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Abstract: Estimating external workload in baseball pitchers is important for training and rehabil-
itation. Since current methods of estimating workload through pitch counts and rest days have
only been marginally successful, clubs are looking for more sophisticated methods to quantify the
mechanical loads experienced by pitchers. Among these are the use of wearable systems. While
wearables offer a promising solution, there remains a lack of standards or guidelines for how best
to employ these devices. As a result, sensor location and workload calculation methods vary from
system to system. This can influence workload estimates and blur their interpretation and utility
when making decisions about training or returning to sport. The primary purpose of this study
was to determine the extent to which sensor location influences workload estimate. A secondary
purpose was to compare estimates using different workload calculations. Acceleration data from
three sensor locations—trunk, throwing upper arm, and throwing forearm—were collected from
ten collegiate pitchers as they threw a series of pitches during a single bullpen session. The effect of
sensor location and pitch type was assessed in relation to four different workload estimates. Sensor
location significantly influenced workload estimates. Workload estimates calculated from the fore-
arm sensor were significantly different across pitch types. Whole-body workload measured from a
trunk-mounted sensor may not adequately reflect the mechanical loads experienced at throwing arm
segments. A sensor on the forearm was the most sensitive to differences in workloads across pitch
types, regardless of the calculation method.

Keywords: load; stress; torque; wearables; arm

1. Introduction

Estimating external workload in baseball pitchers is important for training and re-
habilitation. To build strength and resilience in musculoskeletal tissues, it is necessary to
overload the tissue using a magnitude that promotes positive adaptation [1]. However, if
the magnitude of loading exceeds tissue tolerance, it can cause injury. Repetitive cycles of
loading without adequate recovery time can also negatively impact soft tissue structures
and increase susceptibility to injury, particularly for high-velocity movements [1].

Traditional strategies to manage workload and reduce the negative effects of tissue
overload use limits on pitch counts to reduce the total number of loading cycles or rest:
work schedules to allow for tissue recovery between loading [2]. In recent years, these
strategies have been applied to both youth and professionals. However, they have had little
success in mitigating overuse injuries [3,4]. Since current methods of managing workload
through pitch counts and rest days have had only marginal success [5], clubs are looking
toward more sophisticated methods. Among these are the use of wearables to estimate
and track workload. Anecdotally, player tracking using commercially available wearable
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devices is becoming more commonplace in baseball organizations. There has also been an
uptick in the number of publications using wearable devices to predict injury [6], evaluate
training programs to reduce elbow stress [7], identify pitching mechanics that increase
susceptibility to injury [8–10], and determine which pitches generate the largest external
workload [11]. All studies have used a single sensor either on the medial side of the
proximal forearm [6–10] or at the base of the neck on the trunk [11]. While wearables offer a
promising solution to the lack of precision in current load management practices, there are
currently no standards or guidelines for how to best employ these devices to obtain robust
measures. As a result, sensor location and calculation methods vary from system to system.
This may influence workload estimates and make interpretation difficult, which in turn
limits the utility of these estimates to assist in training or rehabilitation decision-making.

The primary purpose of this study was to determine if sensor location influenced
workload estimates. We hypothesized that workload estimates would differ across sensor
locations. Our secondary purpose was to compare four different workload calculations
typically used with acceleration data—peak resultant acceleration, peak PlayerLoad, cumu-
lative PlayerLoad, and normalized resultant acceleration.

2. Materials and Methods

This study was approved by the Institutional Review Board. All participants provided
informed consent before data collection.

2.1. Participants

Ten male D1 collegiate pitchers (left-handed = 4, mean age = 19.2 ± 1.2 years,
height = 186.4 ± 6.2 cm, mass = 86.5 ± 10.5 kg) participated in this study. Pitchers were
cleared for practice and were free of injury.

2.2. Data Collection and Analysis

We used an observational approach and collected data simultaneously from sensors on
three body segments—throwing forearm, throwing upper arm, and trunk—while pitchers
threw a series of pitches during their typical bullpen session. Data was collected during the
preseason with regular season games (or scrimmages) scheduled for several months away.

Each pitcher wore five inertial sensors (Opal, APDM, Inc., Portland, OR, USA). Each
sensor incorporated a tri-axial accelerometer (range: ±200 g) and a tri-axial gyroscope
(range: ±2000◦/s) sampled at 512 Hz. Sensors were placed on the dorsum of each foot, the
throwing forearm, the throwing upper arm, and the trunk (Figure 1). Sensors were affixed
prior to the start of warm-up to allow for a seamless transition of the pitcher’s individual
warm-up throws into pitching. Sensor data collection was initiated immediately prior to
the start of the warm-up and collected continuously until the end of the bullpen session.
A time marker was added to the data stream during collection to denote the transition from
warm-up to bullpen session. The warm-up times ranged between 9 and 22 min, with an
average warm-up time of approximately 12 ± 3.6 min. Pitchers completed a similar, but
not identical warm-up process. All pitchers followed their own preferred warm-up routine
consisting of jogging, stretches, and throwing.

