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Abstract: The inertial measurement unit (IMU)-to-segment (I2S) alignment is an important part of
IMU-based joint angle estimation, and the accurate estimation of the three degree of freedom (3-DOF)
knee angle can provide practical support for the evaluation of motions. In this paper, we introduce
a dynamic weight particle swarm optimization (DPSO) algorithm with crossover factor based on
the joint constraint to obtain the dynamic alignment vectors of I2S, and use them to perform the
quaternion-based 3-DOF knee angle estimation algorithm. The optimization algorithm and the joint
angle estimation algorithm were evaluated by comparing with the optical motion capture system.
The range of 3-DOF knee angle root mean square errors (RMSEs) is 1.6◦–5.9◦ during different motions.
Furthermore, we also set up experiments of human walking (3 km/h), jogging (6 km/h) and ordinary
running (9 km/h) to investigate the effects of dynamic I2S misalignment errors on 3-DOF knee
angle estimation during different motions by artificially adding errors to I2S alignment parameters.
The results showed differences in the effects of I2S misalignment errors on the estimation of knee
abduction, internal rotation and flexion, which indicate the differences in knee joint kinematics among
different motions. The IMU to thigh misalignment error has the greatest effect on the estimation
of knee internal rotation. The effect of IMU to thigh misalignment error on the estimation of knee
abduction angle becomes smaller and then larger during the two processes of switching from walking
to jogging and then speeding up to ordinary running. The effect of IMU to shank misalignment error
on the estimation of knee flexion angle is numerically the largest, while the standard deviation (SD)
is the smallest. This study can provide support for future research on the accuracy of 3-DOF knee
angle estimation during different motions.

Keywords: IMU; DPSO; joint constraint; dynamic IMU-to-segment alignment

1. Introduction

Walking and running are the most common human motions in daily life, and the knee
plays an important role in these motions, due to the constant repetition of similar move-
ments, most motion injuries occur in the lower limb’s knee [1]. Accurate gait analysis before
lesions occur can provide non-surgical behavior modification treatment for osteoarthritis
patients, reducing the damage to their joints [2]. Consequently, a growing number of gait
analysis techniques are providing diagnostic support to clinicians. The accuracy of the joint
angle estimation determines the possibility of implementing this technique.

Compared to infrared-based optical motion capture, inertial measurement unit (IMU)-
based gait analysis is increasingly studied and applied due to its superior portability
and good accuracy [3,4]. The IMU-based joint angle estimation mainly involves the con-
version between global coordinates, IMU coordinates and segment coordinates [5]. The
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IMU-to-segment (I2S) alignment determines whether the data output from the IMUs is
representative of the movement of the attached segment [6–8].

There are four general approaches to the I2S alignment [5].
(1) The first approach is that the professionals attach IMUs to the subject according to

the bone coordinates recommended by the international society of biomechanics (ISB) [9]
to do the manual alignment. A validation of this approach in knee flexion and extension is
provided in study [10]. Obviously, this approach cannot eliminate the errors brought by
the movement process, and requires the presence of professional IMU placement personnel
for each acquisition, which makes this approach unsuitable for universal applications.

(2) The second approach is to ask subjects to perform a series of pre-actions before the
experiment, and then to conduct I2S alignment by processing this pre-action information.
In study [11], subjects are required to complete a sequence of pre-actions to identify joints,
and the authors also pointed out that defining anatomical frameworks can be only repeated
within subjects, but across subjects. Although the pre-actions can eliminate the errors of the
IMUs setting, they cannot eliminate the errors caused by the relative displacement between
the IMUs and the segments during the movement. Moreover, it is difficult to judge whether
the subjects’ pre-actions are standard, which brings challenges to practical applications.

(3) The third approach is to introduce information from other equipment to do the I2S
alignment. In study [12], researchers proposed a lower extremity surgery approach based
on an additional optical motion capture anatomical framework. The impracticality of the
extra equipment makes this approach less studied.

(4) The fourth approach is to use some mathematical constraint model to conduct the
I2S alignment. The joint constraint proposed by the study [13] is to optimize the data output
of the IMUs by using the mathematical constraint model of the joint during movements,
then the data output by the IMUs can more accurately represent the movement of the
segment. In this study, we chose this approach to obtain the dynamic I2S alignment
parameters because this approach has no limitations on movements, and there is no
requirement for IMU placement or pre-actions, which reduces artificial errors and can
be easily applied.

