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Abstract: Employing a cyclic prefixed OFDM (CP-OFDM) communication waveform for sensing has
attracted extensive attention in vehicular integrated sensing and communications (ISAC). A unified
sensing framework was developed recently, enabling CP-OFDM sensing to surpass the conventional
limits imposed by underlying communications. However, a false target issue still remains unsolved.
In this paper, we investigate and solve this issue. Specifically, we unveil that false targets are caused
by periodic cyclic prefixes (CPs) in CP-OFDM waveforms. We also derive the relation between the
locations of false and true targets, and other features, e.g., strength, of false targets. Moreover, we
develop an effective solution to remove false targets. Simulations are provided to confirm the validity
of our analysis and the effectiveness of the proposed solution. In particular, our design can reduce
the false alarm rate caused by false targets by over 50% compared with the prior art.

Keywords: integrated sensing and communications (ISAC); joint communications and sensing
(JCAS); OFDM; cyclic prefix (CP); false targets

1. Introduction

Integrated sensing and communications (ISAC) has attracted extensive attention in
the radar and communications community [1–8]. A key benefit of ISAC is that it can
greatly improve cost, energy, and spectral efficiency of wireless systems that require both
sensing and communications functions [9]. While there are several ways of realizing ISAC,
as reviewed in [10,11], a relatively easy way is to add a sensing receiver to an existing
communication system and perform sensing by reusing the communication waveforms.
We refer to this ISAC methodology as the communications-enabled sensing (CES) and
focus on it in this work. Interested readers are referred to [12] for a review of CES.

Orthogonal frequency-division multiplexing (OFDM) and its variants, e.g., DFT-spread
OFDM (DFT-S-OFDM), have been widely studied for CES. In [13], OFDM CES is considered,
with a focus on evaluating the impact of radar antenna setups on common communication
metrics. Before the work of [13], OFDM radar was extensively studied without considering
data communications in general [14]. The ambiguity functions of OFDM radars were
intensively studied as well [15–20].

A milestone CES method was developed in [21], referred to as the classical OFDM
sensing (COS). Using a coherent synchronised transceiver, COS removes the cyclic prefix
(CP) of each OFDM symbol in the echo signal. Then, it transforms the symbols into the
frequency domain, where the communication data symbols modulated onto sub-carriers are
removed through point-wise division (PWD). Afterwards, COS performs inverse discrete
Fourier transforms (IDFTs) along the sub-carrier dimension and discrete Fourier transforms
(DFTs) over the symbol dimension, resulting in a range-Doppler map (RDM).
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COS has been widely used in the past decade and has become a mainstream for OFDM
sensing, particularly in automotive applications [7,8,22–30]. Recent OFDM sensing works,
which are based on COS, mainly seek to develop new techniques for improving the RDM
quality, such as noise level. The work in [23] increased the overall baseband bandwidth
of the OFDM by introducing the stepped carrier techniques. This, hence, improves the
range resolution. The work in [24] employed random stepped carriers and the compressed
sensing methods to obtain high-resolution RDMs. The works reviewed above typically
ignore the intercarrier interference (ICI). In contrast, the work in [25] considered the impact
of ICI on OFDM sensing and developed a novel signalling, which repeats the same OFDM
symbol over (slow-)time, to facilitate the estimation and suppression of ICI.

The phase shift keying was considered in [21], and hence PWD does not have a noise
enhancement issue. However, this issue can be prominent when DFT-S-OFDM is performed.
This is because signals modulated onto sub-carriers in DFT-S-OFDM can be noise-like and
centred around zero. To relieve noise enhancement, the work in [31] proposed to replace
PWD with the point-wise product (PWP) and followed the other steps of COS. While COS
and PWP-COS fully comply with the underlying communication system, their ranging
capability is known to be restricted by the CP duration.

Such restriction is relieved by a unified sensing framework (USF) developed in [32]
(the unification is based on the feature that the sensing framework can be applied to OFDM,
DFT-S-OFDM, and other OFDM-like waveforms, e.g., the orthogonal time-frequency space
(OTFS), even with reduced CP (RCP). RCP-OTFS adds a single CP for the signal block that
may be equivalent to multiple OFDM symbols. COS and many of its variants cannot work
for RCP waveforms). USF segments a block of sensing echo signal as per sensing needs and
employs virtual CPs to establish a deterministic relation between the transmitted signal
and each segmentation of echo signals. A notable feature of USF is that it can sense a target
with the sample delay much greater than CP length (provided there is a sufficient link
budget). More details of USF will be presented in Section 2.

However, as illustrated in [12,32], USF suffers from a false target issue. Specifically,
obvious peaks (much stronger than background noises) are observed at locations different
from that of the true target. In a previous work [33], we intuitively explained the reasons for
false targets employing some special cases, and developed a simple expedient solution that
can cause a decrease of use signal power and, hence, the detecting probability. In this work,
we perform an in-depth investigation to more rigorously unveil the reasons for the false
target issue in the USF. Moreover, we will develop more effective solutions to removing
false targets without losing the power of useful signals.

Our main contributions are summarised below. We introduce a concise matrix format
of USF, which conveniently enables the investigation into the false target issue. We unveil
that false targets are mainly caused by the periodic CP signals in the CP-OFDM waveform.
We also derive the properties of false targets, including positions and strengths. Accordingly,
we develop novel methods, removing the false targets without decreasing the detecting
probability of true targets. Simulations are provided to confirm the validity of our analysis
and the effectiveness of the proposed solution.

The rest of the paper is arranged as follows. Section 2 establishes the signal model.
Section 3 first reviews USF and another classical OFDM sensing method and then illustrates
the false target problem. Section 4 investigates the reasons for and features of false targets.
Section 5 develops two novel methods for handling false targets. Simulation results are
presented in Section 6, and conclusions are given in Section 7.

2. Signal Model

This section presents the signal model of OFDM-ISAC. Consider that a communication
node is turned into an ISAC node by adding a sensing receiver. Sensing is performed using
the echo signals resulted from the communication-transmitted signals. Being co-located,
the communication transmitter and sensing receiver are assumed to be fully synchronised.
It is also reasonable to assume that the sensing receiver has a copy to the time-domain
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communication-transmitted signals. It is further assumed that some proper full-duplex
techniques are applied such that self-interference, i.e., the signal leaking from the transmitter
to receiver, can be ignored. As for waveform, we employ OFDM with regular CP (i.e., one
per symbol), which is widely used in modern communication systems.

