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Abstract: Lung cancer is the leading cancer type that causes mortality in both men and women.
Computer-aided detection (CAD) and diagnosis systems can play a very important role for help-
ing physicians with cancer treatments. This study proposes a hierarchical deep-fusion learning scheme
in a CAD framework for the detection of nodules from computed tomography (CT) scans. In the
proposed hierarchical approach, a decision is made at each level individually employing the decisions
from the previous level. Further, individual decisions are computed for several perspectives of a volume
of interest. This study explores three different approaches to obtain decisions in a hierarchical fashion.
The first model utilizes raw images. The second model uses a single type of feature image having
salient content. The last model employs multi-type feature images. All models learn the parameters by
means of supervised learning. The proposed CAD frameworks are tested using lung CT scans from the
LIDC/IDRI database. The experimental results showed that the proposed multi-perspective hierarchical
fusion approach significantly improves the performance of the classification. The proposed hierarchical
deep-fusion learning model achieved a sensitivity of 95% with only 0.4 fp/scan.

Keywords: computer-aided detection; lung cancer; deep learning; hierarchical learning; hierarchical
fusion; convolutional neural networks; modular training and modular learning

1. Introduction

Although lung cancer is the second most commonly diagnosed cancer in both men and
women, it is the leading cancer type that causes mortality in both men and women [1]. Lung
nodule detection is a very challenging task. The research team in [2] explored the effect of
low-dose CT scans on cancer mortality. Utilizing either low-dose CT or chest radiography,
they screened around 53 K high lung cancer risk patients three times a year between August
2002 and April 2004. The results of their study show that there is a 20% reduction in mortality
of the patients who were screened by low-dose CT scan. Even though CT scans help to reduce
the mortality rate, the radiologists’ decisions may differ significantly in the identification of
lung nodules from the CT scans. As an example, ref. [3] shared the results of two radiologists’
examination over 25 CT scans; the results show that one of the radiologists detected 20 nodules,
whereas the other radiologist detected 63 nodules from the same CT scans.

A CAD system increases the performance of nodule detection substantially. The study
conducted by [4] showed that the CAD system significantly reduced the number of false
positives (FPs). The research by [5] studied the effect of a CAD system in the detection
of small nodules shared the results of six radiologists’ examinations over 52 CT scans
with/without a CAD system. The results show that the CAD system improves a radiolo-
gist’s performance considerably. In [6], the performance of the commercial CAD software
Lung-CAD VB10 A and Siemens AG Healthcare was compared with the performance of
two independent readers for detecting the pulmonary nodules in the NELSON dataset. The
study showed that the sensitivity of CAD was 96.7% with a 3.7 FPs/scan and the sensitivity
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of the double reader was 78.3% with 0.5 FPs/scan. Therefore, CAD systems with a higher
nodule detection rate can be a good help for radiologists to decrease the number of missed
nodules, particularly, the small nodules in their early stages.

In this study, we propose a hierarchical deep-fusion learning method utilizing multiple
views of 3D spatial data. The proposed framework is seen in Figure 1. Once the volume of
interest (VOI) is extracted, the slices from different perspectives are fed into the hierarchical
deep fusion network, and the class scores are computed and fused in a hierarchical manner.
Different types of fusion schemes are proposed in hierarchical deep-fusion networks. The
proposed basic scheme is the multi-perspective hierarchical fusion of raw images (MPF)
where the slices from different perspectives are classified hierarchically and the class scores
are fused at the decision level by the proposed supervised learning-based fusion method.
Another proposed fusion schema is based on a single feature image, and it is called single
feature multi-perspective fusion (SFMPF) in which the feature images are used as an input
to the hierarchical deep fusion network. The single-feature image approach is used to
extend the basic MPF scheme to a multi-feature and multi-perspective fusion (MFMPF) by
using different types of feature images from different perspectives and fusing them with
the proposed hierarchical fusion approach. MFMPF scheme allows to fuse decisions made
by looking at different features and different perspectives of the 3D object.
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Figure 1. The proposed hierarchical deep-fusion framework.

Contributions of this study can be summarized as (a) utilizing deep learning in a
multi-view hierarchical decision-making scheme, (b) proposing a supervised learning-
based fusion method to be used in this hierarchical scheme, (c) introducing a modular
training approach for the hierarchical scheme, (d) utilizing feature images in the proposed
hierarchical deep-fusion learning, and (e) adding another level of hierarchy to the proposed
model by fusing the multiple feature image-based hierarchical deep-fusion learning models.
Whereas there are limitations of this study such as not being invariant to 3D rotation, having
a limited size, and the variation of the dataset to explore the proposed model. Since the
proposed architecture is based on CNNs, they are not invariant with rotation. Therefore,
the proposed method is not invariant with 3D rotation. In addition, the size of the dataset
can be increased as well as the proposed model can be explored by training and testing
with a different dataset.

The rest of the paper is organized as follows: In the following section, the previous
work on lung nodule detection is provided. The third chapter introduces the proposed
hierarchical deep-fusion learning models. In chapter four, data preparation, experimental
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results, and discussions are provided. Finally, conclusions with the feature directions of the
proposed research are covered in chapter five.

2. Related Works

Computer-aided detection and diagnosis (CAD) systems have been studied for decades
to get more accurate detection and to decrease the workload on radiologists. Complete
computer-aided detection and diagnosis algorithms are usually composed of three main
blocks: (1) Detection of the nodule candidates, (2) extraction of the features from the nodule
candidates, and (3) false-positive reduction and classification. Different approaches are
used for the detection of the nodule candidates based on 2D or 3D segmentation. Since
the intensity value of the nodule and the other structures in the lung region differ from
each other, most of the segmentation methods are based on gray-level thresholding. After
segmenting out the nodule candidates, the next step is extracting the robust features for
classification. The most common features extracted from the nodules are shape and texture-
based features. Once the features are extracted from the nodule candidates, to reduce the
false positives, one of the classification methods such as k-nearest neighbor, support vector
machine, linear discriminant, or random forest classifier is used.