About the joint angle estimation, many studies have focused on analyzing the accuracy
of joint angle estimation algorithms [14,15], but the exact effect of errors on the results
remains unclear. In study [16], the effect of anatomical frame variation on joint angles was
investigated by an optical motion capture system, the high demands of the experimental
environment make it difficult to be a universal method. In study [17], the effects of static
I2S misalignment error and IMU rotation error on 3-DOF knee angle estimation during
drop landing and cutting tasks were investigated, it was shown that the abduction angle
and internal rotation angle of the knee were more sensitive to I2S misalignment error, while
the flexion angle was more sensitive to IMU rotation error, but it is difficult to evaluate the
effect of static I2S alignment parameters on the motion process.

The significant differences in the kinematics and kinetics of the knee joint during walk-
ing and running at different speeds have been confirmed by many studies [18]. The peak
of knee flexion was higher in walking than in running due to greater knee extension [19].
Regardless of whether the subject is healthy or not, a large number of kinematic parameters
of the subject are changed as a result of the speed-up [20]. In the study [21], a nonlinear
transition in the 6-DOF kinematics of the knee was found not only for velocity changes in
the same motion but also for different motions, such as switching from walking to running.
This means that it is worthwhile to perform an accurate estimation of the knee angle in
different motions.

The main purpose of this paper is to investigate the effects of dynamic I2S misalign-
ment error on 3-DOF knee angle estimation in walking and different speeds of running.
Motion data from the thigh and shank are collected using IMUs and optical motion capture
systems while walking (3 km/h), jogging (6 km/h) and running (9 km/h). We introduce
the dynamic weight particle swarm optimization (DPSO) algorithm with crossover factor to
solve the joint constraint, obtain the dynamic I2S alignment parameters and finally perform
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the estimation of 3-DOF knee angle based on quaternions. Furthermore, the specific effect
of dynamic I2S misalignment errors on 3DOF knee angle estimation is investigated by
adding manual errors to the I2S alignment parameters. Through experiments, the perfor-
mance of the optimization algorithm and joint angle estimation algorithm is evaluated, the
exact effects of misalignment error on 3-DOF knee angle estimation in different motions
were studied.

2. Methods and Equipment
2.1. Methods
2.1.1. IMU-to-Segment Alignment Based on Joint Constraints

(1) Joint Constraint
For the spherical and hinge joints, as shown in Figure 1, the coordinates of the limb

segments are in black [9], the brown cubes attached to the segments represent the IMUs, and
the coordinates of them are represented in brown. The acceleration and angular velocity
data collected by the IMUs attached to the two segments meet different constraints [13].

For the hinge joint, the unit vector rrrk parallel to the joint axis shown in Figure 1 is
defined in the coordinates of the two IMUs A, B denoted as rrrk,A, rrrk,B, respectively. Under
ideal conditions, the angular velocity information ωωωi, i ∈ {A, B} obtained from IMUs
satisfies the constraint:

‖ ωωωA(t)×rrrk,A ‖ − ‖ ωωωB(t)×rrrk,B ‖= 0 (1)

where ‖·‖ denotes the modulus of a vector and × denotes the cross product of vectors.
Converting rrrk,A, rrrk,B from Cartesian to spherical coordinates:

rrrk,i = [cos ϕi cos θi, cos ϕi sin θi, sin θi] , i ∈ {A, B} (2)

where the pitch angle ϕ ∈ [0, π]and the yaw angle θ ∈ [0, 2π], and the error eJ(t)(ϕA, ϕB,
θA, θB) is abbreviated as eJ(t). Since the IMU coordinates are not aligned with the segment
coordinates, the IMU data do not exactly satisfy Equation (1), and we need to optimize the
data, then the error function is expressed as:

eJ(t) =‖ ωωωA(t)×rrrk,A ‖ − ‖ ωωωB(t)×rrrk,B ‖ (3)

For spherical joints, define vectors VVVA and VVVB pointing from the center of the sphere
to the origin of IMU coordinates, expressed in IMUs coordinates as:

VVVi = [Xi, Yi, Zi] , i ∈ {A, B} (4)

Under ideal conditions, the acceleration aaai, i ∈ {A, B} and angular velocity ωωωi,
i ∈ {A, B} obtained from IMUs satisfy the constraint:

‖aaaA(t)− ΓΓΓA(t)‖−‖aaaB(t)− ΓΓΓB(t)‖ = 0,

ΓΓΓi(t) = ωωωi(t)× (ωωωi(t)×VVVi) + αααi(t)×VVVi , i ∈ {A, B}
(5)

where αααi(t) denotes the angular acceleration calculated from the angular velocity measured
by IMUs, we choose the third-order approximation to calculate the time derivative of the
angular velocity ωωωi:

αααi =
ωωωi(t− 24t)− 8ωωωi(t−4t) + 8ωωωi(t +4t)−ωωωi(t + 24t)

124t
, i ∈ {A, B} (6)
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Since the IMU coordinates are not aligned with the segment coordinates, the IMU
data do not exactly satisfy Equation (5), and we need to optimize the data. The error
eS(t)(XA, YA, ZA, XB, YB, ZB) is abbreviated as eS(t), then the error function is expressed as:

eS(t) = ‖aaaA(t)− ΓΓΓA(t)‖ − ‖aaaB(t)− ΓΓΓB(t)‖ (7)

(2) Optimization Algorithm
The above problems can be solved by various optimization algorithms. In study [22],

the author uses Gauss–Newton (GN) to solve the optimization problem of joint constraints,
but a new mechanism must be introduced to avoid the final optimization results rrrk,A
and rrrk,B of eJ(t) produce an unrealistically negative value. Moreover, the calculation of a
large number of Jacobian matrices and Hessian matrices made the algorithm have a very
unsatisfactory calculation speed.

In this study, due to the non-convexity of the error function, the classical PSO algorithm
can make the optimization results fall into a local optimum. Study [23] showed that the
meta-heuristic DPSO and gray wolf optimization algorithm (GWO) have better accuracy
than GN, and the advantage is more obvious when joint rotation is not obvious. Inspired
by the genetic algorithm (GA) with gene crossover variation, we introduced the DPSO
algorithm with crossover factor.

Figure 1. Illustrations of joint constraints and I2S alignment. The schematic diagram of each vector in
the joint constraint model is shown with colored arrows; the coordinates of IMU and segment are
shown with different colors; the black dashed arrows indicate the alignment of IMU to segment.

The introduced algorithm avoids the extremely complicated coding and decoding
steps of GA, does not need to calculate a large number of Jacobi matrices and Hesse
matrices, and the initial range of particles set in the positive range can also avoid the
problem of unrealistic negative values of GN’s optimization results.

Joint constraints for hinge and spherical joints can be considered as four-dimensional
and six-dimensional search optimization problems. The basic particle swarm optimization
is a set of particles moving in the search space, the best position of a single particle at past
time is pbestpbestpbest and the best position for all particles is gbestgbestgbest.
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The velocity update formula of particle n as Equation (8):

VVVk
v,n = w ∗VVVk−1

v,n + c1 ∗ rand1 ∗ (pbestpbestpbestn −VVVk−1
n )

+ c2 ∗ rand2 ∗ (gbestgbestgbestn −VVVk−1
n )

(8)

The position update formula of particle n as Equation (9):

VVVk
n = VVVk−1

n +VVVk
v,n (9)

where VVVk
v,n represents the velocity vector of the k-th iteration of n particles. VVVk

n represents
the position vector of the k-th iteration of the n particle, i.e., VVVk

n = (XA, YA, ZA, XB, YB, ZB);
c1, c2 represent acceleration constants, which can adjust the maximum step size of learning;
rand1 and rand2 are two random functions with a range of [0, 1], which can make the search
more random; w represents the inertia weight of non-negative number, which adjusts the
search range of the space. In order to ensure the large-scale search in the early iterations
and the convergence, in this study, the value of w is determined as:

w = wmax −
T ∗ (wmax − wmin)

Tmax
(10)

where wmax and wmin are the upper and lower bounds of the inertia weight, T is the current
iterations of the particle, and Tmax is the maximum iterations of the particle. It can be seen
from the Equation (10) that the particle will search with a large step in the early iterations,
as the number of iterations increases, the step size becomes smaller.

Figure 2 shows the flowchart of the introduced algorithm. Compared with the original
particle swarm optimization, the blue part was added, including the dynamic inertia weight
w and the sorting of n particles according to their fitness from small to large. After sorting,
the first half of the 1 : n

2 particles are used for normal particle swarm iteration, and the
other half of the n

2 : n particles are selected for crossover. The specific steps are:
(1) Choose a section of the particle at random;
(2) Randomly exchange elements of this section between particles to obtain new particles;
(3) Calculate the fitness of the new particle, compare it with the original particle;
(4) Retain particles with lower fitness for the next iteration of the particle swarm.