Pitchers threw from regulation distance on the same regulation mound in their team
indoor cage. Pitchers threw a series of approximately 35 pitches to a live catcher in a
pre-determined order set by the pitching coach. Each pitcher threw about 18 fastballs,
7 change-ups, and 10 breaking balls (curveballs, sliders, or cutters) (Table 1). Pitchers were
instructed to throw at their full effort, since data were collected in preseason (October) and
pitchers had been throwing for several weeks. Five pitchers threw 1–4 additional pitches
beyond the set order per self-request or on the coach’s recommendation. These pitches
were included in data analysis. Ball kinematics were captured using a consumer-available
radar unit (Pitching 2.0, Rapsodo, Inc., Brentwood, MO, USA). In addition, one pitch type
per player was recorded via high-speed video (S-MOTION, AOS Technologies, Plymouth,
MI, USA, 500 Hz). Two cameras were used to capture video: one camera placed in front
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of the mound facing the pitcher and the other camera placed on the pitcher’s throwing
arm side. High-speed video was utilized in post-processing to verify segment motion, if
needed.
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Figure 1. Illustration of sensor placement on the forearm, upper arm, trunk, and feet. The trunk
sensor was placed on the sternum at the level of the xyphoid process, the upper arm sensor was
placed at the posterolateral portion of the distal one-third of the segment, and the forearm sensor
was placed at the mid-point of the segment. Placement location on each segment was determined by
comfort for the pitcher and the location that appeared to produce minimal migration due to muscle
contraction across multiple pitches. Arm and foot sensors were secured with flexible adhesive tape,
while the trunk sensor was held in place by a snug chest strap.

Table 1. Total throw count for each pitch type by player. Warm-up throws are included to provide a
more comprehensive picture of the training session but were not included in analysis.

Player Warm-Up Throws Fastballs Change-Ups Curveballs Sliders Cutters Total

1 25 18 7 10 - - 60
2 17 21 13 16 - - 67
3 20 19 7 6 5 - 57
4 17 19 7 10 - - 53
5 12 17 7 10 - - 46
6 20 18 7 9 - - 54
7 8 18 7 10 - - 43
8 16 17 7 6 - 4 50
9 24 19 7 8 - 2 60
10 17 18 7 10 - - 52

Pitches were identified in the data by using both sensor and radar unit data. The
magnitude of the acceleration of each segment was calculated. A custom Matlab (MATLAB,
Mathworks, Natick, MA, USA) program was used to identify throws from the upper arm
resultant acceleration. The program searched for peak values of acceleration in magnitudes
greater than 200 m/s2 that were separated by a minimum of 2 s. Identified pitches in the
sensor data were matched with corresponding pitches recorded by the radar system by
using the time stamps of the identified throws (sensor data) and recorded pitches (radar
system). Accuracy was confirmed by ensuring that the times of throws identified in the
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sensor data and the times of throws identified by the radar system, which were matched
for the duration of the bullpen session.

We calculated workload from acceleration data using four different methods. One was
a simple acceleration metric that could easily be calculated from raw inertial sensor data
(i.e., peak resultant acceleration), two were calculations popularized by consumer wearable
systems (i.e., peak PlayerLoad and cumulative PlayerLoad), and one was a relative metric
of acceleration (i.e., normalized resultant acceleration). In this paper, we use the term
“workload” to denote calculated estimates of external load, which is a potential proxy for
the mechanical load experienced. Peak resultant acceleration (WL1) was calculated from the
tri-axial acceleration signals. PlayerLoad per pitch was calculated using the equation given
in Bullock et al. [11], which defines PlayerLoad as the resultant vector of the instantaneous
rate of change in the direction of the tri-axial acceleration divided by a scaling factor:

PlayerLoad =

√
∆a2 + ∆b2 + ∆c2

100
∆a2 + ∆b2 + ∆c2

In their paper [11], ∆a is the instantaneous change in anterior-posterior accelerations,
∆b is the change in medial-lateral accelerations, and ∆c is the change in the vertical accel-
erations. We used the x-y-z accelerations from each sensor to calculate peak PlayerLoad
(WL2). Cumulative PlayerLoad for each pitch (WL3) was calculated in accordance with
previous work [11]. In Bullock et al. [11], the cumulative PlayerLoad was calculated by
summing the PlayerLoad across the duration of the pitching movement. The authors [11]
provide no details about how the start and end of pitching motion was defined by the
measured data. Because of this ambiguity, we defined the pitch as starting 0.5 s before
peak upper arm acceleration and ending 0.5 s after peak upper arm acceleration. Finally,
we calculated normalized resultant acceleration (WL4) by dividing the absolute tri-axial
resultant acceleration by the maximum value experienced during the entire bullpen session
for each pitcher. That is, the largest measured resultant acceleration from each sensor for
the pitcher during the session equaled 1.0, and all others were denoted as a proportion of
1.0. Normalization was performed to better compare across players and pitch types. In
addition, normalization helps with interpretation because absolute values of accelerations
are expected to be sensitive to how the sensor is affixed, which can easily vary between
pitchers and from day-to-day, even for the same pitcher.