In [7] after detecting the nodule candidates, local image features; number of voxels,
compactness, ratio, and sphericity are used with 2 stage k-NN classifier for the false positive
reduction. Eight hundred and thirteen CT scans from NELSON Trial data generated in
Europe were used and the proposed method achieved a sensitivity of 80% with an average
of 4.2 false positives per scan (FPs/scan). In [8] a fully automated CAD system for lung
nodule detection algorithm is proposed. The authors state that detecting and segmenting
the nodules at the same time is one of the advantages of their candidate detection algorithm.
Once the nodule candidates are detected, a total of 245 features based on geometric,
intensity, and gradient are extracted from each nodule candidate. A sequential forward
selection process is used to select the best descriptive features from out of 245 features
and these features are used in Fisher linear discriminant (FLD) classifier and a quadratic
classifier. The comparison result of the two classifiers shows that the FLD classifier performs
better than the quadratic classifier. According to the 7-fold cross-validation, the sensitivity
of the proposed CAD system with the FLD classifier is 82.66% with an average of 3 FPs/scan
using the LIDC dataset. There are 84 scans and 143 nodules in the LIDC data set.

In [9], the authors aim to develop a CAD system that can automatically detect a pul-
monary nodule greater than or equal to 3 mm. Once they segmented the nodule candidates
by using 3D mass-spring models, seven features: 1. Surface area, 2. Volume, 3. Sphericity,
4. Mean of the nodule intensity, 5. Standard deviation of the nodule intensity, 6. Skewness
of the nodule intensity, and 7. Kurtosis of the nodule intensity are extracted from each nod-
ule candidate. They have two stages for false positive reduction and classification. In the
first stage, they are eliminating the noodles candidates smaller than 3 mm and greater than
50 mm. In the second stage, they are using a neural network with one input, one hidden,
and one output layer for the classification of nodule candidates. They have 84 CT scans
from the LIDC dataset and 148 nodules. The proposed algorithm reaches a sensitivity of
88% with 2.5 FPs/scan. In [10] as in most CAD systems, the proposed method also has two
main stages, nodule candidate detection, and false positive reduction. A hierarchical 3D block
analysis method is used for nodule detection and an SVM classifier is used for false-positive
reduction. After nodule candidates are detected, 2D and 3D geometric features such as area,
diameter, circularity, volume, compactness, elongation, and 2D texture features such as the
mean, variance, skewness, kurtosis, and eigenvalues are extracted to be used as an input to
the SVM classifier. The LIDC dataset is used for the experiments. There are 84 scans in the
LIDC dataset but only 58 of them contains nodule and only those 58 scans were used in the
experiments. The proposed method achieved 95.28% sensitivity with 2.27 FPs/scan.

Ref. [11] concentrate on computer-aided detection of subsolid pulmonary nodules.
The authors used a threshold-based method for nodule candidate detection. Once the
nodule candidates are detected, a set of 128 features based on intensity, texture, shape,
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and context are extracted from each of the nodule candidates. Then, these features are
used in different types of classifiers such as GentleBoost, SVM, k-nearest neighbor, linear
discriminant, nearest mean, and random forest classifiers. According to the results from
the FROC curves, the GentleBoost classifier performs best, and it reaches a sensitivity of
80% with 1 FPs/scan.

In most of the proposed CAD algorithms, the data set used in training and testing
and the way the performance is assessed differ from method to method. Therefore, there
is a bottleneck in the comparison between the performances of the proposed CAD algo-
rithms [12]. There are few studies which compares the performance of the existing CAD
systems by using the same dataset and the same evaluation method.

In [13], existing CAD methods were compared by testing and evaluating them with
the same data and the same method, and also the authors proposed a method for combin-
ing the tested CAD system for a better performance. In this study ANODE09 database
which includes 55 scans from a lung cancer screening program is introduced. The per-
formance of the six different CAD algorithms was compared and each CAD method was
evaluated based on their average sensitivity of seven different FP rates: 1/8, 1/4, 1/2, 1, 2,
4, and 8. According to the results, there is a significant performance difference between the
algorithms and combining the results of each CAD system leads to a better performance.

Another study to improve the performance of the existing CAD system by combination
is proposed by [14]. They propose a set of four different methods to combine the existing
CAD systems for four different scenarios for a better performance. The first method is
proposed where there is only the location of the nodule is available as an output of the
CAD system. In this case, the method suggests combining the detected locations of the
CAD systems. In the second and third scenarios, in addition to the location of the nodule,
the level of suspicion for each detected nodule is available. Lastly in the fourth scenario,
most of the internal details such as training data, feature vectors, classifiers, etc., of the
CAD systems are available. However, the authors did not discuss a combination method
for this case. Since it is not likely to have access to the internal details of most of the CAD
systems in practice.

In [15], the performance of the state-of-the-art CAD systems VISIA, Herakles, and
ISICAD for detection of the pulmonary nodules is compared by using the LIDC/IDRI
dataset. After a comparison of the CAD systems, the false positives of the best-performing
one were examined by four radiologists to see if the CAD system can detect any nodule
that was missed by the radiologist during the annotation. Out of these three CAD systems,
Herakles performed best with a sensitivity of 82% with 3.1 FPs/scan for nodules annotated
by all four readers. While Herakles achieved a more robust performance, the other two CAD
systems VISIA and ISICAD showed substantial performance differences on the LIDC/IDRI
dataset. The reason for the performance drop on ISICAD is that it is trained exclusively on
the NELSON dataset which “consists of homogeneous thin-slice data reconstructed with a
soft/standard reconstruction kernel”. Thus, it is important to use heterogeneous datasets
such as LIDC/IDRI to train and test the CAD system. Lastly, there were 45 nodules which
were accepted as nodule ≥ 3 mm by all four radiologists detected by the CAD system but
overlooked by the radiologist during the annotation procedure.

