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Abstract: This paper presents a novel vehicular environment identification approach based on
deep learning. It consists of exploiting the vehicular wireless channel characteristics in the form of
Channel State Information (CSI) in the receiver side of a connected vehicle in order to identify the
environment type in which the vehicle is driving, without any need to implement specific sensors
such as cameras or radars. We consider environment identification as a classification problem, and
propose a new convolutional neural network (CNN) architecture to deal with it. The estimated CSI
is used as the input feature to train the model. To perform the identification process, the model is
targeted for implementation in an autonomous vehicle connected to a vehicular network (VN). The
proposed model is extensively evaluated, showing that it can reliably recognize the surrounding
environment with high accuracy (96.48%). Our model is compared to related approaches and state-of-
the-art classification architectures. The experiments show that our proposed model yields favorable
performance compared to all other considered methods.

Keywords: Vehicle-To-Everything (V2X) communications; channel state information; deep learning;
vehicular network; autonomous vehicle; intelligent transportation systems

1. Introduction

Autonomous connected vehicles have been the focus of recent research works on
intelligent transportation systems (ITS), in which autonomous vehicles are anticipated to
be widely used as part of the smart road vision and the next generation of transportation
systems. The development of autonomous driving system aims to achieve the highest level
of autonomy, at which no driver is required. When this goal is met, Vehicle-To-Everything
(V2X) communications will emerge as a paramount enabler for leveraging the full potential
of these vehicles. Furthermore, V2X communication is mandatory to ensure the transition
from self-autonomy to full collaborative autonomy [1–3]. Thus, to allow connectivity
between vehicles, vehicular networks (VN) should be set up in ad hoc fashion by forming
Vehicle Ad Hoc Networks (VANETs) and Mobile Ad Hoc Networks (MANETs) [4].

Because V2X communication is quite important, the automotive industry is declaring
its intent to deploy V2X communication technology in their future cars. Moreover, it is
further supported by transportation system governments, such as the proposed mandate
from the National Highway Traffic and Safety Administration (NHTSA) that suggests all
vehicles have V2X capability [5]. On the other hand, the goal of deploying autonomous
vehicles is to improve road safety through cooperative driving that uses the available
roadway efficiently and reduces road congestion.

According to the NHTSA, most crash accidents are caused by vehicles traveling over
the speed limit. Consequently, in order to provide road safety, autonomous vehicles should
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be aware of the speed limit and the environment. Thus identifying the type of environment
in which the vehicle is driving allows the vehicle to make good a self-decision as to the
correct driving speed.

In this context, Artificial Intelligence (AI) has been established as a leading actor
towards the developments of intelligent systems, enabling autonomous vehicles to make
correct decisions [6,7]. Thus, in this paper we introduce a new approach towards vehicular
environment identification without the need for specific sensors. The proposed method
consists of using exchanged Cooperative Awareness Messages (CAM) between vehicles as
well as between vehicles and infrastructure to explore channel characteristics, which are
then used to recognize the vehicular environment, as shown in Figure 1.

Figure 1. Vehicular environment identification process.

2. Related Work

In the literature, many research works have focused on deep learning-based environ-
ment perception in order to make critical decisions such as vehicle speed in the context of
correct decision-making for autonomous cars. In [8], the authors proposed a new method
called the integrated perception approach to construct the environment. They used road
information data such as the distances to surrounding lane markings provided from video
images. These data were used as the input features of a neural network model in order to
reach the correct driving decisions.

A highway environment identification approach has been presented in [9]. The authors
used video data of a highway area recorded under various weather conditions in order to
develop a vision system for recognizing the bounds of highway areas and updating the
vehicle with respect to the highway driving conditions. In [10], the authors presented a
new perception method for urban environments. Their approach was based on the use of
video images provided from an embedded camera in a vehicle, which were then used to
train a neural network in order to develop a conditional navigation model that allows for
prior reception of high-level directional commands.