Figure 2. Flow chart of introduced optimization algorithm.
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2.1.2. Quaternion-Based 3-DOF Knee Angle Estimation

Establish the coordinates attached to limbs [23], combining the results of the optimiza-
tion algorithm in the previous section to obtain VVVA, VVVB, rrrk,A, rrrk,B, we can obtain the rotation

matrix RRRThigh
A , RRRShank

B of the I2S alignment:

RRRThigh
A = [

VVVA

‖VVVA‖
× rrrk,A,

VVVA

‖VVVA‖
, rrrk,A]

T ,

RRRShank
B = [

VVVB

‖VVVB‖
× rrrk,B,

VVVB

‖VVVB‖
, rrrk,B]

T
(11)

where RRRThigh
A denotes the rotation matrix from IMU_A to the thigh and RRRShank

B denotes
the rotation matrix from IMU_B to the shank. The elements of the rotation matrix are not
independent, and it is difficult to add Euler angular errors, which are tedious to calculate
and can be subsequently calculated by converting them into quaternions.

The general method for converting a rotation matrix to a quaternion is that we have
the known rotation matrix RRR:

RRR =

m00 m01 m02
m10 m11 m12
m20 m21 m22

 (12)

convert the elements of the matrix:

qw =
1
2

√
tr(RRR)

qx =
m21 −m12

4qw

qy =
m02 −m20

4qw

qz =
m10 −m01

4qw

(13)

where tr(RRR) is the trace of the matrix, the converted unit quaternion qqq can be expressed as:

qqq =
[
qw, qx, qy, qz

]
(14)

when the absolute value of qw is small, it will cause the converted value to be unstable,
so we need to compare the values of qw, qx, qy, qz before outputting the quaternion [24].
Therefore, we obtain the dynamic I2S alignment quaternion qqqT,ali, qqqS,ali.

The thigh and shank orientation, qqqT , qqqS, can be calculated according to IMU orientation
quaternion and the alignment quaternion, as in:

qqqT = qqqA ⊗ qqq∗T,ali

qqqS = qqqB ⊗ qqq∗S,ali
(15)

where qqqA and qqqB are the orientation quaternions of IMU_A and IMU_B, qqq∗T,ali and qqq∗S,ali
denote the conjugate quaternions of qqqT,ali and qqqS,ali.

Through the thigh orientation qqqT and shank orientation qqqS, the knee angle qqqTS can be
calculated as the orientation of shank relative to thigh, as in:

qqqTS = qqq∗T ⊗ qqqS (16)

Supposing that qqqTS = [ω, x, y, z], the estimated knee angle is the ‘ZYX’ sequence
Euler angle representation of qqqTS, and the X, Y and Z axes correspond to the axes of knee
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abduction (AA), knee internal rotation (IE) and knee flexion (FE), which means the 3-DOF
knee angle can be described as follows:

φAA = atan2((2 ∗ (ω ∗ x + y ∗ z)), (1− 2 ∗ (x2 + y2)))

θIE = asin(2 ∗ (ω ∗ y− x ∗ z))

ψFE = atan2((2 ∗ (ω ∗ z + y ∗ x)), (1− 2 ∗ (y2 + z2)))

(17)

Similarly, the 3-DOF knee angle can be calculated based on the segment rotation data
from the optical motion capture system ψFE_opt, θIE_opt, φAA_opt, as reference.

2.1.3. Adding Errors to the Dynamic I2S Alignment Parameter

To analyze the effects of dynamic I2S misalignment errors on the estimation of 3-DOF
knee angles during walking, jogging and ordinary running, we need to manually add
errors to the alignment quaternion qqqT,ali and qqqS,ali. It is not intuitive to add errors directly
to the quaternion, we need to convert the alignment quaternion to Euler angular roll, pitch
and yaw.