We consider M consecutive OFDM symbols, each having N sub-carriers. Let Q denote
the CP length. After CP is added, the time-domain signal matrix can be given by [34]

X̃ =

[
V
X

]
, s.t. X =

[
u0 u1 · · · uM−1
v0 v1 · · · vM−1

]
N×M

V = [v0 v1 · · · vM−1]Q×M

(1)

where each column of X̃ represents an OFDM symbol, vm (∀m) denotes CP, and [um
vm ] (∀m)

is often referred to as the essential signal part of each OFDM symbol.
Reshaping X̃ into a vector by stacking its columns, we obtain

x = vec
{

X̃
}

. (2)

At the communication transmitter, x is transmitted after being processed by a radio fre-
quency (RF) chain. The RF signal will hit some targets and partially return to the sensing
receiver. After some RF processing, the digital signal at the receiver can be given by [11]

y = αSvec
{

X̃
}
� d + z, s.t. S =

[
0L×I

I(I−L)×I

]
, [d]i = ej2πµiTs , (3)

where α denotes the scattering coefficient, � denotes the point-wise product, and z denotes
a noise vector with independent entries conforming to the same centred complex Gaussian
distribution. Moreover, L denotes the sample delay, I = (N + Q)M is the total number
of samples in a block, I(I−L)×I denotes the first (I − L) rows of the I-dimensional identity
matrix, d accounts for the Doppler impact, [·]i takes the i-th entry of the enclosed vector,
µ denotes the Doppler frequency, and Ts the sampling time. A single target is modelled
here for clarity. The multitarget case will be considered in later algorithm development
and simulation.

We emphasise that, in the considered ISAC, sensing is performed based on the echo signal
at the receiver, i.e., y, and the known copy of the communication-transmitted signals, i.e., X̃.
That is, the ISAC scheme discussed here does not make any changes to the communication
waveform. Moreover, we perform ISAC based on the predominant OFDM communication
system that is widely under use in WiFi, LTE, and 5G. ISAC employing more advancing OFDM
systems, such as the real-signal DHT-OFDM [35], NOMA-TDS-OFDM [36,37], and the precoded
IM-OFDM-SS [38], can be an interesting future work.

3. Problem Statement

In this section, we briefly review USF [32] and then illustrate the false target issue.
Unlike in the original work using the scalar form for developing the algorithm, we introduce
a more concise matrix form here. The new matrix form will also benefit the analysis to be
performed in Section 4. To start with, we define the following operator, reshaping a vector
into a matrix.

Definition 1. The operator mat
x,y
{c} reshapes the vector c into a matrix of size x ×

⌊
C−y
x−y

⌋
, where

each column has x number of entries and starts from the (i(x− y) + 1)-th (i = 0, 1, · · · ,
⌊

C−y
x−y

⌋
− 1)

entry in c. Here, b·c takes flooring, C denotes the dimension of c, x is a positive integer (PI), and y can
be a PI or zero.

Note that, if y is nonzero, adjacent columns of the resulted matrix have overlapping en-
tries. To help understand the operator, let us look at an example. Given c = [1, 2, 3, · · · , 9]T,
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mat
4,1
{c} and mat

4,2
{c}, respectively, result in


1 4
2 5
3 6
4 7

 and


1 3 5
2 4 6
3 5 7
4 6 8


Based on the signal model given in Section 2, USF [32] is summarised in Algorithm 1.

As performed in Step 1, the echo signal vector y is reshaped into a matrix by mat
Ñ+Q̃,Q̄+Q̃

{y},

where each symbol has (Ñ + Q̃) samples and adjacent symbols are overlapped by (Q̄ + Q̃)
samples. Note that (Ñ + Q̃) here can be different from (N + Q), the length of the original
OFDM symbol (with CP). In Step 2, the communication-transmitted signal, x given in (2),
is reshaped into a matrix by mat

Ñ,Q̄
{x}. We refer interested readers to Figure 5 in [12] for an

intuitive illustration of the reshaping performed above. As a result of Steps 1 and 2, each
column of Z̃, as obtained in Step 3, contains a cyclically shifted version of the corresponding
column in X̆, as obtained in Step 2. The shifting amount is linked with the target delay.
Therefore, each column of Z̄, as obtained in Step 4, is the point-wise product (PWP) between
the same column of X̄, as obtained in Step 5, and the range steering vector of the target.

Algorithm 1 Unified sensing framework (USF) [32].

1. Reshape y by mat
Ñ+Q̃,Q̄+Q̃

{y}, leading to Z;

2. Reshape x by mat
Ñ,Q̄
{x}, leading to X̆;

3. Add the last Q̃ rows of Z onto its first ones and remove the last Q̃ rows, leading to Z̃;
4. Take the DFT of the columns of Z̃, giving Z̄;
5. Take the DFT of the columns of X̆, giving X̄;
6. Calculate the point-wise product (PWP) between Z̄ and X̄∗, yielding Ẑ, where (·)∗ denotes

conjugate;
7. Take the IDFT of the columns of Ẑ and then the DFT of the rows, yielding an RDM Z̆.

A point-wise division (PWD) between Z̄ and X̄ can remove the communications infor-
mation, making the extraction of sensing target parameters independent of communications
information. However, when the entries of X̄ approach zero, the division can lead to the
noise enhancement issue. To relieve the issue, it was proposed in [31] to replace PWD with
PWP. As proved in our previous work [32], PWP theoretically achieves higher signal-to-
interference-plus-noise ratio (SINR) than PWD, given high to medium noise power; the
threshold for determining the noise level is also derived therein. This makes PWP more
desirable in practice. Hence, we mainly consider PWP here.

Step 7 of Algorithm 1 performs a two-dimensional Fourier transform of the PWP result,
leading to the so-called range-Doppler map (RDM). Here, the discrete Fourier transform
(DFT) along the symbol domain turns a Doppler steering vector into a discrete Doppler
spectrum. The inverse DFT (IDFT) over sub-carriers turns an amplitude-weighted range
steering vector into a discrete range spectrum. As a result of PWP in Step 6, the amplitude
weights are the squared amplitudes of communications signals over sub-carriers.