2.3. Statistical Analysis

A series of generalized linear mixed model analyses were used to determine the sensor
and pitch type effect on workload estimates. We used Tukey’s method to make pairwise
comparisons when significant main effects were found. A series of Pearson Correlation
tests were performed to determine the association between the different workload estimates
at each sensor location and for each pitch type. The alpha level was set a priori to 0.05.

3. Results

Sensor location significantly influenced all workload estimates (p < 0.001) (Figure 2).
Pairwise comparisons revealed that, regardless of calculation method, all estimates were
significantly different between forearm and upper arm (p < 0.001), forearm and trunk
(p < 0.001), and upper arm and trunk (p < 0.001). An interaction between sensor location
and pitch type was found. Within sensor location, all types of workload estimates using
forearm location data were significantly different across pitch type. Only cumulative
PlayerLoad was significantly different across pitch types when using the upper arm location
data (Table 2). No differences across pitch type were found using trunk location data. The
significance of association between different workload estimates varied across pitch type
(Table 3). Pitch performance metrics reported from the consumer-available radar unit
(Pitching 2.0, Rapsodo, Inc.) can be found in Table 4.
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Figure 2. Mean workload estimates across pitch type and sensor location. Red indicates values
from sternum sensor; Green indicates values from upper arm sensor; and Blue indicates values from
forearm sensor. Workload estimates varied by calculation method and did not show the same pattern
across pitch types.

Table 2. Workload Estimates Across Pitch Types and Sensor Locations. Pitch type included fastballs
(n = 184), change-ups (n = 76), curveballs (n = 95), sliders (n = 5), and cutters (n = 6). Peak resultant
acceleration is expressed in m/s2; all other estimates are unitless.

Peak
Resultant Acceleration

(WL1)

Peak PlayerLoad
(WL2)

Cumulative PlayerLoad
(WL3)

Normalized
Resultant Acceleration

(WL4)

Trunk
Fastball 160.5 ± 113.4 9.2 ± 12.3 238.6 ± 87.6 0.10 ± 0.08
Change-Up 143.3 ± 84.1 7.4 ± 8.7 217.3 ± 85.2 0.09 ± 0.06
Curveball 172.6 ± 118.0 9.2 ± 11.9 243.8 ± 87.9 0.11 ± 0.08
Slider 17.2 ± 102.8 7.0 ± 6.8 219.7 ± 201.3 0.06 ± 0.05
Cutter 180.2 ± 266.2 16.2 ± 25.3 170.7 ± 230.9 0.12 ± 0.18

p = 0.34 p = 0.57 p = 0.73 p = 0.34
Upper Arm
Fastball 1046.6 ± 184.0 54.1 ± 17.0 1031.4 ± 166.5 0.66 ± 0.14
Change-Up 969.8 ± 209.6 50.0 ± 20.8 963.5 ± 186.8 * 0.61 ± 0.15
Curveball 1082.5 ± 194.4 56.3 ± 23.5 1077.8 ± 157.3 ** 0.68 ± 0.12
Slider 1082.9 ± 45.2 47.8 ± 3.2 1132.6 ± 69.0 0.56 ± 0.02
Cutter 961.9 ± 123.5 38.2 ± 10.1 945.7 ± 59.4 0.69 ± 0.04

p = 0.36 p = 0.65 p = 0.04 p = 0.51
Forearm
Fastball 1288.7 ± 184.1 40.1 ± 12.1 848.9 ± 97.0 0.81 ± 0.08
Change-Up 1241.3 ± 190.6 37.6 ± 12.3 820.8 ± 126.5 0.77 ± 0.07
Curveball 1450.9 ± 243.5 *,** 49.4 ± 17.1 *,** 921.2 ± 104.8 *,** 0.90 ± 0.05 *,**
Slider 1840.5 ± 82.0 *,** 73.2 ± 5.1 *,**,*** 1083.3 ± 56.7 *,**,*** 0.96 ± 0.04 *,**,***
Cutter 1336.3 ± 116.2 **** 36.7 ± 6.1 **** 814.9 ± 81.8 **** 0.96 ± 0.03 ****

p < 0.001 p = 0.05 p = 0.008 p < 0.001

* significantly different from fastball, ** from change-up, *** from curveball, and **** from slider (p < 0.05).
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Table 3. Correlation Among Workload Estimates Across Pitch Type. Only forearm sensor location
data is used here. WL1 = peak resultant acceleration; WL2 = peak PlayerLoad WL3 = cumulative
PlayerLoad; WL4 = normalized resultant acceleration.