By Equation (17), the alignment quaternion can be converted into Euler angles ψali, θali,
φali, add the error Euler angles ψer, θer, φer from −10◦ to +10◦ in steps of 5◦ to them, respec-
tively, obtain the new alignment Euler angles ψali_er, θali_er, φali_er as follows:

ψali_er = ψali + ψer

θali_er = θali + θer

φali_er = φali + φer

(18)

convert the new alignment Euler angles into alignment quaternions qqqali_er:

qqqali_er(ψali_er, θali_er, φali_er) =
cos( 1

2 ψali_er) ∗ cos( 1
2 θali_er) ∗ cos( 1

2 φali_er) + sin( 1
2 ψali_er) ∗ sin( 1

2 θali_er) ∗ sin( 1
2 φali_er)

cos( 1
2 ψali_er) ∗ cos( 1

2 θali_er) ∗ sin( 1
2 φali_er)− sin( 1

2 ψali_er) ∗ sin( 1
2 θali_er) ∗ cos( 1

2 φali_er)

sin( 1
2 ψali_er) ∗ cos( 1

2 θali_er) ∗ sin( 1
2 φali_er) + cos( 1

2 ψali_er) ∗ sin( 1
2 θali_er) ∗ cos( 1

2 φali_er)

sin( 1
2 ψali_er) ∗ cos( 1

2 θali_er) ∗ cos( 1
2 φali_er)− cos( 1

2 ψali_er) ∗ sin( 1
2 θali_er) ∗ sin( 1

2 φali_er)

 (19)

According to Equations (15) and (16), the orientation of shank relative to thigh with
error qqqTS_er can be calculated:

qqqTS_er = (qqqA ⊗ qqq∗T,ali_er)
∗ ⊗ (qqqB ⊗ qqq∗S,ali_er) (20)

As Equation (17), we can obtain the 3-DOF knee angle with manually added I2S
misalignment errors: ψFE,Add_er, θIE,Add_er, φAA,Add_er.

2.1.4. Data Analysis

The standard deviation (SD) indicates the dispersion of the errors and can be calculated
by the following equation:

SD =

√
∑N

i=1(βi − µβ)2

N
(21)

where β denotes the error, µβ denotes the mean of the error and N is the number of samples.
The root mean square error (RMSE) represents the deviation between the observed

and reference values, and the square of the difference between them can increase the effect
of larger errors, obtained through the following equation:

RMSE =

√
∑N

i=1(Xi − xi)2

N
(22)
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where Xi denotes the observed value and xi denotes the reference value.

2.2. Measurement Equipment

The IMUs selected for this study were the wireless nine-axis inertial sensors Xsens Dot
(±2000 deg/s, ±16 g) from Xsens (Netherlands).

Twelve high-speed infrared cameras from Nokov (Beijing, China) form an optical
motion capture system to capture the position of markers, and both systems operate at
60 Hz.

Figure 3 shows that the IMUs are bound to the thigh and shank of both legs to measure
the rotation data of the attached segment. The three non-coplanar markers are set on the
thighs and shank of both legs to define the attached rigid bodies, and the rotational data of
each segment is output through Nokov’s software.

Figure 3. The experimental scenario mainly includes an optical motion capture system, IMUs and
a treadmill; six markers and two IMUs are set on each leg, three markers on each segment are not
co-planar and the direction of IMUs is not required.

2.3. Participants

Five healthy subjects (age 24 ± 2 years, height 175 ± 5 cm, mass 65 ± 5 kg) partici-
pated in this study. Every subject wearing IMUs and markers did walking, jogging and
ordinary running experiments on a treadmill at speeds of 3 km/h, 6 km/h and 9 km/h,
respectively, and each task was repeated three times. All subjects volunteered to partici-
pate in the experiment after being informed of the specific details and possible risks prior
to participation.

3. Results
3.1. Joint Constraint Optimization

As in Figure 4, the collected knee (i.e., IMU_A and IMU_B) data were processed with
PSO, DPSO and DPSO with crossover factor, respectively. Experiments were carried out at
the particle swarm size N = 60, the maximum number of iterations D = 50; N = 60, D = 150
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and N = 160, D = 150, respectively. The stability and accuracy of the algorithm are studied
under various combinations of population size and iteration.
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Figure 4. Convergence curves of three algorithms under different combinations of particle swarm
size and iteration number, N denotes the particle swarm size and D denotes the maximum number of
iterations, the red, blue and green lines represent the convergence curves of the classical PSO, DPSO
and our introduced algorithm, respectively.

3.2. Knee Joint Angle Estimation Results

Similar to the knee angle estimation algorithm established in Section 2, we obtain three
sets of data: 3-DOF knee angles based on IMU data after joint constraints ψFE, θIE, φAA;
based on IMU data with artificially added error sequences in the I2S alignment pa-
rameter ψFE,Add_er, θIE,Add_er, φAA,Add_er and based on the optical motion capture system
ψFE_opt, θIE_opt, φAA_opt.