A vehicular urban environment perception method for autonomous vehicles was
presented in [11]. The approach consists of a Global Positioning System (GPS), Radar,
and Light Detection And Ranging (LiDAR)-based data fusion algorithm for reaching safe
driving decisions. An environment perception approach for a self-driving vehicle in an
urban area was established in [6]. In this method, the authors used a 64-beam rotating
LiDAR with a specific unsupervised algorithm, then generated high-resolution maps of the
surrounding environment, allowing the vehicle to enable the suitable driving parameters
for its environment. The authors of [12] established an approach based on the use of data
fusion in order to obtain a presentation of the environment that includes a camera, 360-
degree LiDAR, and GPS/Inertial Measurement Unit (IMU) sensors deployed in a vehicle.
Thus, the vehicle can make correct self-driving decisions depending on the environment in
which it drives. In [13], the authors proposed an environment perception framework to
enhance the environmental awareness of autonomous vehicles. This framework incorpo-
rates Voxel Region-based Convolution Neural Network (PVRCNN)-based vision features
and leverages Vehicle-to-Infrastructure (V2I) communication technology. The Normal
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Distributions Transform (NDT) point cloud registration algorithm is used both onboard
and at the roadside to obtain the position of autonomous vehicles and objects detected
by the multi-sensor system at the roadside are sent back to the autonomous vehicles to
improve their perception. An end-to-end machine learning model that combines control
algorithms, convolutional neural networks (CNNs), and multitask (MT) learning for au-
tonomous driving was introduced in [14]. The proposed model is able to simultaneously
perform regression and classification tasks for estimating perception indicators and driving
decisions, and can be used to evaluate inference efficiency and driving stability. In [15],
a new approach of enhancement perception for Autonomous Driving Using Semantic
and Geometric Data Fusion was presented based on low-level fusion of semantic scene
information and geometry from LiDAR-based 3D point clouds. This method provides
better range coverage and enables improved perception through 3D object classification and
detection. In [16], the authors introduced real-time object identification, distance estimation,
and instantaneous position tracking in all environmental conditions using a deep learning
algorithm with no additional sensors. The proposed framework was implemented on a
Raspberry Pi 4 Model B using the Raspberry Pi NoIR Camera Module V2.

Almost all of the approaches described above are essentially based on the use of
specific sensors such as cameras, radars, and LIDARs. Data collection based on these
sensors requires a significant amount of computing resources and power [17].

To avoid this, we propose a novel environment identification approach based on deep
learning dedicated to autonomous vehicles without the need for specific sensors. For this,
we exploit the shared wireless channel characteristics between vehicles communicating in
vehicular networks.

Because the CSI values are the most accurate representation of wireless channel charac-
teristics [18], we use the CSI values estimated from the packets exchanged between vehicles
through Vehicle-to-Vehicle (V2V) communications as input features for our proposed con-
volutional neural network model. This model is able to reliably identify the surrounding
environment by learning the channel characteristics (CSI) for each environment. Thus,
the vehicle can set up the right automotive driving parameters (such as speed limits)
corresponding to the identified environment.

The remainder of this paper is organized as follows. Section 3 describes our wireless
communication model. Section 4 provides an overview of the proposed vehicular environ-
ment identification process, while Section 5 describes our tests setups and the evaluation of
the performance of our proposed method. Finally, we provide our conclusions in Section 6.

3. System Model

To begin, we establish a wireless communication vehicular network model in which
each vehicle uses a half-duplex transmitter/receiver pair to communicate with other ve-
hicles. These vehicles exploit the wireless channel effect (characterized by CSI) on the
received messages as the input features for the CNN model used to identify the vehicular
environment.

The proposed V2X network operates on the IEEE 802.11p standard. The main physical
(PHY) layer of this protocol is based on the Orthogonal Frequency Division Multiplex
(OFDM) waveform. The exchanged frames in the vehicular network are constituted as
shown in the figure below (Figure 2).