According to the review of CAD systems for lung cancer in CT scans, CAD systems
are still not used widely by the community of radiologists. Therefore, further research and
development is needed in CAD systems, particularly for decreasing the “number of false
positives (FP), having high processing speed, presenting high level of automation, low
cost (of implementation, training, support, and maintenance), the ability to detect different
types and shapes of nodules, and software security assurance” [16].

The state-of-the-art computer vision methods for object detection are based on deep
learning methods. Therefore, there are existing CAD algorithms for pulmonary nodule
detection which are based on deep learning methods such as convolutional neural networks,
deep belief networks, and autoencoders. One of the earliest studies that uses a deep learning
system for lung nodule classification is [17]. In [17], the classification of the pulmonary
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nodules as being malignant or benign by using deep learning methods was explored.
Specifically, the deep belief network (DBN) and convolutional neural network (CNN)
models were tested. This is one of the first studies that explores the application of deep
learning techniques for the classification of pulmonary nodules. The LIDC-IDRI dataset
includes 1010 scans and 2545 nodules which are greater than 3 mm are used for testing the
proposed methods in [17]. For the comparison of deep learning methods and the feature-
based methods, two of the well-performing features SIFT and local binary pattern (LBP)
features with k-NN classifier are used. DBN was able to classify pulmonary nodules with
82.2% sensitivity and the SIFT+LBP feature-based classifier reached a sensitivity of 66.8%.
Another earlier study for classifying pulmonary nodules as malignant or benign is [18].
The classification is performed by using the deep features extracted from 2D images by the
autoencoder and classified by the binary decision tree. The publicly available LIDC/IDRI
dataset is used to train and test the algorithm. Although there are 1010 CT scans available in
LIDC/IDRI dataset, only 157 scans have the proper annotation for the nodules being benign
or malignant. The proposed method achieved a sensitivity of 83.35% with 0.39 FPs/scan
over a 10-fold cross-validation.

In [19], a 3D convolutional neural network-based lung nodule classification algorithm
is proposed. The authors state that the proposed method can work with weakly labeled 3D
data as in the case of only the label of the central voxel and the size of the largest expected
nodule are provided. Once they estimate the labels of the 3D training data by using basic
thresholding and simple linear iterative clustering (SLIC) [20] super-pixels of the 2D slices,
they use this data to train 3D CNN for nodule classification. The negative samples are
extracted from the lung area by randomly sampling the locations based on the threshold.
The SPIE-AAPM-LUNGx dataset is used to train and test the proposed method. The dataset
contains 70 CT scans. Moreover, 15 K positive and 20 K negative samples are labeled by the
proposed method. The proposed method achieved 80% sensitivity with 10 FPs/scan.

Another study that uses deep learning methods for lung nodule detection is [21].
The authors proposed a multi-view CNN for lung nodule detection. In the proposed
method, they are extracting the volume of interest as a cube. Then, 2D patches from nine
symmetrical perspectives of the extracted volume are fed into separate CNNs. The outputs
of the CNNs are fused in three different approaches. The first fusion approach is called
the committee fusion where the fusion is conducted at the decision level. Once the class
scores from each CNN are computed, class scores are fused using a product rule on the
output probabilities [22]. The second fusion approach is late fusion where the fusion is
performed at the feature level by concatenating the outputs of the first fully connected
layers. Lastly, in the third fusion approach, they are using mixed fusion which is the
combination of the committee and late fusion. Although this proposed method is fusing the
slices from multi-view, they are using a single slice from each view, and the way the fusion
is performed is similar to the previously proposed fusion approaches whereas our study
proposes a hierarchical deep-fusion based on modular training and supervised learning.

The researchers in [21,23,24] reported that fusion-based models increase the performance
of classification. In general, averaging, multiplication, or voting schemes are employed as a
fusion method in deep learning [24–27]. These strategies utilize a simple approach to reach
a final decision out of multiple predictions. Among few studies that explore deep learning
for lung nodule classification, the only method that uses multiple perspectives of a volume
is proposed in [21]. However, the method utilizes only a single slice from each perspective
and has only one level of simple fusion. In contrast, this research proposes a new kind of
ensemble learning strategy “hierarchical deep-fusion learning” that aims to learn gradually
from in-parallel and prior predictions obtained from different views.

3. Method
3.1. Multi-Perspective Hierarchical Deep-Fusion Learning Model (MPF)

In this paper, we propose a hierarchical deep-fusion learning scheme [28]. In the
proposed method, there are three levels of hierarchical predictions: (1) Slice level, (2) per-
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spective level, and (3) volume level. We employed three different perspectives: transverse,
coronal, and sagittal as shown in Figure 2.
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Figure 2. Slices from three different perspectives.

