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Abstract: This study determines the roll angle for a two-wheeled single-track vehicle during cornering.
The kinematics are analyzed by coordinate transformation to determine the relationship between
the measured acceleration and the acceleration in the global coordinate. For a measurement error
or noise, the state space expression is derived. Using the theory for a Kalman filter, an estimator
with two-step measurement updates estimates the yaw rate and roll angle using the acceleration and
angular velocity signals from an IMU sensor. A bicycle with relevant electronic products is used as
the experimental object for a steady turn, a double lane change and a sine wave turn in real time to
determine the effectiveness of the estimator. The results show that the proposed estimator features
perfect reliability and accuracy and properly estimates the roll angle for a two-wheeled vehicle using
IMU and velocity.
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1. Introduction

Two-wheeled single-track vehicles include motorcycles and bicycles and are widely
used in cities due to their convenience and high mobility. Four-wheeled vehicles are stable
when stationary, but two-wheeled vehicles are not. Therefore, it is necessary to design an
active safety system for such vehicles.

When a two-wheeled vehicle turns, it achieves a great roll angle to ensure the balance
of forces. According to previous studies on motorcycle dynamics [1], roll angle is a crucial
variable, as it determines vehicle behavior, which plays an important role in the research
and development of active safety systems. However, it is difficult to accurately determine
the roll angle directly using traditional sensors. Therefore, estimating the roll angle when a
two-wheeled single-track vehicle is turning has great research value [2,3].

Previous studies have used video and state estimation methods to determine roll an-
gles. A.P. Teerhuis et al. [4] presented a simplified analytic dynamic model of a motorcycle,
comparing it to an extended multi-body model. Those authors also used an Extended
Kalman Filter (EKF) to obtain signals related to the lateral dynamics of the motorcycle.
Nehaoua et al. [5] used a sliding mode observer with an unknown parameter input for
a vehicular dynamic model to determine the roll angle. However, this method required
accurate vehicle parameters and skill in terms of evaluating the rider’s posture and ability
to control the machine. Lot Roberto et al. [6] used a simplified vehicle dynamics model and
an Extended Kalman Filter (EKF). Kinematic parameters, such as speed and the angular
velocity in the x- and z-directions, were measured. The simplified mathematical model
made it possible to make real-time estimations, and the experimental results were accurate.

Corbetta et al. [7] used the three-axis angular velocity from an Inertial Measurement
Unit (IMU) and a vehicular kinematics model to determine the roll angle using an Un-
scented Kalman Filter (UKF). The estimation results were similar to those for real vehicle
test experiments, but the UKF was shown to be more robust to inaccurate initial conditions.
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Savaresi et al. [8] used the frequency separation method for estimations and used the same
sensor signal as that described in the study by Lot et al. [6]. Using the integral value of the
angular velocity in the x-direction for high-frequency estimations, the low-frequency signal
was calculated using a vehicle kinematics model. The two signals were combined to obtain
the final estimated value.

Boniolo et al. [9,10] used two sets of low-cost gyroscopes to measure the x-, y-, and
z-axis angular velocities. The roll angle was calculated using the ratio of the y- or z-axis
angular velocity to the x-axis angular velocity. By combining the angular velocities of
the x-axis and the y- or z-axes by frequency separation method, the authors of [8] could
estimate the roll angle. This method avoids errors if the roll angle is too great; however, the
configuration is very complicated.

Similarly to the study by Savaresi et al. [8], Schwab et al. [11] used the integral value of
the roll angular velocity and the y- and z-axis angular velocities from the IMU to determine
the roll angle using the frequency separation method. This method was susceptible to
the effect of IMU noise when driving in a straight line. Ahmed et al. [12] used the third
axis acceleration and the three-axis angular velocity signal, as measured by an IMU and
a gyroscope, to calculate the lateral and vertical acceleration. They then determined
the vehicle’s attitude (pitch and roll angles) using a Kalman filter. Sanjurjo et al. [13]
demonstrated a roll angle estimator that used an EKF and the angular rate. However,
the multibody dynamics of the study motorcycle were simplified, so the estimation was
not accurate. P-M Damon et al. [14] used an unknown input observer to estimate lateral
motorcycle dynamic states and to reconstruct unknown inputs in real riding scenarios.
In addition, Ding Yao et al. [15,16] applied an intelligence algorithm and a graph neural
network to design an adaptive filter. The application of self-supervised methods provided
a good reference for roll angle estimates.