By comparing the data, we analyzed the effects of I2S misalignment error on 3-DOF
knee angle estimation during walking, jogging and ordinary running, also evaluate our
knee angle estimation algorithm by comparing the ψFE, θIE, φAA between ψFE_opt, θIE_opt,
φAA_opt.

3.2.1. The Effects of Dynamic I2S Misalignment Error in Different Motions

Figures 5–7 shows the 3-DOF knee angle estimates after introducing errors to the I2S
alignment parameters for the thigh, shank and both of them during walking, jogging and
ordinary running. We have labeled the mean and standard deviation (SD) of the errors
on the graph, where the lines clearly do not overlap. In order to make the image as clear
as possible, we adjusted the X-axis for different speeds, but all statistical descriptive data
such as mean, SD and root mean square errors (RMSEs) were calculated from the data of
all experiments. Figure 8 shows the error results of the full experiments for all participants.

The dynamic I2S misalignment error has a small effect on the flexion angle and the
error is stable close to a constant, which can be eliminated by subtracting the mean in the
alignment phase [25]. Comparing the IMU-to-thigh misalignment error, the IMU-to-shank
misalignment error had a greater effect on the estimation of the 3-DOF knee angle during
walking and running, and this difference from the results in study [17] is due to the different
types of motions being studied, and their I2S alignment parameters are obtained by static
alignment. When the I2S misalignment error occurs both in the thigh and shank, as shown
in Figure 8c, the estimation error of the 3-DOF knee angle is substantially reduced compared
to the I2S misalignment error occurring alone. Though such a situation is unlikely to occur
in real life, it can be studied as a control for the first two data sets.
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Figure 5. Effects of IMU to thigh misalignment error on 3-DOF knee angle estimation during different
motions. The blue, green, purple and orange lines indicate the knee angle estimates after adding
errors of −5◦, +5◦, −10◦and +10◦ to the I2S alignment parameters, and the red line indicates the
knee angle estimates without artificially added errors. (a–c), (d–f), (g–i) are the abduction, internal
rotation and flexion angles of the knee during walking (3 km/h), jogging (6 km/h) and ordinary
running (9 km/h) on treadmill. For example, in (a), 9.8 ± 5.2◦ denote that the abduction mean error
is 9.8◦ and the SD is 5.2◦ when the introduced IMU to thigh misalignment error is +10◦ during the
walking trial.

3.2.2. The 3-DOF Knee Angle Estimation Algorithm

We evaluated our knee angle estimation algorithm by taking the estimated knee angle
based on IMU data as the observed value and the estimated knee angle based on the optical
motion capture system as the reference. Figure 9 illustrates the RMSEs with no manual I2S
misalignment error. Table 1 shows the maximum, minimum and range of motion (ROM) of
the 3-DOF knee angle for all participants during walking, jogging and ordinary running.

During walking, the error in abduction angle is smaller compared to flexion angle and
internal rotation angle, which is determined by the ROM of the knee in three dimensions
during walking. When switching from 3 km/h walking to 6 km/h jogging, the relative
values of abduction, flexion and internal rotation errors changed significantly, and when
the running speed was accelerated, the relative values of errors did not change significantly,
which indicates that the accuracy of IMU-based knee angle estimation during the switch
from walking to running is noteworthy.
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Figure 6. Effects of IMU to shank misalignment error on 3-DOF knee angle estimation during different
motions; (a–c), (d–f), (g–i) indicate the abduction, internal rotation and flexion angle of the knee
during walking (3 km/h), jogging (6 km/h) and ordinary running (9 km/h), when added IMU to
shank misalignment error from −10◦ to +10◦ in steps of 5◦.

Table 1. This table shows the maximum, minimum and range of motion (ROM) values of the
estimated 3-DOF knee angle during walking, jogging and ordinary running for all participants.