Fastball Change-Up Curveball Slider Cutter
WL1 WL2 WL3 WL4 WL1 WL2 WL3 WL4 WL1 WL2 WL3 WL4 WL1 WL2 WL3 WL4 WL1 WL2 WL3 WL4

WL1 1.00 1.00 1.00 1.00 1.00
WL2 0.86 1.00 0.78 1.00 0.92 1.00 −0.03 1.00 0.89 1.00
WL3 0.59 0.54 1.00 0.66 0.63 1.00 0.72 0.73 1.00 0.36 −0.56 1.00 0.96 0.94 1.00
WL4 0.24 0.06 0.26 1.00 0.33 0.10 0.44 1.00 0.41 0.31 0.31 1.00 1.00 −0.03 0.36 1.00 0.74 0.43 0.56 1.00

Note: bold and shaded indicates significant association (p < 0.05). Red shaded cells indicate a strong association
(0.7 to 1.0) between measures, orange shaded cells indicate a moderate association (0.4 to 0.69), and yellow shaded
cells indicate a weak (<0.4) association.

Table 4. Pitch Performance Metrics. Metrics displayed in mean ± SD and reporting directly from
Rapsodo software program. Definitions are taken directly from the user manual (Rapsodo, Inc.,
Pitching 2.0: User manual; see Supplemental Material). Speed (mph) indicates how fast a pitch is
traveling during flight. Spin rate is the rate at which the ball spins during flight. True spin is the spin
directly impacting the movement of a pitch. Also known as “useful spin,” it is perpendicular to the
direction the ball is traveling, deflecting the otherwise straight horizontal and vertical path of the ball.
Spin efficiency is the percentage of spin directly impacting the movement of a pitch; spin efficiency
is the ratio of true spin to total spin. Horizontal and vertical break represent how much a ball has
moved when it crosses the strike zone compared to what its position would have been without spin.

Speed (mph) Spin (rpm) True Spin (rpm) Spin Efficiency Horizontal Break Vertical Break

Fastball 83.4 ± 4.4 1339.9 ± 956.9 1174.0 ± 849.8 58.7 ± 41.8 −0.22 ± 8.9 9.45 ± 8.4
Change-Up 76.6 ± 5.3 1171.6 ± 752.5 1009.9 ± 674.2 62.2 ± 39.8 0.39 ± 11.2 7.65 ± 6.1
Curveball 72.7 ± 4.3 1531.6 ± 990.0 857.0 ± 620.7 40.5 ± 29.9 −1.24 ± 9.2 −3.63 ± 6.0
Slider 81.0 ± 1.4 2150.0 ± 37.2 558.2 ± 57.8 26.0 ± 2.8 −2.82 ± 0.47 6.62 ± 1.1
Cutter 72.3 ± 4.1 959.7 ± 1055.1 339.5 ± 372.9 17.7 ± 19.4 −0.28 ± 4.3 1.75 ± 4.4
Grand Total 79.0 ± 6.5 1359.5 ± 932.6 1035.9 ± 765.7 53.6 ± 39.3 −0.39 ± 9.4 5.52 ± 9.1

4. Discussion

Two key findings of this study are that (1) sensor location matters when estimating
external workload in baseball pitching and (2) workload estimates are not interchangeable.
The forearm location appears to be much more sensitive to differences across pitch type,
regardless of calculation method. Additionally, workload estimates using different calcula-
tions from acceleration data varied in their association to each other. This indicates that
estimates may represent different concepts related to the external workload that a player
experiences. Study findings highlight the need to be purposeful about the type of external
load measurement desired and the method of collection.

To date, only two studies have estimated workload during pitching using wearable
sensors [6,11]. Mehta [6] collected workload using a commercially available wearable device
(motusTHROW) for pre- and in-season throws from 18 baseball pitchers. Workload was
quantified by using a forearm-mounted inertial sensor. The sensor outputted an estimate of
elbow valgus torque, which is thought to be a key contributing factor to elbow ligamentous
injury [10,12]. From this estimate, the acute-to-chronic valgus ratio (ACVR) was calculated
using a method adapted from the acute-to-chronic workload ratio popularized by Gabbett
et al. [13,14]. The second study also used a commercially available device to quantify
workload, but from a trunk-mounted sensor [11]. While the raw workload data is not
available from [6] for comparison, Bullock et al. [11] found that peak PlayerLoad from
fastballs were significantly larger than change-ups (4.0 ± 0.9 versus 3.8 ± 0.9) and curveballs
(4.2 ± 0.9 versus 4.1 ± 1.0), but not sliders (4.1 ± 1.1 versus 4.0 ± 1.0). Cumulative
PlayerLoad differed significantly between fastballs and change-ups (270.3 ± 68.4 versus
257.9 ± 63.2), but not across other pitch types. These findings contrast with our own. We
did not find significant differences between these pitch types using the trunk (or forearm)
sensor data for either peak PlayerLoad or cumulative PlayerLoad. Differences in findings
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can be explained by differences in the subject population studied, the difference in sensor
placement on the trunk (i.e., base of neck versus sternum), or differences in data processing,
since filtering and algorithms from commercial systems are not disclosed. For example,
while the specific calculation has not been made public, PlayerLoad appears to be derived
from a scaled resultant of the instantaneous rate of change in each direction of the tri-axial
acceleration, which is an estimation of the magnitude of ‘jerk,’ except that, instead of
dividing by the change in time, a scaling factor is used. However, this method may not be
robust or easily transferable, as the change in the acceleration per time step is sensitive to
the accelerometer sampling rate. Bullock et al. [11] utilized a sampling rate of 100 Hz (where
our study used 512 Hz) but did not state the relation between the scaling factor (100) and
the sampling rate. [11] does not provide additional details about methodological choices
based on their definition of PlayerLoad. Confusion about the definition and calculation
methods of PlayerLoad is not unique, as other researchers have noted discrepancies [15].