If a constant-modulus constellation, such as phase shift keying (PSK), is used, the am-
plitude weights become all ones. The discrete range spectrum can be depicted using a
discrete sinc function. In contrast, if signals carried by sub-carriers have nonconstant am-
plitudes, the amplitude weighting on the range steering vector can make the discrete range
spectrum different from a sinc function in shape. However, the impact of the weighting is
not deterministic, as signals on sub-carriers are generally random in actual communications.
It is also this randomness that prevents the sidelobe level in the RDM being constructively
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accumulated. We refer interested readers to [32] for a more elaborate analysis on the impact
of the above amplitude weighting.

The classical OFDM sensing (COS) can be seen as a special case of USF and is sum-
marised in Algorithm 2. COS fully complies with the underlying data communications.
The echo signal vector y is reshaped first in Step 1. However, different from Step 1 of
Algorithm 1, the length of each segmentation is (N + Q), identical to the length of an
OFDM symbol (with CP). Different from Step 3 of Algorithm 1 creating virtual CPs, Step 2
of Algorithm 2 removes the first Q samples per symbol, as performed in OFDM communi-
cation receivers. Note that X in Step 4 is the original frequency-domain communication
signals. Thus, COS need not reshape communication-transmitted signals, as required
in USF.

Algorithm 2 Classical OFDM sensing (COS) [21].

1. Reshape y by mat
N+Q,0

{y}, leading to Y;

2. Remove the first Q rows of Y, leading to Ỹ;
3. Take the DFTs of the columns of Ỹ, giving Ȳ;
4. Calculate the PWP between Ȳ and X∗, yielding Ŷ;
5. Take the IDFT of the columns of Ŷ and then the DFT of the rows, yielding an RDM Y̆.

Without fully complying with the communications system, USF can achieve more
flexible sensing than COS, through configuring Ñ, Q̃, and Q̄ in Algorithm 1. Note that Q̃
is the length of a virtual CP created by the sensing receiver and can be configured based
on sensing needs. More specifically, if the maximum sample delay is L, we can set Q̃ ≥ L
to satisfy this requirement. In contrast, L ≤ Q is generally required in COS [21] and its
variant [31], where Q is the original CP length for communications. We remark that the
value of Q̃ can affect the signal-to-interference-plus-noise ratio (SINR) in the obtained RDM.
This is detailedly analysed in [32]. Here, we shall mainly focus on the false target issue that
has not been effectively solved.

Given the maximum measurable Doppler frequency requirement µmax, we can set Ñ
such that 1

ÑTs
≥ 2µmax. In contrast, COS and many of its variants have their maximum

measurable Doppler frequency limited to 1
2NTs

, and hence they will suffer from Doppler
ambiguity if µmax > 1

2NTs
.

Next, we provide a set of simulation results to demonstrate the superiority of USF
over COS in extended sensing capability, meanwhile illustrating the false target issue of
USF. Simulation parameters are summarised in Table 1. The target delay is much larger
than the CP length, which is purposely set to show the extended sensing capability of USF
over COS.

Figure 1a,b illustrate the RDMs of USF and COS, as obtained by running Algorithms 1 and 2,
respectively. We see that COS fails to generate a normal RDM for target detection and estimation,
while USF yields a typical RDM with a peak at the true target location. Note that the two
algorithms are performed employing the same communication signals and echo signals. We
note that all steps in the two algorithms are solely performed at the sensing receiver side without
making changes to the communication transmitter.
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Table 1. Simulation P]parameters.

Variable Description Value

fc Carrier frequency 2.4 GHz

B Bandwidth 3.84 MHz

M No. of OFDM symbols 128

Q CP length 64

N No. of sub-carriers 256

L Target sample delay 320(= N + Q)

µ Doppler frequency 480 Hz

|α| Signal amplitude in y; see (3) 0 dB

– Noise power in y 30 dB

[Q̃, Ñ, Q̄] Parameters of USF [L, 2Q̃, 0]

(a) (b)

Figure 1. Illustrating the RDMs of UFS (a) and COS (b). Please note that the symbol “-” before
all numbers, as automatically generated by MATLAB during plotting the figure, denotes the nega-
tive sign.

Figure 2 plots the range and Doppler cuts of the RDMs obtained in Figure 1. Given
the sample delay L = N + Q, the range bin (in the sensing receiver, each OFDM symbol is
uniformly sampled. Each of the sampling times represents a different range increment and
is often referred to as a range bin [39]) index for USF is L (starting from one here to comply
with MATLAB). For COS, since the overall number of samples along the range bin is N,
smaller than L, a modulo-N of L, i.e., (L− N) here, is taken as the range bin index for COS.
The Doppler bin (similar to the range bin, the DFT of OFDM symbols at the same range bin
leads to the Doppler domain. Each discretisation grid in the Doppler domain is termed as a
Doppler bin) index can be calculated as bµTe+ 1, where b·e rounds the enclosed term, “+1”
is because the index starts from one, T = M(N + Q)Ts for COS, and T = M̃ÑTs. Here, M̃
is the number of columns of Z obtained in Step 1 of Algorithm 1. According to Definition 1,
we have M̃ =

⌈
(N+Q)M

Ñ

⌉
.

From Figure 2, we see strong peaks in the range and Doppler cuts of the USF-RDM.
In contrast, we see noise-like signals over the whole range and Doppler bins in the cuts of
the COS-RDM. Given the high peak-to-sidelobe ratio at the true target location, the target
can be readily detected employing common detecting algorithms, e.g., the constant false
alarm rate (CFAR) detector [40]. However, from Figure 2, we also see two false targets
around the true one along the range dimension. This problem was noticed in [32], yet is
unsolved. Below, we first investigate the reasons for the false targets and then develop new
methods to solve the problem.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2. Doppler (a) and range (b) cuts of the RDM obtained by COS, as plotted in Figure 1b.
Doppler (c) and range (d) cuts of the RDM obtained by USF, as plotted in Figure 1a. Please note
that the symbol “-” before all numbers, as automatically generated by MATLAB during plotting the
figure, denotes the negative sign.