The roll angle can also be estimated using image recognition [17]. Schlipsing et al. [18]
compared four estimation methods, including image recognition and an IMU complemen-
tary filter. The results showed that a Kalman filter that used IMU signals was very accurate,
and that estimates that used image recognition were affected by the driving environment,
such as sky and weather conditions. These studies used different methods to determine the
roll angle, but the applied sensors were expensive and too numerous, and accuracy varied
under different driving conditions. Motivated by the above discussion, this paper proposes
an estimation with two-step measurements based on a kinematic model and Kalman filter
theory, which is an improvement of work reported in [11–13]. The major contribution of
our research is the improvement of estimation accuracy.

This paper is organized as follows. Section 2 determines the kinematic characteristics
using coordinate transformation. Section 3 derives the state space expression that includes
the measurement values and the error. Section 4 describes the proposed estimator, which
uses two-step measurement updates to determine the yaw rate and roll angle. Section 5
describes an experiment that used a bicycle with relevant electronic products to determine
the performance of the proposed estimator. Section 6 presents the conclusions.

2. Kinematic Analysis

This study uses a coordinate transformation method to describe the kinematic param-
eters for a vehicle. The moving coordinate CG-xyz is fixed to the vehicle body, as shown
in Figure 1. The origin is located at the center of gravity, the x-axis is in the direction of
forward motion, the z-axis is vertical to the vehicle’s motion and the y-axis is determined
using the right-hand rule. The global coordinate O-XYZ is fixed on the ground and does
not change when the vehicle moves. The moving and the global coordinates initially move
in the same direction, so the attitude is determined by transforming the global coordinate
into a moving one.
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Figure 1. Vehicle coordinate and parameters.

In the global coordinate, accelerations along the three axes comprise longitudinal
acceleration Ax, lateral acceleration Ay and vertical acceleration Az, as shown in Figure 1.
For the moving coordinate system, there are three accelerations along the axes of the
moving coordinates axm, aym, azm, which are measured by an IMU sensor on the vehicle.
The IMU sensor measures angular velocity signals ωxm, ωym, ωzm. All signals from the
IMU apply to the moving coordinate system.

When a motorcycle turns, it achieves roll angle φ, as shown in Figure 2, to compensate
for the centrifugal force and to maintain balance.
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Figure 2. Dynamics of a turning motorcycle.

Using coordinate transformation, the kinematic parameter that transforms the rela-
tionship between the global and the moving coordinate is determined using Equation (1).
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This is also the geometric relationship between the measured acceleration signals and the
acceleration in the global coordinates.Ax

Ay
Az

 =

1 0 0
0 cos φ − sin φ
0 sin φ cos φ

axm
aym
azm

 (1)

Equation (1) is used to derive Equations (2)–(4) as:

Ax = axm (2)

Ay = aym cos φ − azm sin φ (3)

Az = aym sin φ + azm cos φ (4)

When a motorcycle turns stably, the lateral acceleration is expressed as:

Ay = vx
.
ψ (5)

where vx is longitudinal velocity and
.
ψ is the yaw rate.

3. State Space Expression

To determine the roll angle, the measured roll rate ωxm is integrated to obtain the
preliminary value for roll angle φg. This integration occurs in Equation (6):

φg,k = φg,k−1 + ωxm,k∆t (6)

where ∆t is the sample time and φg,k−1 is the preliminary value at the last time step.
However, the angular velocity signal from the IMU is sensitive to measurement noise, so
the integrated value may not be accurate.

By transposing Equations (3) and (4), the roll angle φa that is calculated using accelera-
tion signals is expressed as s:

φa = sin−1 aym cos φa − Ay

azm
(7)

φa = cos−1 azm sin φa + Ay

aym
(8)

Equation (8) can diverge if the vehicle is moving straight, because the roll angle and
the lateral acceleration are approximately zero. Therefore, Equation (7) is used for the
measurement update phase for the Kalman filter.