Figure 2. IEEE 802.11p PHY layer frame structure.
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The vehicular wireless channel is structured as a double selective fading propagation
channel, which is characterized by the delay spread and the Doppler spread [18]. The
base-band time-varying response of the multi-path channel is provided by

h(t, τ) =
L−1

∑
l=0

Al(t, τ)δ(τ − τl(t)), Where

Al(t, τ) = |Al(t, τ)| exp[j(2π f0τl(t) + φl(t, τ)]

(1)

where L represents the number of non-zero paths, Al(t) represents the time-varying com-
plex amplitudes, and τl(t) represents the time-varying path delays. Moreover, note that the
phase of the complex amplitude Al(t) in this instance depends on the variation of Doppler
shift. In addition to the time delay, the signal’s transmission over this channel may cause a
Doppler shift in each path. As a result, the various delayed and frequency-shifted versions
of the transmitted signal are superimposed at the receiver side [19].

We assume that the channel characteristics are static over a constant time Tc (coherence
time) [20], which is inversely proportional to the maximum Doppler shift fd:

Tc ≈
0.423

fd
(2)

In vehicular communication, fd can be expressed by the speed difference between the two
communicating vehicles ∆V, as shown below:

fd =
∆V

c
f0

∆V = |V1 −V2|
(3)

where c and f0 represent the celerity (speed of light) and the communication center fre-
quency, respectively.

Depending on the coherence bandwidth ( 1/Tc), when the channel’s coherence band-
width exceeds the signal’s bandwidth, the channel exhibits flat fading. When the coherence
bandwidth of the channel is smaller than the bandwidth of the signal, it is known as a
frequency-selective fading channel (inter-symbol interference in the time domain).

According to the European Telecommunications Standards Institute (ETSI), the V2X
scenario has a major impact on wave propagation, and thus the channel model [21]. We can
consider five major vehicular environments depending on the different channel modeling
characteristics of power, delay, and doppler [19,22,23]. These vehicular environment
characteristics are shown in Table 1.

Because the vehicular environment is highly mobile, the transmitted messages are
affected by the wireless channel. The received signal over the vehicular wireless channel
can be written as

Y(k) = X(k)H(k) + W(k) (4)

where X(k) denotes the transmitted data symbols, W is the noise in the receiver, and H(k)
denotes the wireless channel response. This channel response is characterized by the CSI.
At the receiver side, a channel estimation task is mandatory; this aims to calculate the CSI,
which is required in order to recover the transmitted data. Because channel estimation is
quite important in V2X communications, a great deal of research work has been carried out
in this field [24–26]. The channel estimation approaches in the literature are mainly based
on observation and long training sequences (LTS). The most common channel estimation
method used in industrial implementations on V2X communication boards is the LS (Least
Square) estimator, thanks to its low complexity; it can be expressed as

ĤLS = min
HLS
||Yt − Xt.H||22 (5)
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where ‖.‖2 is the L2 norm, Xt is the long training sequence vector, and Yt denotes the
corresponding observation vector. A close optimization of the LS estimator was established
in [27], as follows:

ĤLS = X−1
t Yt (6)

Table 1. Vehicular environment characteristics.

Taps Power
[dB] Delay [ns] Doppler

[Hz]
U

-L
O

S
Tap 1 0 0 0

Tap 2 −8 117 236

Tap 3 −10 183 −157

Tap 4 −15 333 492

U
-N

LO
S

Tap 1 0 0 0

Tap 2 −3 267 295

Tap 3 −4 400 −98

Tap 4 −10 533 591

R
-L

O
S Tap 1 0 0 0

Tap 2 −14 83 492

Tap 3 −17 183 −295

H
-L

O
S

Tap 1 0 0 0

Tap 2 −10 100 689

Tap 3 −15 167 −492

Tap 4 −20 500 886

H
-N

LO
S

Tap 1 0 0 0

Tap 2 −2 200 689

Tap 3 −5 433 −492

Tap 4 −7 700 886

4. Vehicular Environment Identification Methodology

In this work, we consider the vehicular environment identification process as a multi-
class classification problem. Thus, we propose two methods to tackle it, as shown in
Figure 3. The first is based on the use of the long training sequences (LTSs) of the received
frame, while the second approach is based on the calculated CSI values. Both the LTSs and
the CSI values include 128 data samples, and these samples are used as the input features
of the CNN model.
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Figure 3. Flow chart describing vehicular environment identification process.

