has 10 object classes that are mainly encountered while
driving. Like the MS COCO dataset, the image of the BDD 100K dataset often has multiple
objects of various sizes. Figure 2 is a sample of the BDD 100K dataset. The number of
classes and data structure of the two datasets are summarized in Table 1 [11].
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Table 1. Dataset information.

Train Validation Test Class

MS COCO 118,287 5000 40,670 80
BDD 100K 70,000 10,000 20,000 10

2.2. YOLOv4

YOLO is an object detection model first proposed by Joseph Redmon. He had devel-
oped YOLOv3. In this paper, we conducted an object detection experiment on a tram using
YOLOv4, the fourth version of YOLO proposed by Alexey Bochkovskiy. YOLOv4 improves
the speed and accuracy of YOLOv3. YOLOv3 can recognize objects at high speed, but the
average precision is somewhat lower than other object detection models. YOLOv4 is the
version that compensates for these shortcomings [8,9].

The architecture of YOLOv4 consists of a backbone, detection neck, and detection head.
The backbone is CSP-Darknet53. CSP-Darknet53 is a backbone model that improves the
operation speed by applying CSP-DenseNet to Darknet53 used in YOLOv3. The detection
neck uses SPP Block and PANet. SPP Block is used for the most downsized feature map of
CSP-Darknet53. PANet performs upsizing and downsizing sequentially using the feature
maps created through SPP Block and various levels of CSP-Darknet53. The detection head
is the same as YOLOv3. Figure 3 shows the overall YOLOv4 architecture [9].
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performance without affecting inference time. BoS means a module or post-processing
method that significantly improves accuracy even if the inference time slightly increases.

The BoF used in the backbone of YOLOv4 is CutMix, Mosaic, DropBlock, and Class
Label Smoothing. CutMix and Mosaic are data augmentation techniques. CutMix uses
two images, and Mosaic uses four images. CutMix is a learning method that cuts out some
objects in the learning image and fills the space with objects in other images. Mosaic is a
technique for learning by making four different images into one image. The image has
a batch normalization effect. The Mosaic technique reduces a mini-batch size through
batch normalization. DropBlock is a regularization technique that sets some areas of the
feature map to 0 during training and excludes them from training. This works in principle
similar to the learning method called Dropout, and it can prevent overfitting. Class Label
Smoothing allows a label value that is usually 0 or 1 to have a value between 0 and 1.
This is a technique designed to deal with possible incorrect labels. That is, this technique
calibrates the model so as not to have overconfidence concerning the labels and normalizes
the model [9,12–14].

The BoS used in the backbone of YOLOv4 uses the Mish activation function, Cross-
Stage Partial connections (CSP), and Multi-input Weighted Residual Connections (MiWRC).
The Mish activation function is very similar to the Swish activation function. As a feature,
the gradient does not disappear because it has an unbounded function in the positive
domain. It is advantageous for optimization because the overall output is smoothly con-
nected. As the Mish activation function has a regularization effect because it works as a
bounded function on negative outputs. CSP divides the characteristics map of the base
layer and transmits only one side through the existing neural network. The other side
is concatenated with the feature map output from the existing neural network. This can
reduce the inference time as well as increase the accuracy. CSP also significantly reduces
memory usage and bottleneck phenomenon [9,15,16].