If the vehicle is cornering steadily, the lateral acceleration is equal to the product of
the longitudinal velocity and the yaw rate. It is also presumed that the roll angle does not
change significantly in a short time. As such, φa,k at the right side is replaced with the value
at last time step, φa,k−1, and Equation (7) is rewritten to express roll angle φa,k as:

φa,k = sin−1 aym cos φa,k−1 − vx
.
ψ

azm
(9)

In Equation (9), the longitudinal velocity, the acceleration and yaw rate signals, the
estimated roll angle and the value at last time step gives the final value of the roll angle, φa,k.
However, when cornering, the z-axis angular velocity

.
ψ is proportionally different to the

ωzm component of the IMU signal because there is a roll angle. The measured signal may
also contain noise that affects the accuracy of the estimation, so the yaw rate is calculated
initially and then the roll angle is calculated on that basis.
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If the sum of the real acceleration value is equal to that for the measured value from
the IMU sensor, then squaring and adding Equations (3) and (4) gives Equation (10):

Ay
2 + Az

2 =
(
aym cos φ − azm sin φ

)2
+
(
aym sin φ + azm cos φ

)2 (10)

Simplifying and organizing Equation (10) gives:

Ay
2 + Az

2 = aym
2 + azm

2 (11)

Substituting Equation (5) into Equation (11) gives Equation (12):(
vx

.
ψ
)2

+ Az
2 = aym

2 + azm
2 (12)

Transposing the terms and solving the square root of Equation (12) allows the absolute
value for the yaw rate to be expressed as:

∣∣∣ .
ψa

∣∣∣ =
√

aym2 + azm2 − Az2

vx2 (13)

The sign of the yaw rate depends on the turning direction. Therefore, the sigmoidal
membership Function is added to Equation (13). This function slightly reduces the noise in
the signals by adjusting the curve for the function. If the vehicle is travelling on a flat road,
the vertical acceleration Az is equal to the force of gravity, g, so the yaw rate is expressed as:

.
ψa = sigmf(ωzm)

√
aym2 + azm2 − g2

vx2 (14)

The roll angle is calculated by integrating the x-axis angular velocity signal from the
IMU assuming a zero pitch angle; however, the signals from the IMU are easily affected by
noise, so an error in value d describes the difference between the integrated roll angle and
the true value, as shown in Equation (15):

d = φg − φ (15)

where the d is roll angle error.
Error value e is also added to describe the difference between the z-axis angular

velocity signal from the IMU and the true yaw rate, as shown in Equation (16):

e = ωzm −
.
ψ (16)

where the e is error in the yaw rate.

Using Equations (15) and (16), the system state is defined as xk =
[
φg d

.
ψ e

]T
.

The system input is defined as uk =
[
ωxm,k ωzm,k

]T. The output is defined as:

y1,k =
.
ψa,k (17)

y2,k = φa,k (18)

As there is disturbance in the real system, the system noise and measured noise must
be added to the state space expression. The system state equation and the measured
equation are then:

xk = Arxk−1 + Bruk + Wk−1 (19)

y1,k = H1xk + V1,k (20)

y2,k = H2xk + V2,k (21)
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Equation (19) is the state equation and Equations (20) and (21) are measurement
equations. Ar denotes the system matrix and Br is the control matrix, which are shown in
Equation (22). Wk−1 is the system noise vector and H1 and H2 are measurement matrices,
shown in Equation (23); V1,k and V2,k are measurement noise.

Ar =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 0 1

 , Br =


∆t 0
0 0
0 1
0 0

 (22)

H1 =
[
0 0 1 0

]
, H2 =

[
1 −1 0 0

]
(23)

4. Estimator Design

The roll angle significantly affects the stability of two-wheeled vehicles, but it is
difficult to accurately determine directly using a sensor because of system disturbances or
measurement noise. Our estimator for the roll angle uses a Kalman filter. The yaw rate is
determined initially, and this value is used to determine the roll angle.

According to state space expression, the Kalman estimator state is defined as:
^
xr =

[
φ̂g d̂

.̂
ψ ê

]T
. The estimator model is expressed as:

x r̂,k = Ar
^
xr,k−1 + Brur,k (24)

.̂
ψk = H1

^
xr,k (25)

φ̂k = H2
^
xr,k (26)

The filter recurrence formula for yaw rate
.̂
ψ is:

x̂+r,k = x̂−r,k + K1,k(y1,k − H1 x̂−r,k) (27)

where x̂−r,k is a one-step estimated state that is calculated using Equation (24), i.e., the gain
matrix, which is calculated as:

K1,k = P−
k HT

1 (H1P−
k HT

1 + R1)
−1

(28)

where P−
k is the prediction error covariance matrix that is calculated as:

P−
k = ArP++

k−1 AT
r + Qr (29)

where R1 and Qr are the respective covariance matrices for measurement noise V1,k and
system noise Wk, which are written as:

R1= Var ( V1,k ), Qr= Var ( Wk ) (30)

Filter error variance matrix P+
k is calculated using Equation (31). This is then used as

the prediction error covariance matrix to determine the roll angle.