The block diagram of the proposed hierarchical deep-fusion learning scheme is illus-
trated in Figure 3. In the proposed method, each module at each level is trained separately
in a hierarchical modular fashion; that is, the decision made at each level is predicted
based on the decision from the previous layer. The proposed hierarchical learning process
is as follows: Once a volume of interest is extracted from an object, a stack of 2D slices
for each perspective is generated; the same VOI is represented by three sets of 2D slices,
namely V1, V2, and V3. At the first hierarchical level, a decision is produced for each slice
of its perspective by a slice module (MS). Therefore, there are three slice modules MSi at
the first hierarchical level, one per perspective Vi. At the following second level, another
learning module, namely the perspective module (MP), is employed. An MPi reformats the
class scores obtained for each slice of Vi to form its input feature vector. As an example,
assuming each stack Vi has 10 slices, the MSi produces 10 class scores. These scores are
formed into an input feature vector of size 10 by 1 for MPi. At the second level, each MPi
predicts a single class score for each Vi. Similarly, the output scores of MPs are reformatted
to form an input feature vector of size 3 by 1 for the last level module, namely the volume
module (MV), of the hierarchical scheme. The MV computes the final decision for the
volume of interest (VOI). The block diagram of the re-arrangement process of the class
scores is provided in Figure 4.
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In the proposed hierarchical deep learning scheme, a slice module MSi is a deep
convolutional neural network (DCNN) as illustrated in Figure 5. Although the structure
of each MSi is the same, they are trained separately. The DCNN structure consists of
four convolutional and four pooling layers followed by the regular one-hidden layer feed-
forward neural network. The input size of each 2D slice is 56 × 56 pixels. At the first
convolution layer, there are 8 filters in the size of 3 × 3. The number of filters at the second,
third, and fourth convolutional layers are double the number of filters at their previous
convolutional layers. Hence, there are 64 filters at the last convolutional layer. After the last
pooling layer, there is a fully connected layer comprised of 32 neurons. At the convolutional
and fully connected layers rectified linear function defined by (1) and at the output layer
SoftMax function defined by (2) are used. The filters at each convolution layer are adjusted
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by back-propagating the error obtained at the output based on the cross-entropy loss
function defined by (3).

f (x) = max(0, x) (1)

σ(x)j =
exj

∑K
k=1 exk

(2)

where K is the total number of neurons in the layer, and j is the index of the neuron at the
output layer.

L = −∑
j

tj log
(

pj
)

(3)

where t is the target, p is the predicted values at the output layer, and j is the index of the
neuron at the output layer.
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Figure 5. DCNN structure.

In the perspective module and the volume module, a supervised classifier such as
support vector machine, ANN, Bayesian network, or a multi-dimensional regression model
can be used. In this study, a regular feedforward ANN is used for the perspective and the
volume level predictions.

3.2. Single Feature & Multi-Perspective Hierarchical Deep-Fusion (SFMPF)

Extracting salient content from the input data can lead to a better representation and
better classification accuracy. Therefore, in the proposed method, feature images are used
instead of raw images to learn the representation of the data. Features images can be
obtained by applying filters such as Bilateral, Trilateral, LOG, or Gabor filters to the raw
images as shown in Figure 6 where V1, V2, and V3 are the raw images from three different
perspectives and FI1, FI2, and FI3 are the feature images. Once the feature images are
created, they are fed into the same proposed hierarchical fusion network architecture as
shown in Figure 7.
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Creating Feature Images

In the proposed feature-based hierarchical deep fusion, 4 different methods, Bilateral
filtering, Trilateral filtering, Laplacian of Gaussian (LoG) filtering, and Gabor filtering, are
used to produce the feature images. In this section, backgrounds for LoG, Gabor, Bilateral,
and Trilateral filters, are provided.

Laplacian operator (∆) can be used to measure the rapid changes in the image. Lapla-
cian of an input image I(x, y) at a pixel point (x, y) is given by (4)

∆I(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (4)

However, before applying the Laplacian operator, smoothing the input image to reduce
the effect of noise is a very common approach. Therefore, the input image is convolved
with a Gaussian filter, defined by (5), with the shape parameter σ before applying the
Laplacian operator as in (6).

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
(5)

∆[G(x, y, σ) ∗ I(x, y)] (6)
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To reduce the cost of computation, one can use (7) instead of (6)

∆[G(x, y, σ) ∗ I(x, y)]= ∆G(x, y, σ) ∗ I(x, y) (7)

where (7) is derived using the convolution property defined by (8).

d
dt
[h(t) ∗ f (t) =

d
dt

∫
f (τ)h(t− τ)dτ =

∫
f (τ)

d
dt

h(t− τ)dτ = f (t) ∗ d
dt

h(t) (8)

Hence the LoG ∆G(x, y, σ) is given by

∆G(x, y, σ) = − 1
πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (9)

Figure 8 shows the feature image obtained by filtering the nodule employing the LoG
filter using different σ values.
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Figure 8. (a) Raw nodule, (b) through (h) are LoG filtered nodule with σ = 1 to σ = 7 by
1 incremental.

In addition to the LoG filter, the Gabor filter is also used to create the feature image.
Gabor filters are typically used to extract the textures in the images. The Gabor filter is
composed by multiplying a Gaussian kernel with a complex sinusoid.

G(x, y) = g(x, y) s(x, y) (10)

where g(x, y) is a 2D Gaussian kernel with the standard deviation of σx and σy,

g(x, y) =
1

2πσxσy
e
− 1

2 (
x2

σ2
x
+

y2

σ2
y
)

(11)

and s(x, y) is the complex sinusoid with the center frequency of ωx0 and ωy0

s(x, y) = cos
(
2πωx0 x + 2πωy0 y

)
+ isin

(
2πωx0 x + 2πωy0 y

)
(12)

Using the Euler’s formula (13)

eiθ = cos θ + isinθ (13)
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(12) can be written as
s(x, y) = ei(2π(ωx0 x+ωy0 y)) (14)

Therefore, the complex Gabor filter is

G(x, y) =
1

2πσxσy
e
− 1

2 (
x2

σ2
x
+

y2

σ2
y
)
ei(2π(ωx0 x+ωy0 y)) (15)