4. Investigating Reasons for False Targets

We analyse the reasons for for the false targets in this section. In particular, we start
with a special case to understand the issue intuitively and then generalise the observation
with more strict analysis.

4.1. A Special Case for Looking into False Targets

From Figure 1a, we see that the false targets exist over the range dimension solely.
This indicates that they are generated by some column operations in Algorithm 1. Let
us consider a special case with L = N, Q̃ = N + Q, Ñ = 2Q̃, Q̄ = 0, α = 1, and µ = 0.
From (3), we see that µ = 0 leads to d = 1. Based on these settings, the first column of X̆,
as obtained in Step 2 of Algorithm 1, can be given by

e = [v0; u0; v0; v1; u1; v1], (4)

where “;” concatenate column vectors. As given in (1), the dimensions of the u-vector and
v-vector are (N − Q) and Q, respectively. For ease of illustration, the noise term will be
ignored in this section, as the false target issue exists regardless of noises.

Given L = N and the expression of y in (3), the first column of Z obtained in Step 1 of
Algorithm 1 can be given by

[0N×1; v0; u0; v0; v1; u1; v1; v2],
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where 0N×1 denotes an N × 1 zero vector and the zero Doppler is assumed. The above
vector, going through Step 3 of Algorithm 1, becomes

f = [u1; v1; v0; u0; v0; v1]︸ ︷︷ ︸
〈e〉N

+
[
0N×1; v2; 0(N+Q)×1

]
, (5)

where 〈e〉N indicates that the vector e is circularly shifted by N entries. Note that the
second vector on the right-hand side of (5) is an interference term. It is a price paid by
USF to relieve the constraint L ≤ Q, as suffered by COS, given in Algorithm 2. The
calculations in Steps 5–7 of Algorithm 1 make the first column of Z̆ (the RDM) become the
cyclic cross-correlation (CCC) between e and f. Let g denote the first column of Z̆. Its i-th
entry satisfies

[g]i = (〈e〉i)
Hf ≈ (〈e〉i)

H〈e〉N . (6)

Remark 1. We remark on the features of [um
vm ] (∀m), as given in (1). In particular, the entries

of [um
vm ] approximately converge in distribution to a complex Gaussian random process and it is

independent over m, provided that the communication symbols carried by sub-carriers are randomly
and uniformly drawn from some constellations. The proof can be readily established based on
Remark 2 in [41] and is hence suppressed here for brevity. Applying the above feature, we have that
v2 in f is independent from any consecutive Q entries in e. This leads to approximation in (6).

From (4) and (5), we see that [g]i is maximised at i = N, leading to a peak at the true
sample delay of the target. Moreover, using (4) and (5), we can validate

[g]0 ≈
[
v0; u0; v0; v1; u1; v1

]H︸ ︷︷ ︸
〈e〉H0

[
u1; v1; v0; u0; v0; v1

]
≈ vH

0 v0 + vH
1 v1 = 2Q, (7)

where other vector multiplications are suppressed due to the independence between
multipliers. The overlines and underlines are only indicators introduced to differentiate
the same sub-vectors in different locations. Moreover, we note that 2Q is based on the
assumption that signals carried by sub-carries have the unit amplitude. Similarly, we
can obtain

[g]2N ≈

 · · ·︸︷︷︸
N−Q

; v1; u1; v1; v0; · · ·︸︷︷︸
Q

H

︸ ︷︷ ︸
〈e〉H2N

[
u1; v1; v0; u0; v0; v1

]
≈ vH

0 v0 + vH
1 v1 = 2Q, (8)

where the dots are entry fillers with their numbers given underneath. Using (4) and (5),
we can further confirm that 2Q is the second maximum value that [g]i can take. These two
CCC results are actually the false targets, as one can easily check that they are the strongest
maximum CCC results after the peak [g]N .

From (7), we see that the nontrivial value of [g]0 is due to the Q samples at the tail
of each essential OFDM symbol. These samples are copied to the beginning of an OFDM
symbol, acting as CP. From (8), we see that the nontrivial value of [g]2N is caused by actual
CPs. These observations, though based on a special case, can be generalised.

4.2. Analysing False Targets and Their General Features

In light of (4), we propose to decompose e as follows,

e = w + 〈w〉N + r, s.t. w =

[
v0; 0N×1; · · · ; v⌊ Ñ

N+Q

⌋
−1

; 0N×1; 0(Ñ)N+Q×1

]
, (9)
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where all the v-vectors have the dimension of Q, Ñ is the length of each segmentation at
the sensing receiver (see Algorithm 1), and

(
Ñ
)

N+Q denotes the remainder of Ñ divided
by (N + Q). Note that the first integer multiples of (N + Q) samples of w have a fixed
pattern: only the first Q samples of each OFDM symbol (with CP) are kept.

The following properties of the generalised e will be useful for further analysis. Note
that Lemma 1 can be proved using the definition of e given in (4). Lemma 2 can be
confirmed based on the decomposition defined in (9).

Lemma 1. The decomposition of e given in (9) is always valid, provided Ñ ≥ N + Q.

Lemma 2. The three components w, 〈w〉N, and r have mutually exclusive positions for nonzero entries.

Based on (9), the vector f, as obtained in Step 3 of Algorithm 1, can be written as

f ≈ 〈e〉L = 〈w〉L + 〈w〉N+L + 〈r〉L, (10)

where L denotes the target delay and µ = 0 is continued to be assumed. As seen in
Figure 1, false targets only appear in the range domain, so the Doppler information is
irrelevant in the following analysis. Moreover, for illustration convenience, we continue
assuming that α = 1 and unit-amplitude signals are carried by sub-carriers. Furthermore,
the approximation in (10) is made because the interference term from adding the virtual
CP has negligible impacts on CCC. This can be inferred from (5) and (6).