The BoF used in YOLOv4′s Detector includes CIoU-loss, CmBN (Cross-Iteration
mini–Batch Normalization), DropBlock, Mosaic, Self-Adversarial Training (SAT), Grid
sensitivity elimination, using multiple anchors for single ground truth, a cosine annealing
scheduler, hyperparameter optimization, and random training shapes. CIoU-loss is one
of the loss calculation methods using IoU (Intersection over Union) as the loss. If only
IoU is used as the loss, learning becomes impossible if the bounding boxes do not overlap.
Therefore, CIoU-loss calculates the loss by including the distance and aspect ratio between
the centers as well as the overlapping area. CmBN is a modified version of CBN (Cross-
Iteration Batch Normalization) for YOLOv4. CBN is a technique for performing current
batch normalization using statistics of batches used for past and present learning. This
technique compensates for differences between past and present batches by applying
statistics from past and present batches to the Taylor series. Unlike CBN, CmBN performs
batch generalization using statistics of mini–Batches in a single batch. The DropBlock
and Mosaic are the same as BoF used in the backbone. SAT is a new data augmentation
technique proposed in YOLOv4 and proceeds in two steps. Step 1 modifies the image
instead of training the artificial neural network through forward propagation. Step 2
is object detection learning that optimizes weights using the modified image. The grid
sensitivity elimination is a proposed method to solve the problem of the equation for
calculating the center position of a bounding box. This technique uses the sigmoid function
to obtain the coordinates, and the absolute value of the input must be very large for the
output of the sigmoid function to be 0 or 1. That is, there is a problem in that it becomes
difficult to obtain accurate coordinates as the coordinates are closer to the boundary of the
grid. It solves the problem by multiplying the sigmoid function output by a value greater
than 1. In YOLOv4, if the IoU (ground truth, anchor) is higher than the IoU threshold,
multiple anchors are used for the ground truth. This method is used to quickly obtain a
bounding box close to the ground truth. The cosine annealing scheduler is one of the ways
to plan how the learning rate will change. This prevents the learning from stagnation in
the local minimum and helps the model to learn accurately at a high speed. The random
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training shapes mean training the object detection model with different image sizes. This
generalizes object detector inputs and prevents overfitting [9,13,17–19].

The BoS used in the detector of YOLOv4 is the Mish activation function, SPP, SAM,
PAN, and DIoU-NMS. The Mish activation function is the same as described in Backbone’s
BoS. SPP is a method to make the output size the same regardless of the feature map with
different sizes by performing pooling by multi-filter. In YOLOv4, SSP can use multiple
sizes of the receptive field by using pooling with multiple sizes and can perform quick com-
putation. This feature can distinguish important features of the context while maintaining
the computation speed. SAM and PANet are slightly modified from the original versions.
SAM outputs a feature map that is reduced in size to one feature map through a convo-
lution on the feature map obtained through the max pooling and average pooling. This
method has the advantage of efficiently transmitting important spatial-wise information
with a small increase in inference cost. In YOLOv4, a convolution operation is performed
instead of pooling in SAM. Therefore, the spatial-wise information transmitted by SAM
becomes pointwise. PANet was proposed to fully utilize various levels of information.
PANet transfers information from low-level to high-level without loss as much as possible,
enabling more accurate localization. The modification of PANet in YOLOv4 is as follows:
the change of shortcut connection from addition to concatenation. DIoU-NMS was used
for post-processing in YOLOv4. DIoU-NMS is one of the methods of using IoU as the loss.
DIoU is a method that calculates not only the degree of overlapping bounding boxes but
also the distance between the bounding box of the real object and the center point of the
predicted bounding box as the loss. NMS is a method of deleting the overlapping bounding
boxes by judging that the same object is detected, leaving only the bounding boxes with
high reliability [9,15,17,20–22].

3. Results
3.1. Methodology

All object detection models presented in this paper were tested in the same environ-
ment. The specifications of the computer in which the experiment was conducted are RTX
2080 Ti (11 GB) GPU. The tram image was taken with a camera installed on the actual tram
as shown in Figure 4. Both cameras are of the same model (acA2000-165uc, Basler ace). The
recorded video is 2040 pixels wide and 1086 pixels high. The experiment was conducted at
the Railway Research Institute (Osong, Korea).

In this paper, we compare the performance of the YOLOv4 model trained with MS
COCO dataset and the YOLOv4 model trained with BDD 100K dataset. Since the two
datasets have different numbers of classes, we edited the model structure for each dataset.
After modifying the number of trainings to fit the datasets, we trained the models. However,
we tested all other parts under the same conditions. We set the width and height to
416 × 416 for the input.