The real part of the Gabor filter is

G(x, y) =
1

2πσxσy
e
− 1

2 (
x2

σ2
x
+

y2

σ2
y
)

cos
(
2πωx0 x + 2πωy0 y

)
(16)

The imaginary part of the Gabor filter is

G(x, y) =
1

2πσxσy
e
− 1

2 (
x2

σ2
x
+

y2

σ2
y
)

sin
(
2πωx0 x + 2πωy0 y

)
(17)

A Bilateral filtered image at a pixel c within an N-by-N neighbor is defined as

IB(c) =
1

W

c+N/2

∑
r=c−N/2

B(r; c,σS,σR) I(r) (18)

where σS and σR are the shape parameters of the spatial Gaussian filter S and the range
(intensity) Gaussian filter R, respectively, and the Bilateral filter that operates at the central
pixel c and the neighboring pixels r is defined by

B(r; c,σS,σR) = S(r; c, σS) R(I(r); I(c),σR) (19)

S(r; c, σS) = e
−||r−c||2

2σ2
S

R(I(r); I(c),σR) = e
−[I(r)−I(c)]2

2σ2
R

(20)

W =
c+N/2

∑
r=c−N/2

S(r; c, σS) R(I(r); I(c),σR) (21)

The normalization factor W ensures the sum of the weights is one. The range filter
R(I(r); I(c),σR) determines the effect of the neighbor pixels on the central pixel value I(c) during
the smoothing operation. In other words, the contribution of the neighbor pixels is adaptively
determined. This adaptive characteristic of the Bilateral filter preserves high-frequency structures
such as edges during the smoothing operation. Note that the spatial filter S(r; c, σS) penalizes a
neighbor pixel more when it moves away from the center while the range filter penalizes a pixel
more when its intensity differs more from the central pixel intensity.

We proposed a new filter called the Trilateral filter [29]. This filter is formed by adding
a Laplacian kernel as a second range kernel in addition to spatial and range kernels in the
Bilateral filter. This additional anisotropic filter measures the variation of the gradient and
adjusts the weight of neighbor pixels accordingly. The Trilateral filter is more effective
at higher frequency structures. Hence, the high-frequency content is preserved. On the
other hand, the range kernel of the Bilateral filter only compares the intensity difference;
therefore, it does not penalize as much as the Trilateral filter. Over a lower frequency
region, the Bilateral and Trilateral filters behave similarly. As an alternative to a Laplacian
kernel, a gradient kernel would be used; however, the Laplacian kernel has the advantage
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to measure the speed of the gradient, which is important in high-frequency regions. Similar
to the Bilateral filter, the Trilateral filtered image is defined by

IT(c) =
1

W

c+N/2

∑
r=c−N/2

T(r; c,σS,σR,σL) I(r) (22)

T(r; c,σS,σR,σL) = S(r; c,σS) R(∆I(r; c);σR) L
(

∆∇2I(r; c);σL

)
(23)

whereσL is the shape parameter of the Laplacian kernel L(*). The difference of Trilateral images
DT to construct the scale-space for the extrema detection is given by the following equation:

DT(x, y,σS,σR,σL) = [T(x, y, k σS,σR,σL)− T(x, y,σS,σR,σL)]∗I(x, y) (24)

3.3. Multi-Feature & Multi-Perspective Hierarchical Deep-Fusion (MFMPF)

Figure 9 the block diagram of the hierarchical fusion of multiple SFMPF models is
illustrated. This proposed fusion scheme is the composition of the previously proposed
SFMPF scheme with different types of feature images. The idea is first to make multiple
decisions by different SFMPF models which make the predictions based on different types of
feature images. Then, the decisions obtained from the multiple SFMPF models are fused to
make the final decision by utilizing an additional hierarchical layer. In this study, the proposed
MFMPF model predicts a class score by fusing the decisions from four different SFMPF models
based on Bilateral, Trilateral, Laplacian of Gaussian (LoG), and Gabor filtering.
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4. Experiments and Results
4.1. Data Preparation
4.1.1. Data

Publicly available lung CT scan database created by The Lung Image Database Consor-
tium (LIDC) and Image Database Resource Initiative (IDRI) [30] is used to test the proposed
CAD framework. The LIDC/IDRI database contains 1010 CT scans which have the annota-
tions for the nodules and the non-nodules which has diameter ≥ 3 mm. Annotations made
by the radiologists belong to one of these three groups; nodule ≥ 3 mm, nodule ≤ 3 mm,
or non-nodule ≥ 3 mm. CT scans are annotated by 4 expert radiologists in 2 phases, the
blinded-read phase and the unblinded-read phase. In the initial blinded-read phase, each
of the radiologists examined the scans independently without knowing the opinion of the
others, and in the second unblinded-read phase, they examined the CT scans while knowing
the annotations made by 3 other radiologists. While the surrounding boundary for thep
nodules ≥ 3 mm is annotated, the nodules ≤ 3 mm or non-nodules ≥ 3 mm have only their
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volume center annotated. In the experiments, 100 CT scans were used from LIDC/IDRI
dataset to test the proposed models.