As illustrated in (6), the range cut of the RDM (note that RDM is a two-dimensional
matrix. The row dimension spans the range domain and the column dimension spans the
Doppler domain. When we take one row out of an RDM, we obtain a so-called range cut or
profile [39], as if we cut a slice of the RDM at a specific range bin. Similarly, when we take
one column, we obtain a so-called Doppler cut or profile. It depicts the sensing results over
range bins at a certain Doppler bin) obtained by Algorithm 1 is the CCC between e and f.
Thus, the i-th sample of the range cut can be written as

[g]i ≈ (〈e〉i)
H〈e〉L, (11)

where the result in (10) has been used. As expected, [g]i is maximised at i = L, where the
signals involved in the CCC are fully overlapped. Moreover, using (9) and (10), we can
validate that

[g]L+N = 〈e〉HL+Nf

=
〈w〉HL+N〈w〉L+〈w〉

H
L+N〈w〉N+L+〈w〉

H
L+N〈r〉L+〈w〉

H
L+2N〈w〉L+〈w〉

H
L+2N〈w〉N+L+〈w〉

H
L+2N〈r〉L

+〈r〉HL+N〈w〉L+〈r〉
H
L+N〈w〉N+L+〈r〉

H
L+N〈r〉L

= 〈w〉HL+N〈w〉N+L + εL+N =
⌊

Ñ
N+Q

⌋
Q + εL+N ,

(12)

where the other terms are zero based on Lemma 2. Note that εL+N is a residual term,
as given by

εL+N = 〈w〉HL+2N〈w〉L + 〈w〉
H
L+2N〈r〉L + 〈r〉

H
L+N〈r〉L.

Similar to [g]L+N , we can obtain

[g]L−N = 〈w〉HL 〈w〉L + εL−N =

⌊
Ñ

N + Q

⌋
Q + εL−N , (13)

where εL−N is a residual term similar to εL+N . Although εL−N and εL+N cannot be analyti-
cally expressed, we can safely assume that their values are small, due to their noise-like
and (partially) independent entries.

Similar to (12) and (13), one can easily calculate [g]i at other is. Given the noise-like
signals in e (see Remark 1) and Lemmas 1 and 2, we can further validate that [g]L±N
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have the largest amplitudes, only next to the global peak [g]L, among all CCC results. We
summarise the above analysis formally into the following proposition.

Proposition 1. Given Ñ ≥ (N + Q), USF can present two strong false targets accompanying a
true target in the range domain. They locate at [(L + N − 1)Ñ + 1]-th and the [(L− N − 1)Ñ + 1]-
th range bins, where L is the true target delay, and “+1” and “−1” are because the starting index is
one. The magnitudes of the two false targets are approximately identical. The value approximates⌊

Ñ
N+Q

⌋
Q
Ñ , when normalised by the peak magnitude of the true target.

Proof. The analysis in Section 4.2 proves the results in the proposition for the case with
α = 1 and unit-amplitude communication signals over sub-carriers. Here, we mainly show
that the proposition holds without the two assumptions.

From (12) and (13), we see that the locations of the false targets mainly depend on the
locations of nonzero entries in w. Thus, we only need to confirm the amplitude relation
between the false targets and the true one.

There can be two cases when the communication signals over OFDM sub-carriers have
nonconstant amplitudes. First, constellations such as quadrature amplitude modulation
(QAM) are used. Second, the single-carrier OFDM is performed. It means that the signals
over sub-carriers are from the discrete Fourier transform of signals drawn from some
constellation. In either case, the mean of the communication signals over sub-carriers
is zero. Thus, the squared sum of the signals, normalised by the number of samples,
approximates the variance of some statistic. This further leads to [g]L ≈ αÑσ2, where σ2

denotes the variance of the signals over sub-carriers. Similarly, based on (12) and (13), we
have [g]L±N ≈ α

⌊
Ñ

N+Q

⌋
Qσ2, where the ε-terms are suppressed here. Therefore, the ratio

between [g]L±N and [g]L is
⌊

Ñ
N+Q

⌋
Q
Ñ , as stated in Proposition 1.

5. Designing Methods to Remove False Targets

We proceed to design new methods for removing false targets. Two solutions are
provided in this section. Their block diagrams are illustrated in Figure 3. The first solution,
as developed in Section 5.1, seeks to remove the false targets completely by preventing them
from being generated. This is mainly achieved by the first two steps shown in Figure 3a.
The second solution allows the false targets to happen and then employs their features
unveiled in Proposition 1 to remove them. The block diagram of the second solution is
given in Figure 3b, with details of the solution illustrated in Section 5.2.

(a) (b)

Range bin Doppler bin

Range bin Doppler bin

Range bin Doppler bin

Range bin Doppler bin

(a) (b)

(a) (b)

(c) (d)

(a) (c)

(b)

(a) (b)(a) (b)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)(a) (b)

Identify the positions of CPs in the 
segmentations of the local copy of the 

transmitted OFDM signals 
Nullify the CPs

Run Algorithm 1 for 
sensing

Run Algorithm 1 to 
generate RDM

Identify the 
peak

Estimate the false targets 
accompanying the peak using 

Proposition 1

Remove the detected peak and 
estimated false targets from the RDM

Is it a target

Terminate 

yes

no

(a)

(b)

Identify the positions of CPs in the 
segmentations of the local copy of the 

transmitted OFDM signals 
Nullify the CPs

Run Algorithm 1 for 
sensing

Run Algorithm 1 to 
generate RDM

Identify the 
peak

Estimate the false targets 
accompanying the peak using 

Proposition 1

Remove the detected peak and 
estimated false targets from the RDM

Is it a target

Terminate 

yes

no

(a)

(b)

Figure 3. (a) The block diagram for the solution developed in Section 5.1; (b) the block diagram for
the method designed in Section 5.2.
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5.1. Removing False Targets by Nullifying CP Signals

From Section 4, we see that the false targets are caused by w and 〈w〉N in e. Recall
that e is the first column of X̆, as obtained in Step 2 of Algorithm 1. Similar to e, other
columns of X̆ can also be decomposed, as performed in (9), and there will be w-like vectors
leading to false targets. From (9), we see that the nonzero entries in w are actually CPs of
OFDM signals. Therefore, a simple way of preventing false targets from being generated
is to remove CPs, such as w, and the signals used for generating CPs, such as (w)N , in X̆.
The feasibility of modifying X̆ is ensured by the fact that X̆ is constructed at the sensing
receiver using the copy of communication-transmitted signals in the time domain. In other
words, whatever changes made to X̆ will not affect communications.