P+
k = (I − K1,k H1)P−

k (31)

When state estimation vector x̂+r,k has been determined, the estimated yaw rate value
.̂
ψ may be determined using Equation (25). The value for

.̂
ψ is used to calculate y2,k to

determine the roll angle.
The filter recurrence formula for the estimated roll angle φ̂ is:

x̂++
r,k = x̂+k + K2,k(y2,k − H2 x̂+k ) (32)
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One-step estimated state x̂+k is the last variable required to estimate the yaw rate. K2,k
is the gain matrix that is calculated as:

K2,k = P+
k HT

2 (H2P+
k HT

2 + R2)
−1

(33)

where R2 is variance matrix for measurement noise V2,k, which is expressed as:

R2= Var ( V2,k ) (34)

The filter error variance matrix P++
k is used to calculate the prediction error covariance

matrix P−
k for the next cycle using Equation (29):

P++
k = (I − K2,k H2)P+

k (35)

Using the state estimation vector x̂++
r,k calculated using Equation (32), the estimated

roll angle φ̂ is calculated using Equation (26).
A flow chart for estimating roll angle n is shown in Figure 3. There are three phases: a

time update and the first and second measurement updates.
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In the time update phase, an integration model is used to calculate the roll angle. The
signals that are used are the angular velocities along the x- and z-axes that are measured by

the IMU. The one-step estimated state
^
x
−
k and the prediction error covariance matrix P−

k
are expressed using an upper index [−].

The first measurement update estimates the yaw rate. For a zero-pitch angle and longi-
tudinal acceleration, the quadratic sum of the lateral and vertical acceleration is the same as

that of the y and z-axis acceleration signals from the IMU. Estimated state
^
x
+

k and covariance
matrix P+

k are expressed using the upper index [+] after the first measurement update.
The second measurement update estimates the roll angle. The estimated yaw rate

value, the lateral acceleration, the vertical acceleration, the longitudinal velocity and the

estimated roll angle from the last step are used to update the state. The result is
^
x
++

k ; this is
used to calculate the estimated roll angle using Equation (26).

5. Experiment and Results

This study used practical tests to validate the feasibility and robustness of the estimator
that is described in Section 4. Although motorcycles and bicycles are different, both are
two-wheeled single-track vehicles. Therefore, the kinematic model of a bicycle, without
considering the influence of mass and inertia, is similar to that of motorcycle. The proposed
estimation was designed based on a kinematic model. Therefore, a bicycle experiment
was set up to verify the effectiveness of the estimation model, and electronic hardware
was installed on the bicycle to construct an experimental platform. The bicycle with the
hardware is shown in Figure 4. A g data recorder, an IMU, a Microprogrammed Control
Unit (MCU), a 12 V battery, wheel speed sensors, laser range sensors using the time of flight
(ToF) method and an ABS actuator were fitted to the bicycle. A data recorder was used to
record the test data for analysis. An ABS actuator measured the longitudinal velocity.
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The experimental setup is shown in Figure 5. The longitudinal velocity, measured by
the ABS unit, and the measured acceleration and angular velocity signals from the IMU
were transmitted to the MCU using a controller area network (CAN). The estimated roll
angle was transmitted to the data recorder by a CAN bus.
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The true value for the roll angle was calculated using the distance signals from the
laser sensors that were mounted on both sides of the rear wheel, as shown in Figure 6.
Equation (36) was used to calculate the roll angle based on data from the laser sensors.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 5. Experimental scheme. 

The true value for the roll angle was calculated using the distance signals from the 

laser sensors that were mounted on both sides of the rear wheel, as shown in Figure 6. 

Equation (36) was used to calculate the roll angle based on data from the laser sensors.  

 

Figure 6. Range sensors on both sides of the rear wheel. D1—Distance signal from left laser sensor; 

D2—Distance signal from right laser sensor, L—distance between two laser sensors, φ—the  true 

value for the roll angle. 

𝜙 = tan−1(
𝐷1 − 𝐷2

𝐿
) (36) 

The covariance matrix for system noise Q𝑟 and the covariance matrix for measure-

ment noise in the first and the second measurements update are represented as 𝑅1 and 𝑅2; 

these parameters were defined by trial and error using Equation (37): 

Q𝑟 = [

1 0 0 0
0 0.0001 0 0
0 0 10 0
0 0 0 0.1

],   𝑅1 = [1000],  𝑅2 = [100]  (37) 

Tests validated the performance of the proposed estimator for three driving modes: 

steady cornering, a double lane change and sine wave turning. During testing, the data 

recorder recorded the true values for the roll angle, the estimated value from the Kalman 

filter without yaw rate correction and the estimated value from the proposed estimator. 