4.1.2. Extraction of Volume of Interest and Slice Selection

In the annotation of nodules ≥ 3 mm, since each radiologist marks the surrounding
boundary of the nodules, the volume center of the same nodule might differ from one
radiologist to another. Therefore, as an initial step of extraction of VOI, the volume center of
each annotated nodule is computed based on the provided annotations by each radiologist.
If the center coordinates of nodules, annotated by different radiologists, are closer than the
threshold, they are assumed to be the same nodule. Hence, at the next step, the average
volume center for each nodule with the number of radiologists’ approval is found. A similar
approach is used for detecting the average volume center and the number of radiologists’
approval for the non-nodules ≥ 3 mm. There is a possibility that some of the objects might
be annotated as nodules by one radiologist and non-nodule by the other(s) or vice versa.
To overcome this problem, once the average volume centers are computed for nodules and
non-nodules, if the volume centers of nodules and the non-nodules are closer than the
threshold, they are eliminated from the dataset. After the volume centers of the objects
are determined, a 30 × 30 × 30 mm3 region around the volume center is extracted as the
volume of interest. The reason for using a 30 × 30 × 30 mm3 bounding cube is that the
longest axis of the annotated largest nodule can be 30 mm in the dataset as provided in [30].
In the LIDC-IDRI dataset, CT scans are collected from different CT scanners. Although all
slices from all scans are 512 × 512 pixels, the physical size of a single pixel is not the same
for all scans. Thus, a 30 × 30 × 30 mm3 bounding cube corresponds to different sizes of
pixel resolution. However, the input data for training and testing the proposed MPF model
should be the same size. Therefore, all extracted 30 × 30 × 30 mm3 are normalized to the
maximum resolution of 56 × 56 × 56 pixels. Figure 10 shows a sample of 3D extracted
volume of interest with its 2D transverse seen.
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Figure 10. 3D extracted volume of interest is given on the left and 2D transverse seen of the slice is
given on the right.

Since the bounding box is used and the nodules are not segmented out, there would
be some slices which do not belong to the nodule within the extracted nodule volume
of interest, and they should be removed from the nodule VOI. However, removing the
slices which do not belong to the nodule may result in different sizes of the input data. For
instance, one volume of interest can have 10 slices not belonging to the nodule and on the
other hand, the other volume of interest can have 20 slices not belonging to the nodule,
and removing these slices will cause different sizes of the input problem. To overcome this
problem, the smallest nodule found within the data set and the number of slices belonging
to that nodule are found. So, if we select the same number of slices to form each nodule
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VOI as the number of slices belonging to the nodule from the smallest nodule VOI, this
guarantees that we will end up having the same number of slices in each nodule VOI, and
all selected slices will belong to the nodule. In the dataset used in this dissertation, the
smallest number of slices belong to the nodule found as 6. Hence, from each nodule VOI,
6 slices are selected from each perspective. These 6 slices can be selected in a different way.
One way could be selecting 6 slices from the center of the VOI. However, in this approach,
if the nodule size is big, then there is a high chance of ending up selecting similar slices, and
this might be a disadvantage because they are not going to give any distinct information
from slice to slice. Another approach that is used in this dissertation is selecting the slices
from starting of the nodule to the end of the nodule by equal intervals. So that as much as
distinct information from slice to slice is preserved.

4.2. Experimental Results of MPF Model

The dataset used to train and test the model is created using 100 CT scans from the
LIDC/IDRI database, and it contains the nodules and non-nodules approved by at least
one radiologist. Dataset is balanced, and there is a total of 604 nodule and non-nodule
objects. Dataset is split into 2 parts, 70% for the training and 30% for the testing. Therefore,
the training data has a total of 422 nodules and non-nodules, and the testing data has a
total of 182 nodules and non-nodules.

Figure 11 shows the change in slice-level classification performances across different
perspectives for the MPF model which uses the raw slices from the extracted volume of
interest. Although the slices from YZ-perspective give the highest ACC, AUC, F1-score,
and sensitivity, the specificity of the model created using slices from YZ-perspective is the
smallest. On the other hand, ACC, AUC, F1-score, and sensitivity of the model created using
XY-slices are the smallest among all 3 models. However, the specificity of the model created
using XY-slices is the highest among all 3 models. These results also can be interpreted as
the model uses the slices from the YZ-perspective has a higher tendency towards type-I
error and has higher FP. Alternatively, the model uses the slices from XY-perspective has
a higher tendency towards type-II error and has higher FN. ROC curves across different
perspectives for slice-level classification for the MPF model are shown in Figure 12. Missed
nodules and non-nodules by the proposed MPF model are given in Figure 13.
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Figure 11. MPF model—change in slice-level classification performances across different perspectives.
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Figure 13. (a) MPF model—missed nodules (FN) and (b) MPF model—missed non-nodules (FP).

After fusing the class scores from the slice level classification and obtaining the
perspective level classification, except the specificity of the model uses the slices from
XZ-perspective, all the other performance scores for all perspectives are increasing as
shown in Figure 14. At the perspective level classification, while the model uses slices
from XY-perspective still has the lowest type-I error and the highest type-II error, the
tendency toward the type-I error of the model that uses YZ-perspectives is decreasing.
At the perspective-level classification, still the model which uses the slices from the
YZ-perspective has the highest performance score of ACC, AUC, F1-score, and sensi-
tivity. ROC curves across different perspectives for perspective-level classification for the
MPF model are shown in Figure 15.
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Figure 15. MPF model—ROC curves across different perspectives for perspective level classification.

The change in classification performance for slice, perspective, and volume level classi-
fications for each perspective for the MPF model is shown in Figure 16. The increase in the
classification performance from slice-level classification to perspective-level classification
and volume-level classification can be seen in Figure 16. Slices-level classification gives
the highest ACC at 75% using the slices from the YZ-perspective. When the class scores
from multiple slices are fused at the perspective level, the highest classification ACC is
increasing from 75% to 82%. Finally, adding another hierarchical fusion level which fuses
the class scores from all perspectives increases the highest classification ACC from 82% to
87%. Similarly, AUC, F1-score, sensitivity, and specificity scores are also increasing from
slice-level classification to perspective-level classification and volume-level classification.
At the volume-level classification, both the tendency toward type-I error and type-II error
are the same while having 87% sensitivity and specificity.
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Figure 16. MPF model—Change in classification performance for slice, perspective, and volume-level
classifications for each perspective.