Motions 3-DOF Knee Angle Max (◦) Min (◦) ROM (◦)

abduction 18.08898 −3.00719 21.09617

internal rotation −17.0804 −38.3691 21.28875
Walking
(3 km/h)

flexion 59.85131 −3.28834 63.13965

abduction 23.32207 −1.75181 25.07388

internal rotation −13.3855 −35.9901 22.60462
Jogging
(6 km/h)

flexion 72.80989 5.867394 66.9425

abduction 22.24302 −2.22884 24.47186

internal rotation −17.9308 −37.9682 20.03737
Ordinary
Running
(9 km/h) flexion 80.15724 5.39035 74.76689
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Figure 7. Effects of both IMU to thigh and shank misalignment error on 3-DOF knee angle estimation
during different motions; (a–c), (d–f), (g–i) indicate the abduction, internal rotation and flexion angles
of the knee during walking (3 km/h), jogging (6 km/h) and ordinary running (9 km/h), when added
IMU to thigh and shank misalignment error from −10◦ to +10◦ in steps of 5◦.
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Figure 8. IMU to segment misalignment of all subjects. The bar and error bar represent the mean
and standard deviation (SD) of the misalignment root mean square errors (RMSEs). (a–c) indicate the
misalignment RMSEs of IMU to thigh misalignment, IMU to shank misalignment and IMU to thigh
and shank misalignment, during different motions.
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4. Discussion
4.1. Joint Constraint Optimization Algorithm

Under the combination of the above three particle swarm scales and the number of
iterations (N = 60, D = 50; N = 60, D = 150; N = 160, D = 150), the groups with roughly the
same positions of the first-iteration particles of the three algorithms are selected to draw
images of particle fitness and iteration numbers (Figure 4). Result shows that our optimiza-
tion algorithms all converge to near the optimization target before the 50th iteration, which
indicates that the introduced algorithm has better search ability compared to the classical
PSO and DPSO.

For the search problem in four-dimensional and six-dimensional space, unless the
first-iteration particles randomly appear near the optimization target, the classical PSO
algorithm is difficult to eventually converge to 0. After increasing the number of iterations
and the particle swarm size, the classical PSO still could not converge to the optimization
objective, which means that the classical PSO is not applicable in this study.

The introduction of dynamic inertia weight w greatly improves the convergence ability
of particles (Figure 4 (blue lines)), but under the combination of three different iteration
numbers and particle swarm size, the convergence is worse than that introduced by the
new algorithm (Figure 4 (green lines)). The introduction of the crossover factor makes
the convergence curve of our algorithm not smooth (Figure 4 (green lines)), the crossover
between particles expands the search range, avoids falling into a local optimum and greatly
reduces the number of iterations for particles to converge to the optimization target. In
general, the introduced algorithm can satisfy the optimization of the objective function.

4.2. The Effects of Dynamic I2S Misalignment Error in Different Motions

Generally, in the IMU-based joint angle estimation, joint angle is defined by the rotation
of the distal segment relative to the proximal segment. Figure 8a,b show that the knee
angle estimation is more sensitive to IMU to shank misalignment error during walking and
running motions, especially in flexion where the ROM is larger. For example, when adding
a −10◦ error in the IMU to thigh alignment parameter, flexion accuracies across walking,
jogging and ordinary running are 6.3 ± 2.2◦, 8.96 ± 1.76◦and 7.85 ± 3.4◦, while adding
a −10◦ error in the IMU to shank alignment parameter, are 17.1 ± 4.3◦, 19.3 ± 2.9◦and
19.2 ± 3.39◦ (Figures 5g–i and 6g–i).

Since the error lines (Figures 5d–i and 6d–i) of the internal rotation and flexion of
the knee are partially parallel (i.e., constant errors). When the same misalignment error
is added to both of the thigh and shank, the joint angle estimates are shifted in 3D space,
making both the estimates of the internal rotation and flexion angles less sensitive to I2S
misalignment than adding I2S errors to the thigh or shank alone (Figures 7d–i and 8c).

• Abduction
It is found in Figure 8a that the sensitivity of the abduction angle estimation to IMU
to thigh misalignment error decreased when switching from walking to jogging;
when speeding up from jogging to ordinary running, the sensitivity increased slightly,
but still lower than walking. This is due to the fact that the human body stands
for a shorter period in running than walking, which increases muscle activity and
viscoelastic behavior of the soft tissues, and the increased muscle activity makes the
abduction of the knee somewhat limited [21,26,27].

• Internal rotation
Comparing Figure 8a,b, it is found that the effect of I2S misalignment error on the
estimation of knee internal rotation becomes larger after switching from walking
to running; while in the same motions, estimation of knee internal rotation is more
sensitive to the IMU to thigh misalignment error than the IMU to shank misalignment
error. This is due to the more significant internal rotation of the tibia during running
than during walking [28]. During movements, the shank is affected by larger ground
reaction forces, which makes the moment of the thigh greater and increases the internal



Sensors 2022, 22, 9009 14 of 16

rotation of the tibia [29], then the IMU to thigh misalignment error shows the greatest
effect on the estimation of the internal rotation angle of the knee.