Due to the reshaping performed in Step 2 of Algorithm 1, CPs will fall in different
locations over the columns of X̆. However, they are traceable by referring to the indexes of
the entries in x that form a column of X̆. Specifically, according to Definition 1, we know
that the m-th column of X̆ consists of entries in x with indexes given by

Im =
{
(m− 1)(Ñ − Q̄) +

[
1, 2, · · · , Ñ

]}
, m = 1, · · · ,

⌊
I − Q̄
Ñ − Q̄

⌋
, (14)

where I(= M(N + Q)) is the total number of samples in x. The index of original CPs in x
can be given by

ICP = {Im
CP, m = 0, 1, · · · , M− 1}, (15)

where Im
CP is the set of CP indexes in the m-th OFDM symbol. It can be given by

Im
CP = {(1, 2, · · · , Q, N + 1, · · · , N + Q) + m(N + Q)}. (16)

Note that not only CPs but also the samples at the tail of each OFDM symbol that are used
as CPs contribute to the presence of false targets.

To nullify signals in X̆ that are related to CPs in the original OFDM signals, we
introduce an indicating matrix W of the same size as X̆ and initiate it with all ones. Then,
for m = 0, 1, · · · ,

⌊
I−Q̄
Ñ−Q̄

⌋
, we identify the entries in Im that are also in ICP. At the indexes

of those entries, we set the entries of W in the m-th column as zeros. After enumerating
all values of m, we set X̆ in Algorithm 1 by X̆�W before performing Steps 3–7 to prevent
false targets from being generated. The above illustration is summarised in Algorithm 3.

Algorithm 3 Modified USF (MUSF).

1. Run Steps 1–2 of Algorithm 1, obtaining Z and X̆;
2. Set W = 1Ñ×M̃, with the same dimension as X̆;

3. For m = 1, · · · ,
⌊

I−Q̄
Ñ−Q̄

⌋
(a) Find entries in Im, as given in (14), that also exist in ICP, as given in (15),

and collect their indexes in I ;
(b) Set [W]I ,m = 0, where [W]I ,m denotes the m-th column of W with rows indexed

by entries in I ;

4. Set X̆ = X̆�W;
5. Run Steps 3–7 of Algorithm 1, yielding an RDM without false targets;

Nullifying CPs prevents the false targets from being generated. However, it will also
reduce the processing gain on the true target. This can be seen from (6). After nullifying
CPs, the first e on the right-hand side of the approximation in (6) becomes e� [W]:,1, where
[W]:,1 denotes the first column of W obtained after performing Step 3 of Algorithm 3. Since
[W]:,1 consists of either ones or zeros, [g]i in (6) is still maximised at i = L, yet with a
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smaller peak amplitude. This weakened peak can reduce the detecting probability of the
true target. Next, we develop another method for handling false targets.

5.2. Sequential Target Detection and Removal

Unlike the previous method preventing false targets from appearing, this method
handles the false targets using the properties unveiled in Proposition 1. In particular,
as stated therein, false targets actually have known locations relative to that of the true
target. Moreover, the relation between the strengths of true and a false target is also known.
Utilising these features, we develop a sequential target detection and removal method,
based on the RDM Z̆ obtained in Step 7 of Algorithm 1.

We start with searching for the strongest peak in Z̆:

(nt,mt) : arg max
n,m

∣∣[Z̆]n,m
∣∣, n = 1, · · · , Ñ, m = 1, · · · , M̃, (17)

where (nt,mt) is the two-dimensional index in the range-Doppler-domain, and the subscript
t denotes the target index. Treating the peak at (nt,mt) as a true target, we can deduce the
features of the accompanying false targets. According to Proposition 1, the locations of
false targets are (

n±t ,mt
)
= ((nt ± N − 1)Ñ + 1,mt), (18)

where ‘−1’ and ‘1’ are because the index starts from one here. Moreover, the amplitudes at
the local peaks of the two false targets are the scaled version of the peak amplitude at the
true target, specifically,

P(n±t ,mt) = Ptk, s.t. k =

⌊
Ñ

N + Q

⌋
Q
Ñ

, Pt = [Z̆]nt ,mt , (19)

where Pt is the amplitude of the true target. Note that
⌊

Ñ
N+Q

⌋
Q
Ñ is the ratio depicting the

amplitude relation between true and false targets, as derived in Proposition 1. If the target
range and Doppler frequencies are integer multiples of their respective resolutions, we can
reconstruct an RDM related to the strongest target and remove it from the Z̆. However, it
is likely that the target range and Doppler frequencies are noninteger multiples of their
respective resolutions. To account for this case, it can be better to also include the neighbour
bins surrounding the peaks of true and false targets when reconstructing the RDM for
target removal.

Let Nr (Nd) denote the number of the single-side range (Doppler) bins to be included
for target reconstruction. Then, the set of indexes for the range-Doppler bins, where the
true target is located, can be given by

It = {(nt + i,mt + j), i = −Nr, · · · , 0, · · · , Nr, j = −Nd, · · · , 0, · · · , Nd}. (20)

The set of indexes for the range-Doppler bins, where the false targets are located, can be
given by

I±t = {((nt ± N − 1)Ñ + 1 + i,mt + j), i = −Nr, · · · , 0, Nr, j = −Nd, · · · , 0, Nd}. (21)

The RDM of the target can be reconstructed as

[Zt]n,m =


[Z̆]n,m, if (n, m) ∈ {It}
[Z̆]n′ ,m′k, if (n, m) ∈ {I±t }
0, otherwise

, (22)

where (n, m) = ((n′ ± N − 1)Ñ + 1, m′) for the second case, and k is given in (19). Note
that the amplitudes for the false targets are estimated based on the their properties derived
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in Proposition 1. To suppress the impact of the false targets associated with the strongest
target on the detection of other targets, we can update Z̆ as

Z̆ = Z̆− Zt. (23)

Then, we detect the next strongest target, reconstruct it, and remove it, as illustrated above.
The sequential target detection and removal method is summarised in Algorithm 4.

Algorithm 4 Sequential target detection and removal.
Input: the number of targets T, Nr, Nd

1. Run Algorithm 1, obtaining Z̆;
2. For t = 1, · · · , T

(a) Get (nt,mt) using (17);
(b) Construct It and I±t based on (20) and (21), respectively;
(c) Construct the single-target RDM Zt as per (22);
(d) Update Z̆ = Z̆− Zt;

In Algorithm 4, we assume that the number of overall targets is known, for illustration
convenience. In practice, we can perform a threshold detection to determine whether a
maximum peak in the RDM is a target or not. Numerous methods are available for deter-
mining the threshold, such as the Neyman–Pearson criterion and the constant false alarm
rate (CFAR) detector, etc. One may refer to classical radar texts, e.g., [39], for more details
on this topic. In simulations, we will employ the cell averaging CFAR (CA-CFAR) [39]
[ch.16.5] to fulfil the task.