4.3. Experimental Results of SFMPF Models

In this study, four different SFMPF models based on Bilateral, Trilateral, Gabor, and LOG
filters are experimented with using the same dataset which is used for the MPF model. In
the SFMPF model, featured images are created by filtering the raw slices from the extracted
volume of interest by the aforementioned filters. Once the featured image dataset is obtained
for each proposed SFMPF model, the same approach as MPF is taken to create the model for
slice-level classification, perspective-level classification, and volume-level classification.

4.3.1. Experimental Results of SFMPF Model Based on Bilateral Image

Similar to the MPF model, an increase in the classification performance from slice-level
classification to perspective-level classification and volume-level classification can be seen
in Figure 17 for the Bilateral image-based SFMPF model. At the slice-level classification, the
highest performance score of ACC, AUC, F1-score, and sensitivity achieved by the model uses
the slices from the YZ-perspective. Compared to the MPF model, the Bilateral image-based
SFMPF model accomplishes a slight improvement with respect to the highest ACC, AUC,
F1-score, and specificity for the slice-level classification. However, at the perspective and
the volume-level classifications, the MPF model achieves slightly better performance than
the Bilateral image-based SFMPF for all of the performance measures except AUC. Since
the highest AUC performance obtained from the model uses slices from YZ-perspective
for the slice and the perspective-level classifications, a comparison of ROC curves for slice,
perspective, and volume-level classifications for the slices from the YZ-perspective is provided
in Figure 18. In addition, missed nodules and non-nodules by the proposed SFMPF model
based on the Bilateral image are given in Figures 19 and 20, respectively.
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Figure 17. SFMPF model using Bilateral image—change in classification performance for slice,
perspective, and volume-level classifications for each perspective.
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Figure 18. SFMPF model using Bilateral image—comparison of ROC curve for slice, perspective, 
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Figure 18. SFMPF model using Bilateral image—comparison of ROC curve for slice, perspective, and
volume-level classifications for the slices from YZ-perspective.
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Figure 19. SFMPF model based on Bilateral image—missed nodules (FN). 

  

Figure 19. SFMPF model based on Bilateral image—missed nodules (FN).
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Figure 20. SFMPF model based on Bilateral image—missed non-nodules (FP). 

  

Figure 20. SFMPF model based on Bilateral image—missed non-nodules (FP).

4.3.2. Experimental Results of SFMPF Model Based on Trilateral Image

The change in the classification performance for the slice, perspective, and volume-
level classifications for each perspective is provided in Figure 21 for the Trilateral image-
based SFMPF model. Throughout the hierarchical fusion, the highest performance scores
are increasing from slice to volume-level classification such as ACC increases from 75% to
85%, AUC increases from 83% to 91%, F1-score increases from 76% to 86%, and sensitivity
increases from 76% to 87%. The performance improvement from slice to volume-level
classification also can be seen in Figure 22 which shows the comparison of the ROC curve
for slice, perspective, and volume-level classifications. Moreover, the missed nodules
and non-nodules by the proposed SFMPF model based on the Trilateral image are given
in Figures 23 and 24. Although the proposed hierarchical fusion approach works well
with the Trilateral image-based SFMPF model, the overall performance of the MPF model
achieves slightly better performance than the SFMPF model based on the Trilateral image.
Tuning the parameters of the Trilateral filter such as spatial, range, and the Laplacian
kernels’ standard deviation might improve the classification performance of the Trilateral
image-based SFMPF model.
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Figure 21. SFMPF model using Trilateral image—change in classification performance for slice,
perspective, and volume-level classifications for each perspective.
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Figure 22. SFMPF model using Trilateral image—comparison of ROC curve for slice, perspective, 

and volume-level classifications for the slices from YZ-perspective. 

  

Figure 22. SFMPF model using Trilateral image—comparison of ROC curve for slice, perspective,
and volume-level classifications for the slices from YZ-perspective.
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Figure 23. SFMPF model based on Trilateral image—missed nodules (FN). 

  

Figure 23. SFMPF model based on Trilateral image—missed nodules (FN).
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Figure 24. SFMPF model based on Trilateral image—missed non-nodules (FP). 

  

Figure 24. SFMPF model based on Trilateral image—missed non-nodules (FP).

4.3.3. Experimental Results of SFMPF Model Based on Gabor Image

Classification performance improvement from the hierarchical fusion approach in the
Gabor image-based SFMPF model can be seen in Figure 25 and the change in the ROC
curve for slice, perspective, and volume-level classifications can be seen in Figure 26. In
addition, the missed nodules and non-nodules by the proposed SFMPF model based on the
Gabor image are given in Figures 27 and 28. The highest ACC in the slice-level classification
increases from 77% to 92% at the volume-level classification. While the highest sensitivity
at the slice level increases from 78% to 92%, the highest specificity increases from 76%
to 79% at the volume level. Hence, the Gabor image-based SFMPF model has a higher
tendency toward type-I error compared to the MPF model. On the other hand, the Gabor
image-based SFMPF model has higher sensitivity of 92% compared to the sensitivity of
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the MPF model which is 87%. Although, in the literature for texture extraction, the Gabor
filter is used as a filter bank composed of multiple Gabor filters in different frequencies and
angles, in the proposed Gabor image-based SFMPF model, a single Gabor filter is used to
create the feature image. Using multiple Gabor filters with different frequencies and angles
and then fusing them at the volume level may increase the performance of the proposed
Gabor image-based SFMPF model.
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Figure 25. SFMPF model using Gabor image—change in classification performance for slice, perspec-
tive, and volume-level classifications for each perspective.
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Figure 26. SFMPF model using Gabor image—comparison of ROC curve for slice, perspective, and 
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Figure 26. SFMPF model using Gabor image—comparison of ROC curve for slice, perspective, and
volume-level classifications for the slices from YZ-perspective.
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Figure 27. SFMPF model based on Gabor image—missed nodules (FN). 