Errors in the estimations were then determined. 

Figure 6. Range sensors on both sides of the rear wheel. D1—Distance signal from left laser sensor;
D2—Distance signal from right laser sensor, L—distance between two laser sensors, ϕ—the true value
for the roll angle.

φ = tan−1
(

D1 − D2

L

)
(36)
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The covariance matrix for system noise Qr and the covariance matrix for measurement
noise in the first and the second measurements update are represented as R1 and R2; these
parameters were defined by trial and error using Equation (37):

Qr =


1 0 0 0
0 0.0001 0 0
0 0 10 0
0 0 0 0.1

, R1 = [1000], R2 = [100] (37)

Tests validated the performance of the proposed estimator for three driving modes:
steady cornering, a double lane change and sine wave turning. During testing, the data
recorder recorded the true values for the roll angle, the estimated value from the Kalman
filter without yaw rate correction and the estimated value from the proposed estimator.
Errors in the estimations were then determined.

5.1. Steady Turning

This test used a fixed velocity and a fixed center for turning in a circle. The radius was
5 m. Five revolutions to the left and to the right were used; the test results are shown in
Figure 7.
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Roll angle ToF is the ground true value, roll angle EST Simple is the estimated value
from the Kalman filter without yaw rate correction and roll angle EST is the value estimated
by the proposed estimator.

5.2. Double Lane Change (DLC)

This procedure was used to simulate avoiding an unexpected obstacle on the road.
The entry velocity of the bicycle was 20 km/h. The test results are shown in Figure 8.
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5.3. Sine Wave Turning

The S-turn mode tested the stability of the proposed estimator during high-frequency
turns. The test vehicle changed direction 6 times in about 5 s over a lateral distance of 2.5 m.
The velocity for this procedure was about 10 to 20 km/h. The test results are shown in
Figure 9.
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The error statistics for the estimation are shown in Table 1. The mean absolute error
(MEA) for the proposed estimation was less than that for the simple version (without
yaw rate correction), and the same was true of the root mean square error (RMSE) for
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the proposed estimator. These results show that the proposed estimator was more accu-
rate than the simple version for various scenarios, and that it estimated the vehicle roll
angle accurately.

Table 1. Error statistics for roll angle estimation.

MAE RMSE

Steady Turning
(Figure 7)

Simple 2.6043 2.6537

Proposed 0.4311 0.5692

DLC
(Figure 8)

Simple 5.1574 5.4322

Proposed 0.8461 1.3768

Sine Wave
(Figure 9)

Simple 1.2070 1.5060

Proposed 0.7020 1.1613

6. Conclusions

This study proposes a roll angle estimator for a two-wheeled single-track vehicle.
Vehicle kinematics were used to determine the relationship between the measured value
and the vehicle motion, and the measurement noise and system noise were used to derive
the state space expression. Using the theory of a Kalman filter, a roll angle estimator with
two-step measurement update t estimated the yaw rate and the roll angle. This architecture
reduced the yaw rate error from the IMU and provided more accurate estimations of the
roll angle.

An experimental platform was used for tests for three typical modes of movement. A
comparison of the results of the proposed system and a simple version estimator showed
that the former estimated the roll angle more accurately in each scenario, confirming its
feasibility and robustness.

Author Contributions: Conceptualization, T.-Y.C., X.-D.Z. and C.-K.C.; methodology, T.-Y.C.; soft-
ware, T.-Y.C.; validation, T.-Y.C.; formal analysis, T.-Y.C.; investigation, C.-K.C.; resources, C.-K.C.;
data curation, T.-Y.C.; writing—original draft preparation, T.-Y.C.; writing—review and editing,
X.-D.Z.; visualization, X.-D.Z.; supervision, C.-K.C.; project administration, C.-K.C.; funding acquisi-
tion, C.-K.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Ministry of Science and Technology of Taiwan, ROC. under
grant number MOST 110-2622-E-027-008.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sharp, R.S.; Limebeer, D.J.N. A motorcycle model for stability and control analysis. Multibody Syst. Dyn. 2001, 6, 123–142.
2. Cossalter, V. Motorcycle Dynamics, 2nd ed.; LULU: Morrisville, NC, USA, 2006.
3. Tanelli, M.; Corno, M.; Boniolo, I.; Savaresi, S. Active braking control of two-wheeled vehicles on curves. J. Veh. Auton. Syst. 2009,