• Flexion
It is found in Figure 8 that after introducing the I2S misalignment error, the mean value
of flexion absolute error is larger but the SD is the smallest in the 3-DOF joint angle
estimation. The large absolute error means are due to the fact that during walking
and running, the knee joint moves mainly in the sagittal plane and the ROM of flexion
is much greater than abduction and internal rotation [20,21,30]. However, the error
brought by I2S misalignment error to flexion is mainly an approximate constant, which
can be eliminated by subtracting the mean in the alignment phase [25], which explains
why the effect brought by I2S misalignment error to flexion angle has the highest
stability as well as the smallest SD. The IMU to shank misalignment error has the
greatest effect on the estimation of the knee flexion angle, which is caused by the knee
angle and is defined by the shank rotation relative to the thigh.

4.3. Joint Angle Estimation

A comparison of the IMU-based and optical motion capture system-based full-process
3-DOF knee angle estimates is show in Figure 9. The RMSEs ranged from 1.6◦ to 5.9◦ during
all trials. In the same walking scenario, the RMSEs of our 3-DOF knee angle estimation
algorithm ranged from 1.6◦ to 2.9◦, which was better than the 2.3◦ to 5.6◦ of the study [23].
It indicates that our 3-DOF knee angle estimation algorithm shows good accuracy.
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M
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eg

)

 Abduction   Internal rotation   Flexion

Figure 9. Comparison of IMU-based and optical motion capture system data-based 3-DOF knee
angle estimations of RMSEs during different motions, the bar and error bar represent the mean and
SD of the RMSEs.

In order to study the correlation between the error data of the three groups of walking,
jogging and ordinary running, the data were first tested for normality at p = 0.05, and some
of the data samples did not meet the assumption of normal distribution, so the Friedman
ANOVA multiple independent non-parametric test was used to analyze the differences
between the three groups of data.

When the human body switched from walking to ordinary running, the estimation
errors of both abduction and flexion angles did not increase in a positive proportion with
increasing speed. The results showed significant differences (p < 0.01) in the RMSEs of knee
angle estimation during walking and running, and no significant differences (p > 0.05) in
the RMSEs of knee angle estimation during running at different speeds, suggesting that
the differences in joint kinematics during the switch from walking to running in humans is
worth investigating.
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5. Conclusions

In this paper, based on the joint constraint model, we introduced the DPSO algorithm
with crossover factor to obtain the dynamic I2S alignment parameters, the effectiveness
of the introduced optimization algorithm is experimentally demonstrated. Using the
dynamic I2S alignment parameters, we performed the estimation algorithm of 3-DOF joint
angles. A comparison of the results of IMU-based and optical motion capture system-based
joint angle estimation throughout the process. The range of 3-DOF knee angle RMSEs is
1.6◦–5.9◦ during different motions. Significant differences in RMSEs are found between
walking and running, which also demonstrated significant kinematic differences in the
knee joint during walking and running.

Experiments are designed in which human walking (3 km/h), jogging (6 km/h) and
ordinary running (9 km/h) were used to investigate the effects of dynamic I2S misalignment
error on the estimation of 3-DOF knee angle during different motions by manually adding
errors to the I2S alignment parameter.

Through experiments, we found that the effect of IMU to thigh misalignment error
on knee abduction angle estimation decreases when switching from walking to running,
when speeding up from jogging to ordinary running, the effects become larger.

When switching from walking to running, the effect of I2S misalignment error on the
estimation of knee internal rotation angle becomes larger, and the effect of IMU to thigh
misalignment error on the estimation of knee internal rotation angle is always larger than
IMU to shank misalignment error regardless of the motion.

The effect of IMU to shank misalignment error on knee flexion angle estimation is
numerically larger than the other two degrees of freedom, but among all motions, the effect
of I2S misalignment on knee flexion angle estimation is close to constant, and the SD of the
error is smaller than the other two degrees of freedom.

A limitation of this study is that we only experimentally confirmed and quantified the
difference in the effect of I2S misalignment error on 3-DOF joint angle estimation during
different motions, but a specific method for error elimination was not proposed. In the
future, we should build corresponding models for the effect of different I2S misalignment
errors on 3-DOF joint angle estimation to eliminate the discretization errors in order to
obtain more accurate evaluation of joint angles.
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