4.1. The Proposed Model

To tackle to problem of vehicular environment identification, we propose the Convo-
lutional Neural Network (CNN) architecture shown in Figure 4.

Figure 4. Proposed CNN Architecture.

The proposed CNN model is constructed as follows: First, it begins with two similar
one-dimensional (1D) convolutional layers; these two layers include 45 filters. Then, we
have a third 1D convolutional layer, including 20 filters. This is followed by two other
1D convolutional layers that include 45 and 20 filters, respectively. The size of the filters
utilized in all the previous convolutional layers is (4× 1). After that, we have an average
pooling layer with a pool size of 2. This average pooling layer has three 1D convolutional
layers and employs 45 fillers of (4 × 1) kernel size. The ReLu function is used as an
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activation layer for all the previous convolutional layers. These layers are followed by three
fully connected layers, which include 128, 256, and 512 neurons respectively, with the ReLu
activation function used for these three dense layers. To reduce the overfitting effect, we
add two dropout layers (with p = 0, 3) after the first and the second fully connected layer.
Furthermore, second-norm regularization is used for all the fully connected layers [28].
Finally, the output layer is a fully connected layer in which the number of neurons is 5
(equal to the number of environment classes), with SoftMax used as the activation function.

The proposed architecture was built using the Tensorflow library [29], and we used 20
epochs and a batch size of 50 to train the model.

4.2. Data-Set Generation

For training, we considered 5 classes of vehicular environments: Rural LOS (Line-
of-sight), Urban LOS, Urban NLOS (Non-Line-of-sight), Highway LOS, and Highway
NLOS. Each environment is modeled by a wireless channel based on real-world vehicular
environment measurement of the delay, gain, and Doppler frequency.

The vehicular channel characteristics of each environment can be found in Table 1. A
label is assigned to each environment corresponding to the class outputs of the CNN model
(Table 2).

Table 2. Vehicular environment labels and required speed limits.

Vehicular
Environment Label Speed Limits

Highway NLOS 0 130 km/h

Highway LOS 1 130 km/h

Rural LOS 2 90 km/h

Urban LOS 3 50 km/h

Urban NLOS 4 50 km/h

To generate the dataset samples we employ a half-duplex V2V communication based
on OFDM, which was developed using Matlab. To simulate the different vehicular environ-
ments (wireless channels models) we used the V2VChannel framework in Matlab, which is
referenced in [19].

Several 802.11p packets are transmitted through the different channel models. For
each environment, the packets are transmitted at a different value of the Signal-to-Noise
Ratio (SNR), where the SNR range is from 15 dB to 40 dB with a step of 0.5 dB.

This process was repeated 400 times with different releases of the channel model for
each environment. At each step, we computed the LTS in the received packet and the
calculated CSI values, obtaining the 128 symbols (features) of both LTS and CSI associated
with the specific label corresponding to each environment, as shown in Table 2.

The saved sequence features (Fi) for either CSI or LTS can be expressed as

Fi = [[A(1), A(2), ...., A(N)]] (7)

where A(i) is the CSI or LTS sample. At the end of the process, we had 100,000 dataset
samples, of which we used 80% as the training set and 20% as the validation set.

5. Evaluation and Results

In order to assess the validity and accuracy of the proposed model, we evaluated
the system on different datasets. We generated a test set by transmitting several 802.11p
packets through the different channel models (V2VChannel framework of Matlab). For
each environment, the SNR range was set from 15 dB to 40 dB with a step of 0.25 dB.
This process was repeated 30 times with different releases of the channel model for each
environment, resulting in 15,000 test sequences (LTS and CSI).
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Before evaluating the proposed architecture, we trained our model using the categor-
ical cross-entropy loss function and the Adam optimizer [30]. The training process was
carried out on a machine including an NVIDIA Tesla P100 GPU.