Next, we remark on the computational complexity (CC) of the two algorithms de-
veloped in this section. For Algorithm 3, the steps for nullifying CPs, namely, Steps 2–4,
have negligible CC compared with other sensing steps. This is because the indexes of CPs
are easily traceable and nullifying them does not involve any computations. Therefore,
Algorithm 3 has a CC in the same order as Algorithm 1, which is O

(
ÑM̃ log(ÑM̃)

)
[32].

For Algorithm 4, we notice that Step 1 runs Algorithm 1 and hence has a complexity of
O
(

ÑM̃ log(ÑM̃)
)
. Moreover, Step 2a, which searches the peak of the RDM Z̆, contributes

most to the CC of the overall Step 2. Thus, given T iterations, the overall CC of Step 2 is in
the order of O

(
T log (ÑM̃)

)
. We note that T is theoretically equal to the number of targets

and hence is much smaller than ÑM̃. Thus, we can conclude that Algorithm 4 also has a
CC of O

(
ÑM̃ log(ÑM̃)

)
.

6. Simulation Results

In this section, simulation results are provided to validate the effectiveness of the
proposed method. First, we continue the scenario given in Table 1 to illustrate how the
proposed methods impact RDMs.

Figure 4a plots the RDM of MUSF given in Algorithm 3, where parameters given in
Table 1 are reused here. We see that, substantially different from USF-RDM in Figure 1a,
the false targets are removed in MUSF-RDM. Figure 4b plots the RDM after running Algo-
rithm 4. Since the algorithm removes the strongest target sequentially, the residual RDM
would be target-free, if the number of targets is known. This is validated by Figure 4b. We
see that the residual RDM is noise-like without obvious target peaks. Figure 4b also con-
firms the features of false targets derived in Proposition 1, as false targets are reconstructed
based on those features.
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(a) (b)

Figure 4. RDM of Algorithm 3 in (a); RDM of Algorithm 4 in (b). A single target is set here. Please
note that the symbol “-” before all numbers, as automatically generated by MATLAB during plotting
the figure, denotes the negative sign.

Figure 5 further compares the range and Doppler cuts of different algorithms. From Figure 5a,
we see that the proposed Algorithms 3 and 4 can both remove the false targets. From Figure 5b, we
see that the two algorithms have negligible impacts on the Doppler spectrum. This is consistent
with our analysis in Section 4. Moreover, we can see from Figure 5a that Algorithm 3 has slightly
larger sidelobes than the other two algorithms overall. This is actually caused by the reduced
peak magnitude of Algorithm 3. Since the peak magnitude is normalised to one in the figure,
the sidelobe level is raised as a result.

(a) (b)(a) (b)

(a) (b)(a) (b)

Figure 5. (a) Doppler cuts of the RDMs shown in Figure 4; (b) range cuts of the same RDMs. Note
that Algorithm 1 as developed in [32], is simulated as a benchmark. It suffers from the false target
issue. In contrast, the new algorithms, Algorithms 3 and 4, are able to remove the false targets. Please
note that the symbol “-” before all numbers, as automatically generated by MATLAB during plotting
the figure, denotes the negative sign.

Next, we increase the number of targets to four to validate the proposed methods. With other
parameters in Table 1 fixed, the target delays of the four targets are set as 312, 262, 375, and 382.
Moreover, their respective Doppler frequencies are 195.06 Hz,−650.76 Hz,−476.77 Hz, and
709.80 Hz. These are randomly generated without any special implications.

Figure 6a plots the RDM obtained by COS, as given in Algorithm 2. We see that
the classical COS, as fully complied with the underlying communication system, fails to
generate a normal RDM with peaks at the target locations. Figure 6b plots the RDM of USF,
as given in Algorithm 1. Other than the four true targets highlighted, we also see eight false
targets (two associated with each true target). Figure 6c presents the RDM of the modified
USF given in Algorithm 3. We see that the false targets are effectively removed.
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Four true 
targets

False targets

(a) (b) (c)

(a) (b) (c)Figure 6. RDM of COS in (a); RDM of Algorithm 1 in (b); RDM of Algorithm 3 in (c). Four targets are
set, as highlighted in the figures. Please note that the symbol “-” before all numbers, as automatically
generated by MATLAB during plotting the figure, denotes the negative sign.

Figure 7 plots the updated RDMs in the first three iterations of Algorithm 4. Note
that with four targets set, the algorithm has four iterations in total. From the three RDMs,
we can see that each iteration is able to remove one true target along with its associated
false targets. This again validates the correctness of our analysis of the features of the false
targets. Moreover, this manifests the effectiveness of Algorithm 4 in constructing the RDM
of a target and removing it from the overall RDM.

Four true 
targets

False targets

(a) (b) (c)

(a) (b) (c)

Figure 7. RDMs obtained by Algorithm 4 with four targets simulated. The RDMs from the first
three iterations in the algorithms are given in (a–c), respectively. Please note that the symbol “-”
before all numbers, as automatically generated by MATLAB during plotting the figure, denotes the
negative sign.

Next, we employ the common metrics to further highlight the impacts of false targets
and the proposed methods on sensing. In particular, we perform CA-CFAR based on the
RDM obtained under different methods, and observe the detecting probability as well as the
false alarm rate (when there is no target but the radar detection reports a target, a false alarm
happens. The average number of false alarms per unit time is defined as the false alarm
rate [39]) against the signal-to-noise ratio (SNR). We also consider single- and multitarget
cases. In both cases, target delay, velocities, and amplitudes are randomly generated over
104 independent trials. Moreover, the target delay is in the range of [N, 1.5N], where
N = 256 is the original OFDM length. The target speed is in the range of [−120, 120] m/s.
Further, the target amplitude conforms to a complex Gaussian distribution with the mean
of one and the variance of 0.01.