To compare these results, we identify the calculation results of mAP50, mAP75, FPS,
the average IoU, Precision, Recall, and F1-Score in the two different object detection models
trained with each dataset. Precision is an index that calculates precision by checking how
many actual truths are included in the truth predicted by the model. The recall is the ratio
of cases in which the model judges to be true among the actual truth. The F1-Score is an
index to check whether the data of the model are unbalanced and are obtained using two
indices, Precision and Recall. It is obtained by dividing the product of two indicators by
the sum of the two indicators and multiplying by 2. IoU is an index indicating how much
the bounding box predicted by the object detection model overlaps the bounding box that
exists in the real object. This is a value obtained by dividing the overlapping portion of
the two bounding boxes by the area occupied by the two bounding boxes on the image.
Based on these indicators, we determine which dataset is more suitable for YOLOv4: the
MS COCO dataset or the BDD 100K dataset. In mAP, AP stands for average precision.
The area corresponding to the bottom of the Precision-Recall graph is defined as AP. The
average value obtained by adding the AP values obtained for each class and dividing by
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the number of classes is called mAP. The value after mAP means the reliability threshold
value of the bounding box for calculating mAP.
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Figure 4. Camera installed inside tram: (a) camera (acA2000-165uc, Basler ace), (b) installed camera,
and (c) installed camera (enlarged).

For qualitative evaluation rather than quantitative evaluation, we performed object
detection in videos taken from real trams on both object detection models. For autonomous
driving, we needed to measure the position of an object through the position of the bound-
ing box when recognizing an object. Therefore, we checked which of the two models
used in the experiment fits the location and size of the bounding box well with the real
object. In addition, we analyzed the reliability of the bounding box and the ability to detect
traffic-related objects through the videos obtained as the experimental results.

3.2. Methodology Experimental Results

The BDD 100K dataset has 10 classes. As a result of training YOLOv4 with the structure
and hyperparameters changed accordingly, we were able to obtain the weight file. Figure 5
shows the records of the change in loss during training. Figure 6 is the mAP recorded
every 2000 iterations during training. As shown in Figures 5 and 6, we have properly
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trained at a point where the loss is sufficiently reduced, the accuracy is no longer increasing,
and it stagnates.
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Table 2 shows the test results of the YOLOv4 model. The table includes mAP50,
mAP75, and FPS. Table 3 indicates the detailed records of the test results according to the
mAP of the BDD 100K dataset. As shown in Table 2, The YOLOv4 model trained on the
BDD 100K dataset has mAP50 of 48.79% and mAP75 of 22.50%. The model trained with
the MS COCO dataset has mAP50 of 62.80% and mAP75 of 44.30%. In comparison, the
YOLOv4 model trained on the MS COCO dataset has better results. BDD 100K as shown
in Table 3, as a result of training with the BDD 100K dataset, the average IoU is 47.08%
at mAP50, and the average IoU is 32.40% at mAP50. At mAP50, Precision, Recall, and
F1-Score are all equal to 0.61. At mAP75, Precision is 0.38, and Recall and F1-Score are 0.37.

Table 2. mAP graph while training YOLOv4 with BDD 100K dataset.

mAP@0.50 mAP@0.75 FPS

BDD 100K 48.79% 22.50% 50.3
MS COCO 62.80% 44.30% 38.6

Table 3. mAP graph while training YOLOv4 with BDD 100K dataset.

Average IoU Precision Recall F1-Score

mAP@0.50 47.08% 0.61 0.61 0.61
mAP@0.75 32.40% 0.38 0.37 0.37

The speed of YOLOv4 is compared by FPS (Frames per Second), which indicates the
number of frames per second. Looking at Table 2, as a result of the experiment, the MS
COCO model was 38.6 FPS and the BDD 100K model was 50.3 FPS. The 11.7 FPS difference
is a fairly big one. Since the BDD 100K dataset has few classes, the number of output
map channels in YOLOv4 is different. When trained with the MS COCO dataset, the final
feature map of the YOLOv4 model has 255 channels. The 255 channels can be divided into
3 output information groups has 85 channels. In the group of 85 channels, two represent
the coordinates of the object, two represent the sizes of the objects, one represents the
confidence score, and the remaining 80 represent the classes of the objects. Therefore, in the
case of the BDD 100K dataset, 45 channels are used, which is 210 fewer channels than the
MS COCO dataset.