Because both the CSI and LTS are complex numbers, we use training and test sets with
three configurations depending on the input data format for each configuration. We use
the magnitude for the first test-bed, the angle for the second, and a two-channel input for
the third one, wherein the real part of the complex number is used for the first-channel
input and the imaginary part is set for the second-channel input.

5.1. LTS Approach Performance Evaluation

As shown in Table 3, the two-channel configurations has high accuracy, achieving
93.42%, which is better than the magnitude and the angle configurations, which are 92.22%
and 91.78% respectively.

Table 3. LTS approach accuracy for magnitude angle and two-channel configurations.

Configuration Accuracy

Magnitude 92.22 %

Angle 91.78 %

2-Channel 93.42 %

Figure 5 represents the confusion matrix of the test samples for the proposed CNN
architecture using the LTS as input features within a two-channel configuration. From
this confusion matrix, it can be seen that our proposed CNN model is able to reliably
recognize the different vehicular environment; it correctly identifies the H-NLOS and
H-LOS environments with an individual accuracy of 98.3% and 86.7%, respectively, and
the R-LOS, U-LOS, and U-NLOS environments with 94% accuracy.

Figure 5. Confusion matrix based on LTS approach for the proposed CNN.

We compared the proposed CNN architecture to an ANN architecture containing four
dense fully connected layers, including 64, 128, 256, and 512 neurons before the output layer,
each of which have five neurons (equal to the number of environments to identify). Other
machine learning classifier candidates used for comparison are the Random Forest classifier
(RF, with 100 trees), K-Neighbors classifier (K-NN), where K was set to five neighbors,
Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM) with a linear kernel.

Table 4 shows the comparison between our proposed model and the approaches men-
tioned above based on test accuracy and environment identification prediction time. The
prediction time has been determined using an NVIDIA Tesla P100 GPU. From Table 4, it is
obvious that the prediction time of our proposed CNN Architecture has better performance
than either SVM or K-NN, providing a prediction time of 51.33 µs. This time is comparable
to the other approaches (ANN, RF, GNB) that have llowess prediction times; moreover, the
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accuracy of our model is significantly greater than these approaches; indeed, it has the best
overall test accuracy at 93.42%.

Table 4. Classification accuracy and average prediction time comparison for LTS approach.

Approach Accuracy (%) Prediction Time (µs)

Proposed CNN 93.42 51.33

ANN 86.16 23.11

RF 68.34 25.71

K-NN 63.18 7180

GBN 20.62 4.11

SVM 31.38 10499

In order to provide more detail about the test accuracy classification, the confusion
matrices of all the considered approaches are presented in Figures 5–10.

It can be seen that the K-NN and RF approaches can identify H-NLOS and U-LOS
environments with acceptable individual accuracy (up to 80%) and provide less than
65% of individual test accuracy for H-LOS, R-LOS, and U-LOS environments. From
Figures 9 and 10, it is clear that both the GNB and SVM classifiers fail to provide reliable
environment identification.

Figure 6. Confusion matrix for ANN based on LTS approach.

Figure 7. Confusion matrix for KNN based on LTS approach.
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Figure 8. Confusion matrix for RF based on LTS approach.

Figure 9. Confusion matrix for GNB based on LTS approach.

Figure 10. Confusion matrix for SVM based on LTS approach.

5.2. CSI Approach Performance Evaluation

Vehicular environment identification based on the CSI approach was performed using
three input feature configuration: two-channel, magnitude, and angle.

From Table 5, it is clear that that the two-channel input feature configuration provides
the best performances; it has 96.48% accuracy, which is greater than the accuracy provided
by the LTS approach (93.42% in two-channel configuration).

Table 5. CSI approach accuracy for magnitude angle and two-channel configurations.