7, 243–269. [CrossRef]
4. Teerhuis, A.; Jansen, S.T. Motorcycle State Estimation for Lateral Dynamics. Veh. Syst. Dyn. 2012, 50, 1261–1276. [CrossRef]
5. Nehaoua, L.; Ichalal, D.; Arioui, H.; Davila, J.; Mammar, S.; Fridman, L.M. An Unknown-Input HOSM Approach to Estimate

Lean and Steering Motorcycle Dynamics. IEEE Trans. Veh. Technol. 2014, 63, 3116–3127. [CrossRef]
6. Lot, R.; Cossalter, V.; Massaro, M. Real-time roll angle estimation for two-wheeled vehicles. In Proceedings of the ASME 2012

11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, 2–4 July 2012; pp. 687–693.
7. Corbetta, S.; Boniolo, I.; Savaresi, S.M. Attitude estimation of a motorcycle via Unscented Kalman Filter. IFAC Proc. Vol. 2010, 43,

511–516. [CrossRef]
8. Boniolo, I.; Savaresi, S.M. Motorcycle lean angle estimation with frequency separation principle and angular rates measurements.

IFAC Proc. Vol. 2010, 43, 773–778. [CrossRef]

http://doi.org/10.1504/IJVAS.2009.033263
http://doi.org/10.1080/00423114.2012.656655
http://doi.org/10.1109/TVT.2014.2300633
http://doi.org/10.3182/20100913-3-US-2015.00029
http://doi.org/10.3182/20100712-3-DE-2013.00064


Sensors 2022, 22, 8991 13 of 13

9. Boniolo, I.; Savaresi, S.M.; Tanelli, M. Roll angle estimation in two-wheeled vehicles. IET Control. Theory Appl. 2009, 3, 20–32.
[CrossRef]

10. Boniolo, I.; Savaresi, S.M.; Tanelli, M. Lean angle estimation in two-wheeled vehicles with a reduced sensor configuration. In
Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Republic of Korea, 20–23 May
2012; pp. 2573–2576.

11. Sanjurjo, E.; Naya, M.A.; Cuadrado, J.; Schwab, A.L. Roll angle estimator based on angular rate measurements for bicycles. Veh.
Syst. Dyn. 2018, 57, 1705–1719. [CrossRef]

12. Ahmed, H.; Tahir, M. Accurate Attitude Estimation of a Moving Land Vehicle Using Low-Cost MEMS IMU Sensors. IEEE Trans.
Intell. Transp. Syst. 2017, 18, 1723–1739. [CrossRef]

13. Maceira, D.; Luaces, A.; Lugrís, U.; Naya, M.Á.; Sanjurjo, E. Roll Angle Estimation of a Motorcycle through Inertial Measurements.
Sensors 2021, 21, 6626. [CrossRef] [PubMed]

14. Damon, P.-M.; Ichalal, D.; Nehaoua, L.; Arioui, H. Lateral & steering dynamics estimation for single track vehicle: Experimental
tests. IFAC-Pap. 2017, 50, 3400–3405.

15. Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Li, W.; Cai, W.; Zhan, Y. AF2GNN: Graph convolution with adaptive filters and aggregator
fusion for hyperspectral image classification. Inf. Sci. 2022, 602, 201–219. [CrossRef]

16. Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N.; Zhan, Y. Semi-Supervised Locality Preserving Dense Graph Neural Network with
ARMA Filters and Context-Aware Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60,
1–12. [CrossRef]

17. Schlipsing, M.; Schepanek, J.; Salmen, J. Video-based roll angle estimation for two-wheeled vehicles. In Proceedings of the 2011
IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 876–881.

18. Schlipsing, M.; Salmen, J.; Lattke, B.; Schroter, K.G.; Winner, H. Roll angle estimation for motorcycles: Comparing video and
inertial sensor approaches. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium (IV), Madrid, Spain, 3–7 June 2012;
pp. 500–505.

http://doi.org/10.1049/iet-cta:20080052
http://doi.org/10.1080/00423114.2018.1551554
http://doi.org/10.1109/TITS.2016.2627536
http://doi.org/10.3390/s21196626
http://www.ncbi.nlm.nih.gov/pubmed/34640946
http://doi.org/10.1016/j.ins.2022.04.006
http://doi.org/10.1109/TGRS.2021.3100578

	Introduction 
	Kinematic Analysis 
	State Space Expression 
	Estimator Design 
	Experiment and Results 
	Steady Turning 
	Double Lane Change (DLC) 
	Sine Wave Turning 

	Conclusions 
	References