Bullock et al [11] suggested that using workload estimates from a trunk-mounted
sensor ‘could serve as a proxy [for shoulder or elbow loads] to begin to understand
modifiable risk factors beyond pitch count that may help in reducing pitching injury.
However, our findings indicate that trunk-based workload estimates may not appropriately
reflect external mechanical load at the elbow (throwing forearm) or the shoulder (throwing
upper arm). This is supported by previous work with optical motion capture where higher
trunk velocity was linked to lower elbow joint torque [16–18]. Conceptually, the nature
of the kinetic chain in the throwing motion moves energy along sequential segments
(proximal-to-distal) such that high outputs from the trunk translate to lower mechanical
stress at the arm. To date, a link between trunk acceleration or its derivative, jerk, and
elbow stress is not well documented. Workload estimates from trunk-mounted sensors
have largely been used in team sports with high volumes of multidirectional movements
of varying amplitudes [19,20]. The Catapult OptimEye S5 system uses a trunk-mounted
sensor to calculate PlayerLoad™. The rationale for this is that jerky movements (i.e., larger
changes in instantaneous acceleration) of the center of mass result in more muscle activity
and higher energy expenditure [21]. Peaks values can be thought of as the magnitude of the
jerk and cumulative values as an estimate equivalent to the integral of the jerk magnitude.
Given this calculation and sensor placement, PlayerLoad™ appears to be best-suited as a
measure of whole-body external load, with its original application in running-based team
sports like rugby, Australian Rules football, and global football.

The desired load in baseball pitching is external load on the throwing arm, most
importantly the forces acting on the elbow joint. The motusTHROW device may be more
applicable since the sensor is located on the proximal forearm. It is important to note that
motusTHROW has not been tested for day-to-day reliability, and its accuracy in estimating
elbow valgus torque against a gold standard has deemed it, to date, as acceptable for
‘casual use’ only [22,23]. In our study, we placed the forearm sensor on the distal end
of the segment for both comfort and accuracy of segment kinematics. While the sensor
location in [6] was more accurate than [11] for assessing external pitching workloads,
the workload estimate metric chosen was potentially problematic. Mehta [6] used daily
workloads, computed as the sum of the estimated elbow valgus torque incurred for each
throw, to calculate an acute-to-chronic varus ratio (ACVR). Importantly, acute to chronic
windows were originally designed to assess physiological fitness versus fatigue in rugby
athletes who practice (run) daily. It is unclear whether these windows are appropriate for
pitching. Many pitchers have rotating bullpens and do not throw every day, particularly
during the season. Likewise, adaptation and recovery timescales are different between
musculoskeletal tissue and cardiac endurance. Thus, ACVR from [6] is unlikely to represent
the true elbow ligamentous response to external loading.

Findings from our study indicate that external workload at the elbow is different
between fastballs, curveballs, and sliders, but not change-ups. For the player that threw
cutters, this pitch appears to play a different workload in comparison to only sliders.
While all estimates used the same acceleration signal, calculations differed and produced
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varying levels of association across pitch types. This suggests that calculation method,
which represents the selection of a specific workload estimate, matters for assessing and
monitoring pitching mechanical loads. At this point, it is unclear which estimate is most
useful for forecasting injury or monitoring training adaptation. Additional work is needed
to determine the estimate that most accurately reflects biological tissue load. However,
we expect that peak resultant acceleration from the pitch cycle will be among the primary
workload estimates used because both reaction forces and moments at the elbow joint
during baseball pitching are dominated by the acceleration of the forearm [24], and because
the sensor accelerometer range (±200 g) is more than sufficient to fully capture the large
dynamics of baseball pitching. Additionally, normalizing this acceleration may be useful
to assist with pitcher-specific monitoring and training. In our study, we chose to calculate
normalized peak resultant accelerations to the peak acceleration of the entire bullpen
session because inertial sensors are sensitive to changes in alignment and location on
the segment [25] as well as the secureness of the affixation to the segment [26]. Without
normalization, inter-subject acceleration cannot be easily generalized and within-subject or
between-session comparisons may also be limited.