Configuration Accuracy

Magnitude 90.63 %

Angle 91.50 %

2-Channel 96.48 %
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Figure 11 presents the confusion matrix of the proposed CNN architecture on the
test set when using CSI values as input features for the model. The presented results
are calculated taking into account a two-channel input shape, as this provides the most
accurate performance. From this confusion matrix, it is clearly apparent that our proposed
model can reliably identify all the vehicular environments based on CSI values, with high
individual accuracy up to 92%.

Our model achieves 99.9%, 95.2%, 92.7%, 97.4%, and 97.2% for H-NLOS, H-LOS,
R-LOS, U-LOS, and U-LOS environments, respectively.

The proposed CNN model based on CSI was compared to the related machine learning
classifiers RF, K-NN, GBN, and SVM, as well as to an ANN architecture, in terms of test
accuracy and the average time required to identify the environment (prediction time,
performed using an NVIDIA Tesla P100 GPU). The ANN architecture and parameter
settings of these classifiers are the same as described in Section 5.1.

Figure 11. Confusion matrix for the proposed CNN based on CSI approach.

Figure 12. Comparison of our model’s accuracy to state-of-the-art alternatives.

From Table 6, it can be seen that our proposed CNN model has better performance
than either SVM or K-NN in terms of prediction time, as it yields in 39.56 µs. While this
achieved prediction time is comparable to the other approaches (ANN, RF, GNB) that have
low prediction time, in term of the test accuracy our CNN model highly outperforms all
the other approaches, reaching 96.48%.
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Table 6. Classification accuracy and average prediction time comparison for CSI approach.

Approach Accuracy (%) Prediction Time (µs)

Proposed CNN 96.48 39.56

ANN 85.64 21.11

RF 67.77 24.04

K-NN 59.26 8999

GNB 27.06 4.38

SVM 32.33 15756

According to these performance results, it is clear that the CSI approach is more accu-
rate than the LTS approach in terms of both test accuracy and environment prediction time.

5.3. Comparison between Our Model and State-of-the-Art Architectures

Our proposed CNN architecture was compared against the popular state-of-the-art
classification architectures ResNet50 [31], Xception [32], InceptionV3 [33], InceptionRes-
NetV2 [34], DenseNet201 [35], and MobileNetV2 [36]. We trained these architectures on the
same training datasets. Then, we evaluated their classification performances on the test set.
Prior to this process, we updated the input shape of the input layer to fit our data inputs
and updated the output layer size to five classes in order to equal the number of vehicular
environments to identify.

Because the previously mentioned state-of-the-art architectures are designed to receive
two-dimensional (2D) inputs for shape size, we considered a 2D channel matrix in the
input features instead of a 1D channel vector. Thus, we rearranged our dataset from 1D to
2D, as follows:

H2D
[n∗n]

= Diag(H1D
[1∗n]

) (8)

where Diag() is the diagonal matrix, H2D and H1D are the channel matrix and correspond-
ing channel vector, respectively, where their coefficients are the CSI values, and n is equal
to 128, which is equivalent to the number of CSI values estimated per packet; thus, we have
an input shape size of 128× 128.

In Table 7, our proposed model is compared to the indicated state-of-the-art architec-
tures in terms of average test accuracy (Acc), individual test accuracy for each environment,
and the average time required to identify the environment (prediction time).

Table 7. Comparison between our model and state-of-the-art alternatives.

Architecture H-NLOS Acc (%) H-LOS Acc (%) R-LOS Acc (%) U-LOS Acc (%) U-NLOS Acc (%) Acc (%) Prediction Time (µs)