A key parameter of CA-CFAR is the expected false alarm rate. It is used in computing the
detecting threshold. Here, we set the expected false alarm rates for Algorithms 1–4 as 10−4, 10−5,
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10−5, and 10−6, respectively. In general, the smaller the value, the greater the detecting threshold
would be. As a result, the detecting probability would be reduced.

Figure 8 plots the detecting performance achieved based on the RDMs obtained using
different methods. From Figure 8a, we see that Algorithm 4 achieves the maximum detect-
ing probability. This is mainly because we simply detect the maximum peaks as targets
without applying threshold detection, as do the other three algorithms. However, identi-
fying the maximum peak as target is enabled by our proposed Algorithm 4. It effectively
remove the impacts of stronger targets and their associated false targets on weaker ones.

(a) (b)

Range bin Doppler bin

Range bin Doppler bin

Range bin Doppler bin

Range bin Doppler bin

(a) (b)

(a) (b)

(c) (d)

(a) (c)

(b)

(a) (b)(a) (b)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)(a) (b)

(a) (b)(a) (b)(a) (b)

Four true 

targets

False targets

(a) (b) (c)
Four true 

targets

False targets

(a) (b) (c)

(a) (b) (c)(a) (b) (c)

(a) (b)(a) (b)

Figure 8. Detecting performance versus SNR (with respect to y), where a single target is set with
randomly generated parameters over 104 independent trials. The detecting probability is given in
(a) and the false alarm rate is given in (b). Note that Algorithms 1 and 2, as developed in [21,32],
respectively, are simulated as benchmark methods. Additionally note that Algorithm 2 [21] cannot
properly sense a target with the echo delay over the CP duration, and hence its detecting probability is
much lower than our algorithms. Please note that the symbol “-” before all numbers, as automatically
generated by MATLAB during plotting the figure, denotes the negative sign.

From Figure 8a, we also see that COS basically fails to detect targets in the whole SNR
region. Moreover, we see that Algorithm 1 always achieves higher detecting probabilities
than Algorithm 3. This reveals a disadvantage of Algorithm 3. It indeed prevents the false
targets from being generated by nullifying CPs, but it also reduces the processing gains on
the true targets due to the signal nullification.

From Figure 8b, we see that Algorithms 3 and 4, as developed in this work, can reduce
the false alarm rate, compared with Algorithm 1, which suffers from false targets. This
validates that the proposed algorithms can effectively counteract the impacts of false targets.
Moreover, Algorithms 1 and 3 have higher false alarm rate than Algorithm 2, although the
former two algorithms actually use a smaller theoretical false alarm rate to calculate the
detecting threshold than the third one. This is a consequence of not only false targets but
also the virtual CPs introduced in the sensing framework of Algorithm 1. As analysed
in [32], the background noise level can be slightly raised by Algorithm 1 compared with the
classical COS given in Algorithm 2. Moreover, there can be a fixed noise floor even when
the receiver noise is negligibly weak. All these consequences contribute to the slightly
increased false alarm rate of Algorithm 1 and its variants Algorithms 3 and 4.

In parallel, Figures 8 and 9 presentthe detecting performance achieved based on
different RDMs. From Figure 9a, we see that Algorithm 4 substantially outperforms
the other three algorithms. This is because Algorithm 4 has the mechanism to reduce
interference of strong targets on weaker ones. Again, the feasibility of doing so is enabled
by our discovery on false target features in this work. From Figure 9b, we further see that
the proposed Algorithms 3 and 4 can effectively reduce the false alarm rate.
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(a) (b)

Range bin Doppler bin

Range bin Doppler bin

Range bin Doppler bin

Range bin Doppler bin

(a) (b)

(a) (b)

(c) (d)

(a) (c)

(b)

(a) (b)(a) (b)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)(a) (b)

(a) (b)(a) (b)(a) (b)

Four true 

targets

False targets

(a) (b) (c)
Four true 

targets

False targets

(a) (b) (c)

(a) (b) (c)(a) (b) (c)

(a) (b)(a) (b)

(a) (b)(a) (b)

Figure 9. Detecting performance versus SNR (with respect to y), where four targets are set with
randomly generated parameters over 104 independent trials. The detecting probability is given in
(a) and the false alarm rate is given in (b). Please note that the symbol “-” before all numbers, as
automatically generated by MATLAB during plotting the figure, denotes the negative sign.

Table 2 compares the four algorithms simulated above by highlighting their key fea-
tures/results. We see that the proposed Algorithms 3 and 4 are able to sense longer distances
than the benchmark Algorithm 2 [21]. We also see that the proposed Algorithms 3 and 4 can
remove false targets with lower false alarm rates achieved, as compared with the benchmark
Algorithm 1 [32]. Moreover, we see that the proposed Algorithm 4 not only reduces false alarm
rate but also maintains a high detecting probability, while Algorithm 3 reduces the false alarm
rate at the cost of decreasing its detecting probability. In addition, comparing the first and last
rows in the table, we see that Algorithm 4 is able to reduce the false alarm rate by over 50% of
that achieved by Algorithm 1.

Table 2. Comparisons among different algorithms.

Algorithm Long-Range Sensing
(Figure 6)

False Targets
(Figure 5)

Detection Probability
(−10 dB, Figure 9)

False Alarm Rate
(−10 dB, Figure 9)

1 yes yes 0.54 4.8× 10−4

2 no no 0.42 6.3× 10−4

3 yes no 0.44 2.8× 10−4

4 yes no 1 2.05× 10−4

7. Conclusions

In this paper, we reveal the reasons for false targets in USF and develop a solution
to the issue. Specifically, we illustrate that false targets are generated by periodically
appearing CP signals. We unveil that false targets have the same Doppler bin but different
range bins compared with the true target. Moreover, the differences between the range bins
of false and true targets are derived. Other features, such as strength, of false targets are
also provided. In addition, we propose to remove false targets by nullifying CP signals of
a coefficient matrix used for processing echo signals. We also propose a second method
performing sequential target detection and removal to counteract the impact of false targets.
Extensive simulations are performed, validating the effectiveness of the proposed methods.
The proposed algorithm can reduce the false alarm rate by more than 50% compared with
the previous work [32]. Meanwhile, the detecting probability can be maintained at one for
a large SNR region.
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