Normalized acceleration was significantly different between breaking balls and fast-
balls but not change-ups, which suggests that pitchers may experience the same relative
workload when throwing fastballs and change-ups but higher workloads when throwing
breaking balls (curveballs or sliders). This is somewhat contrasted to previous work with
professional pitchers, where researchers suggested that injury risk was equally high for
throwing fastballs, sliders, and curveballs but not change-ups because of similar shoulder
and elbow forces and torques outputs during optical motion capture testing [27]. Similarly,
previous work with collegiate pitchers reported that resultant joint loads were similar
between fastballs and curveballs and deemed these pitch types to be risky. They interpreted
low kinetics in the change-up to imply that this pitch type was safest [28]. Our findings
indicate that change-ups, in particular, appear to influence cumulative upper arm work-
load estimates, whereas fastballs and curveballs had lower loads to the upper arm. Thus,
change-ups may be more stressful to the shoulder than the elbow. We suggest that relative
rather than absolute comparisons may be more helpful in determining which pitch types
could negatively overload throwing arm structures.

Several limitations exist for this study. Firstly, we did not have an equal distribution of
pitch types across players. All pitchers threw fastballs, change-ups, and curveballs. How-
ever, only one pitcher in our sample threw sliders and only two threw cutters. Although
statistically accounted for, these findings for sliders and cutters should be interpreted cau-
tiously. Secondly, this is a cross-sectional study, so no inference to injury risk can be made.
Furthermore, the link between forearm acceleration, elbow joint load, and elbow injury
remains to be definitively established. We did not directly calculate elbow valgus torque.
While elbow valgus torque is the most often cited parameter to estimate joint stress, it
requires an accurate measure of rotational forearm velocity, rotational forearm acceleration,
linear forearm acceleration, forearm orientation, and upper arm orientation, as well as
accurate estimates of body segment parameters and sensor placement relative to the elbow
joint center [24]. Our inertial sensor had the capacity to capture rotations up to 2000◦/s.
However, forearm angular rates during pitching have been reported to be between 6000◦/s
to 9000◦/s. We did not want to risk erroneous outputs due to the saturation of the angular
velocity signal, and instead opted to use resultant acceleration [24]. Finally, we did not take
any anthropometric measures of body segments or player heights. Acceleration may be
influenced by body segment dimensions and, thus, should be explored in future work.

5. Conclusions

The forearm location was most sensitive to differences in workload across pitch
types, regardless of calculation method. Importantly, there is a need for standardization
of operational definitions related to workload concepts and methods of calculation. In
the meantime, multiple workload estimates should be calculated, including normalized
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estimates, since they can help determine player- and pitch-specific workloads and assist
with individualized training or rehabilitation programs. Future research investigating the
sensor-derived workload estimates should incorporate longitudinal observation and the
collection of tissue-specific data like medical imaging.
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www.mdpi.com/article/10.3390/s22229008/s1, Pitching 2.0 User Manual.

Author Contributions: Conceptualization, C.A. and S.C.; methodology, C.A, S.C. and M.T.F.; soft-
ware, S.C.; validation, S.C.; formal analysis, C.A. and S.C.; investigation, C.A. and S.C.; data curation,
S.C.; writing—original draft preparation, C.A.; writing—review and editing, C.A., S.C., M.T.F., G.G.
and J.Z.; visualization, S.C.; supervision, C.A.; project administration, C.A. and S.C.; funding acquisi-
tion, C.A. and S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Michigan, Exercise and Sport Science
Initiative, Grand Challenge Research Grant.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Institutional Review Board of The University of Michigan
(2018-HUM00147629) and University of Washington (2019-STUDY00007421).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors are grateful to the participants of this study and thank the University
of Michigan baseball program for their support and cooperation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Solomonow, M. Ligaments: A source of musculoskeletal disorders. J. Bodyw. Mov. Ther. 2009, 13, 136–154. [CrossRef] [PubMed]
2. Lyman, S.; Fleisig, G.S.; Andrews, J.R.; Osinski, E.D. Effect of pitch type, pitch count, and pitching mechanics on risk of elbow

and shoudler pain in youth baseball pitchers. Am. J. Sport. Med. 2002, 30, 463–468. [CrossRef] [PubMed]
3. Karakolis, T.; Bhan, S.; Crotin, R.L. Injuries to young professional baseball pitchers cannot be prevented solely by restricting

number of innings pitched. J. Sport. Med. Phys. Fit. 2016, 56, 554–559.
4. Saltzman, B.M.; Mayo, B.C.; Higgins, J.D.; Gowd, A.K.; Cabarcas, B.C.; Leroux, T.S.; Basques, B.A.; Nicholson, G.P.;