Our Model 99.9 95.2 92.7 97.4 97.2 96.48 39.56

ResNet50 98.1 88.2 77.8 90.1 93.5 89.54 672

Xception 97.8 91.7 81.4 91.2 94.5 91.32 794

InceptionV3 99.1 79.8 86.9 96.1 93.9 91.08 683

Inception ResNetV2 98.5 89.1 80 86.5 95.8 89.98 1621

DenseNet201 98.5 92.7 85.7 91.2 96.6 92.94 1349

MobileNetV2 96.8 77.8 96 58.2 65.5 78.86 318

DCNN [37] 98.9 96.9 94.3 95.8 99.2 97.02 125

From Table 7, it is clear that our proposed model has the best performance in terms
of prediction time compared to all the other architectures presented in the table, with
a prediction time of 39.56 µs. The architectures ResNet50, Xception, and InceptionV3
have prediction times around of 700 µs, whereas the InceptionResNetV2, DenseNet201,
MobileNetV2, and DCNN [37] architectures have 1621 µs, 1349 µs, 318 µs and 125 µs,
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respectively. Thus, the prediction time achieved by our model is significantly (at least
three-fold) lower than the prediction time attained by the other architectures.

Regarding the overall test accuracy (Figure 12), our model reaches 96.48%. This
achieved accuracy is greater than the test accuracy attained by ResNet50, Xception, Incep-
tionV3, InceptionResNetV2, DenseNet201, and MobileNetV2, which have 89.54%, 91.32%,
91.08%, 89.98%, 92.94%, and 78.86%, respectively. Although the proposed DCNN architec-
ture in [37] scores slightly higher than our model in term of test accuracy (by 0.54%), the
prediction time achieved by our model is three times faster than DCNN [37].

To attain more insight into the classification performance of the considered architec-
tures, the individual test accuracy of each vehicular environment is presented in Table 7.
It can be seen that all the architectures are able to successfully discriminate the H-NLOS
environment with accuracy of more than 96%; our model has the best accuracy, at 99.9%.
Concerning the H-LOS environment, the individual accuracies are acceptable (close to
80%) for MobileNetV2 and InceptionV3, and the other architectures provide good indi-
vidual accuracies of around 90%. The test accuracies for the R-LOS environment are less
significant compared to other environments. This is due to the channel characteristics of
this environment, which are close to the channel characteristics of the U-LOS and H-LOS
environments. However, the accuracy for the R-LOS environment is considered good for
our model, MobileNetV2, and DCNN (up to 90%), and is acceptable for the other models
(around 80%). For the U-LOS environment, the test accuracy is generally around 90%,
while our proposed model has the best accuracy at 97.4%. For the U-NLOS environment,
all the architectures except MobileNetV2 are able to recognize this environment with high
accuracy (up to 93%).

5.4. Minimum Performance Overhead and Reliability

Because our proposed vehicular environment identification approach based on CSI
is intended to be implemented in autonomous connected cars for use in a time-critical
setting, it is important that the environment identification prediction time consistently meet
latency requirements in every scenario. According to [38], this hard time limit typically
falls within a few milliseconds. As seen in the results, our proposed CSI-based vehicular
environment identification model demonstrates a prediction time that is consistently within
the microsecond range, which is well under the required range time.

In addition, our proposed CNN architecture using the CSI values as an inputs features
proves that it can reliably identify different vehicular environments with high accuracy
(96.48%) that meets the requirements for autonomous connected cars.

6. Conclusions

In this paper, we have presented a deep learning-based vehicular environment identi-
fication approach using vehicular wireless channel characteristics in the form of estimated
CSI as input features for a CNN model. The results of our validation tests have demon-
strate that our methodology can reliably recognize the surrounding environment with high
accuracy (96.48%). These same results show that our approach has minimal performance
overhead, measured in microseconds, which is well within the expected operational range
across various autonomous driving scenarios. In addition, our CNN model has comparable
performances to existing state-of-the-art architectures. In summary, our CSI-based vehicu-
lar environment identification approach is validated as a reliable solution to enable speed
limit decisions for autonomous vehicles. However, because our vehicular environment
identification method is based on the use of channel characteristics, it requires a continual
exchange of messages. Moreover, we demonstrate promising results with our simulation
scenarios. Hence, real-world CSI-based vehicular environment identification testbeds on a
larger scale involving more vehicles in specific road conditions remains an open research
problem worth investigating in the future.
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