Although mAP indicates the accuracy of the bounding box, it may be different in a
tram environment. Therefore, we compared the two YOLOv4 models by using videos
taken with the tram cameras. As a result, we confirmed that both object detection models
recognize most of the learning objects. However, since we performed the supervised
learning method, they were inevitably unable to recognize the unlearned objects. As shown
in Figure 7, The model (Figure 7a,b) trained with the BDD 100K dataset recognizes traffic
signals. However, the model (Figure 7c,d) trained with the MS COCO dataset does not
recognize the signals at all because it does not include their classes.
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Figure 7. Experimental Video of Test Bed: (a) YOLOv4 Trained on BDD 100K Dataset (case1),
(b) YOLOv4 Trained on BDD 100K Dataset (case2), (c) YOLOv4 Trained on MS COCO Dataset (case1),
and (d) YOLOv4 Trained on MS COCO Dataset (case2).
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4. Discussion

Experiments and results in the above chapter were obtained by referring to the de-
scription of GitHub uploaded by the author of YOLOv4 [9,23]. As shown in the mAP graph
of Figure 6, we can see that it peaks at the 18,000 Iteration when the IoU Threshold is 0.5
and 0 and decreases at the 20,000 Iteration. However, in the graph where the IoU Threshold
is 0.75, the mAP is increased at 20,000 Iterations. This means that learning is carried out
properly before overfitting.

As shown in Table 2, we confirmed that the MS coco dataset has better mAP50 and
mAP75 results than the BDD 100K dataset by analyzing the test results of each dataset.
Based on the results, we analyzed that the MS COCO dataset is more suitable for the
YOLOv4 model than the BDD 100K dataset. On the other hand, the model trained with the
BDD 100K dataset is 11.7 FPS faster than the model trained with MS COCO. This difference
occurs because the number of classes is small (BDD 100′s class: 10). In Table 3, when the
IoU threshold of the YOLOv4 model trained on the BDD 100K dataset was changed from
0.5 to 0.75, the average IoU dropped by 14.68%P from 47.08% to 32.40%. The F1-Score was
learned with a balanced score of 0.61 when the IoU threshold was 0.5 but was learned,
relatively biased, as 0.37 when the IoU threshold was 0.75. This means that some classes
are better learned, but others are not.

There was a difference between the two YOLOv4 models among the results of mea-
suring objects in the video shot with the camera installed on the tram. Mainly, the BDD
100K dataset showed excellent performance in finding objects related to traffic. Comparing
(a), (b), (c), and (d) in Figure 7, the model trained with BDD 100K detects the traffic sign,
whereas the model trained with MS COCO, which does not detect its class, cannot detect it
at all. MS COCO dataset can detect stop signs and traffic lights but can’t detect other traffic
signs. On the other hand, the model trained with the MS COCO dataset had higher object
detection confidence for humans. Looking at (a) and (c) of Figure 7, humans were detected
equally, but 75% for BDD 100K and 87% for MS COCO. Looking at (b) and (d) of Figure 7,
although humans are detected equally, BDD 100K has detection rates of 87% and 95%, and
MS COCO has detection rates of 93% and 91%, exceeding 90%. It seems that this is the
result of learning with various images about human objects.

5. Conclusions

Analyzing the results, we confirmed that the physical difference between the camera
installed on the tram and the black box installed on the vehicle did not affect the object
detection of the YOLOv4 model. YOLOv4 recognized the classes included in the dataset
used for training well. Based on the results, we confirmed that the BDD 100K dataset has no
advantage in autonomous driving over the MS COCO dataset except for the advantage of
having a traffic object as a class. However, the BDD 100K dataset also includes a dataset on
environmental changes according to weather and time. We believe that further experiments
are needed to confirm these advantages. There is also a problem that vehicles, signs, and
traffic lights are slightly different for each country. The reliability of the traffic sign located
in front of the image in Figure 7b is 77%, which is lower than that of other objects in the
images. In the future, when we create a dataset for autonomous driving for actual use,
we plan to include more diverse classes and include datasets obtained from the traffic
environment of each country for training. In addition, we are researching about activation
function to make better object detection model. The function is targeting more improved
activation function than Mish which used by YOLOv4. It is expected that an effective
activation function can be created by strengthening the features mentioned in the paper
introducing the Swish function.
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