Bush-Joseph, C.A.; Romeo, A.A.; et al. How many innings can we throw: Does workload influence injury risk in Major League
Baseball? An analysis of professional starting pitchers between 2010 and 2015. J. Shoulder Elb. Surg. 2018, 27, 1386–1392.
[CrossRef] [PubMed]

5. Black, G.M.; Gabbett, T.J.; Cole, M.H.; Naughton, G. Monitoring Workload in Throwing-Dominant Sports: A Systematic Review.
Sport. Med. 2016, 46, 1503–1516. [CrossRef]

6. Mehta, S. Relationship between workload and throwing injury in varsity baseball players. Phys. Ther. Sport 2019, 40, 66–70.
[CrossRef] [PubMed]

7. Reinold, M.M.; Macrina, L.C.; Fleisig, G.S.; Aune, K.; Andrews, J.R. Effect of a 6-Week Weighted Baseball Throwing Program on
Pitch Velocity, Pitching Arm Biomechanics, Passive Range of Motion, and Injury Rates. Sport. Health 2018, 10, 327–333. [CrossRef]
[PubMed]

8. Makhni, E.C.; Lizzio, V.A.; Meta, F.; Stephens, J.P.; Okoroha, K.R.; Moutzouros, V. Assessment of Elbow Torque and Other
Parameters During the Pitching Motion: Comparison of Fastball, Curveball, and Change-up. Arthroscopy 2018, 34, 816–822.
[CrossRef] [PubMed]

9. Okoroha, K.R.; Lizzio, V.A.; Meta, F.; Ahmad, C.S.; Moutzouros, V.; Makhni, E.C. Predictors of Elbow Torque among Youth and
Adolescent Baseball Pitchers. Am. J. Sport. Med. 2018, 46, 2148–2153. [CrossRef] [PubMed]

10. Camp, C.L.; Tubbs, T.G.; Fleisig, G.S.; Dines, J.S.; Dines, D.M.; Altchek, D.W.; Dowling, B. The Relationship of Throwing Arm
Mechanics and Elbow Varus Torque: Within-Subject Variation for Professional Baseball Pitchers Across 82,000 Throws. Am. J.
Sport. Med. 2017, 45, 3030–3035. [CrossRef] [PubMed]

11. Bullock, G.S.; Schmitt, A.C.; Chasse, P.; Little, B.A.; Diehl, L.H.; Butler, R.J. Differences in PlayerLoad and pitch type in collegiate
baseball players. Sport. Biomech. 2019, 20, 938–946. [CrossRef] [PubMed]

12. Fleisig, G.S.; Andrews, J.R.; Dillman, C.J.; Escamilla, R.F. Kinetics of baseball pitching with implications about injury mechanisms.
Am. J. Sport. Med. 1995, 23, 233–239. [CrossRef]

13. Gabbett, T.J.; Hulin, B.T.; Blanch, P.; Whiteley, R. High training workloads alone do not cause sports injuries: How you get there is
the real issue. Br. J. Sport. Med. 2016, 50, 444–445. [CrossRef]

https://www.mdpi.com/article/10.3390/s22229008/s1
https://www.mdpi.com/article/10.3390/s22229008/s1
http://doi.org/10.1016/j.jbmt.2008.02.001
http://www.ncbi.nlm.nih.gov/pubmed/19329050
http://doi.org/10.1177/03635465020300040201
http://www.ncbi.nlm.nih.gov/pubmed/12130397
http://doi.org/10.1016/j.jse.2018.04.007
http://www.ncbi.nlm.nih.gov/pubmed/29861301
http://doi.org/10.1007/s40279-016-0529-6
http://doi.org/10.1016/j.ptsp.2019.08.001
http://www.ncbi.nlm.nih.gov/pubmed/31491740
http://doi.org/10.1177/1941738118779909
http://www.ncbi.nlm.nih.gov/pubmed/29882722
http://doi.org/10.1016/j.arthro.2017.09.045
http://www.ncbi.nlm.nih.gov/pubmed/29289396
http://doi.org/10.1177/0363546518770619
http://www.ncbi.nlm.nih.gov/pubmed/29746146
http://doi.org/10.1177/0363546517719047
http://www.ncbi.nlm.nih.gov/pubmed/28806094
http://doi.org/10.1080/14763141.2019.1618899
http://www.ncbi.nlm.nih.gov/pubmed/31223072
http://doi.org/10.1177/036354659502300218
http://doi.org/10.1136/bjsports-2015-095567


Sensors 2022, 22, 9008 10 of 10

14. Hulin, B.T.; Gabbett, T.J.; Blanch, P.; Chapman, P.; Bailey, D.; Orchard, J.W. Spikes in acute workload are associated with increased
injury risk in elite cricket fast bowlers. Br. J. Sport. Med. 2014, 48, 708–712. [CrossRef] [PubMed]

15. Bredt, S.; Chagas, M.H.; Peixoto, G.H.; Menzel, H.J.; de Andrade, A.G.P. Understanding Player Load: Meanings and Limitations.
J. Hum. Kinet. 2020, 71, 5–9. [CrossRef]

16. Aguinaldo, A.L.; Buttermore, J.; Chambers, H. Effects of upper trunk rotatin on shoulder joint torque among baseball pitchers of
various levels. J. Appl. Biomech. 2007, 23, 42–51. [CrossRef]

17. Aguinaldo, A.; Escamilla, R. Segmental Power Analysis of Sequential Body Motion and Elbow Valgus Loading During Baseball
Pitching: Comparison between Professional and High School Baseball Players. Orthop. J. Sport. Med. 2019, 7, 2325967119827924.
[CrossRef]

18. Hirashima, M.; Yamane, K.; Nakamura, Y.; Ohtsuki, T. Kinetic chain of overarm throwing in terms of joint rotations revealed by
induced acceleration analysis. J. Biomech. 2008, 41, 2874–2883. [CrossRef] [PubMed]

19. Gabbett, T.J. GPS analysis of elite women’s field hockey training and competition. J. Strength Cond. Res. 2010, 24, 1321–1324.
[CrossRef] [PubMed]

20. Johnston, R.J.; Watsford, M.L.; Pine, M.J.; Spurrs, R.W.; Murphy, A.; Pruyn, E.C. Movement demands and match performance in
professional Australian football. Int. J. Sport. Med. 2012, 33, 89–93. [CrossRef]

21. Wilson, R.P.; White, C.R.; Quintana, F.; Halsey, L.G.; Liebsch, N.; Martin, G.R.; Butler, P.J. Moving towards acceleration for
estimates of activity-specific metabolic rate in free-living animals: The case of the cormorant. J. Anim. Ecol. 2006, 75, 1081–1090.
[CrossRef] [PubMed]

22. Driggers, A.R.; Bingham, G.E.; Bailey, C.A. The Relationship of Throwing Arm Mechanics and Elbow Varus Torque: Letter to the
Editor. Am. J. Sport. Med. 2019, 47, NP1–NP5. [CrossRef]

23. Boddy, K.J.; Marsh, J.A.; Caravan, A.; Lindley, K.E.; Scheffey, J.O.; O’Connell, M.E. Exploring wearable sensors as an alternative to
marker based motion capture in the pitching delivery. PeerJ 2019, 7, e6365. [CrossRef]

24. McGinnis, R.S.; Hough, J.; Perkins, N.C. Accuracy of Wearable Sensors for Estimating Joint Reactions. J. Comput. Nonlinear Dyn.
2017, 12, 041010. [CrossRef]

25. Greenwood, D.T. Principles of Dynamics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988.
26. Saha, S.; Lakes, R. The effect of soft tissue on wave-propagation and vibration tests for determining the in vivo properties of bone.

J. Biomech. 1077, 10, 393–401. [CrossRef]
27. Escamilla, R.F.; Fleisig, G.S.; Groeschner, D.; Akizuki, K. Biomechanical Comparisons among Fastball, Slider, Curveball, and

Changeup Pitch Types and between Balls and Strikes in Professional Baseball Pitchers. Am. J. Sport. Med. 2017, 45, 3358–3367.
[CrossRef] [PubMed]

28. Fleisig, G.S.; Kingsley, D.S.; Loftice, J.W.; Dinnen, K.P.; Ranganathan, R.; Dun, S.; Escamilla, R.F.; Andrews, J.R. Kinetic comparison
among the fastball, curveball, change-up, and slider in collegiate baseball pitchers. Am. J. Sport. Med. 2006, 34, 423–430. [CrossRef]
[PubMed]

http://doi.org/10.1136/bjsports-2013-092524
http://www.ncbi.nlm.nih.gov/pubmed/23962877
http://doi.org/10.2478/hukin-2019-0072
http://doi.org/10.1123/jab.23.1.42
http://doi.org/10.1177/2325967119827924
http://doi.org/10.1016/j.jbiomech.2008.06.014
http://www.ncbi.nlm.nih.gov/pubmed/18678375
http://doi.org/10.1519/JSC.0b013e3181ceebbb
http://www.ncbi.nlm.nih.gov/pubmed/20386482
http://doi.org/10.1055/s-0031-1287798
http://doi.org/10.1111/j.1365-2656.2006.01127.x
http://www.ncbi.nlm.nih.gov/pubmed/16922843
http://doi.org/10.1177/0363546518809061
http://doi.org/10.7717/peerj.6365
http://doi.org/10.1115/1.4035667
http://doi.org/10.1016/0021-9290(77)90015-X
http://doi.org/10.1177/0363546517730052
http://www.ncbi.nlm.nih.gov/pubmed/28968139
http://doi.org/10.1177/0363546505280431
http://www.ncbi.nlm.nih.gov/pubmed/16260466

	Introduction 
	Materials and Methods 
	Participants 
	Data Collection and Analysis 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