  

Figure 27. SFMPF model based on Gabor image—missed nodules (FN).
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Figure 28. SFMPF model based on Gabor image—missed non-nodules (FP). 
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Figure 28. SFMPF model based on Gabor image—missed non-nodules (FP).

4.3.4. Experimental Results of SFMPF Model Based on LOG Image

Similar to other proposed SFMPF models and MPF models, the proposed hierarchical
fusion-based deep learning approach significantly increases the performance of the classifica-
tion result for the LOG image-based SFMPF model. The change in classification performance
from slice to perspective and volume level classifications for each perspective is shown in
Figures 29 and 30. The highest ACC at slice-level classification increases from 78% to 85%, the
highest AUC increases from 85% to 95%, and the highest sensitivity increases from 79% to 94%
by hierarchically fusing the class scores from all perspectives at the volume level classification.
LOG image-based SFMPF model achieves a sensitivity of 94% and a specificity of 80% at
the volume level. Compared to the MPF model, it has higher sensitivity as well as a higher
tendency toward type-I error. Missed nodules which are predicted as non-nodules (FN) by the
LOG image-based SFMPF model are provided in Figure 31 and missed non-nodules which
are classified as nodules (FP) are provided in Figure 32.
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Figure 29. SFMPF model using LOG Image—change in classification performance for slice, perspec-
tive, and volume-level classifications for each perspective.
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Figure 30. SFMPF model using LOG image—comparison of ROC curve for slice, perspective, and 

volume-level classifications for the slices from YZ-perspective. 

  

Figure 30. SFMPF model using LOG image—comparison of ROC curve for slice, perspective, and
volume-level classifications for the slices from YZ-perspective.
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Figure 31. SFMPF model based on LOG image—missed nodules (FN). 

  

Figure 31. SFMPF model based on LOG image—missed nodules (FN).
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Figure 32. SFMPF model based on LOG image—missed non-nodules (FP). 
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Figure 32. SFMPF model based on LOG image—missed non-nodules (FP).

4.4. Classification Performance Comparison of SFMPF Models and MPF Model

In this section, the classification performances of the proposed feature image-based
SFMPF models and the MPF model are compared with respect to ACC, AUC, F1-score,
sensitivity, and specificity. First, each of the proposed SFMPF models is compared against
each other, and then the performance of the MPF model is compared with the performance
of the SFMPF models.

The change in the average slice-level classification performance of the proposed models
over three perspectives is given in Figure 33. The Trilateral image-based SFMPF model has
slightly lower performance compared to other feature image-based SFMPF models. On the
other hand, the LOG image-based SFMPF model has the highest ACC, AUC, F1-score, and
sensitivity among all. Whereas the Bilateral image-based SFMPF model has the highest
specificity and lowest FPR. Both Bilateral and Trilateral image-based SFMPF models have a
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higher tendency toward type-II errors and higher false-negative rates (FNR) compared to
Gabor and LOG image-based SFMPF models.
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Figure 33. Change in average slice level classification performance of the proposed classifiers over
three perspectives.

As shown in Figure 33, the proposed feature image-based SFMPF models improve the
classification performance compared to the MPF model in terms of ACC, AUC, F1-score,
sensitivity, and specificity. Particularly, the LOG image-based SFMPF model, while it
increases the sensitivity compared to the MPF model, keeps the specificity the same. This
shows that, whereas the LOG image-based SFMPF model increases the TPR, FPR remains
the same. For a more detailed comparison, the change in the slice-level classification
performances of the proposed models for each perspective is given in Figure 34.

At the second level, perspective level, in the proposed hierarchical fusion scheme,
again the proposed feature image-based SFMPF models outperform the MPF model in
terms of all performance measurements as depicted in Figure 35. At the slice-level classifi-
cation, except the LOG image-based SFMPF model, all other proposed models either have
the same sensitivity and specificity performances or higher specificity performances. In
contrast to slice-level classification, all proposed models including the LOG image-based
SFMPF model achieve higher sensitivity compared to specificity, and they all have a higher
tendency toward type-II error at the perspective-level classification. This means that the
nodule prediction performances of the proposed models are better than the non-nodule
prediction performances at perspective-level classification. Particularly, the Bilateral image-
based SFMPF model increases the sensitivity from 73% to 83% and specificity from 77% to
78% at the perspective level and LOG image-based SFMPF model increases the sensitivity
from 77% to 87% and specificity from 74% to 76% at the perspective level. Whereas, the pro-
posed MPF model improves the sensitivity from 74% to 86% and decreases the specificity
from 74% to 71% at the perspective level. Therefore, one can conclude that the proposed
feature image-based SFMPF models not only improve the sensitivity but also improve
the specificity while the MPF model increases the sensitivity and decreases the specificity
at the perspective level classification. For a more detailed comparison, the change in the
perspective-level classification performances of the proposed models for each perspective
is given in Figure 36.
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Figure 34. Change in slice-level classification performances for proposed SFMPF and MPF models
for each perspective.
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Figure 35. Change in average-perspective level classification performance of the proposed classifiers.
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Figure 36. Change in perspective-level classification performances for each SFMPF model for each
perspective.

At the final level, volume level, classification, and the classification performances of all
measures are increasing for all the proposed methods as seen in Figures 37 and 38. The MPF
model achieves a sensitivity and specificity of 87% at the volume level. If we compare the
sensitivity and specificity performance of the first (slice) level and the last (volume) level
classifications, the MPF model increases the sensitivity and specificity from 74% to 87%, the
Bilateral image-based SFMPF model increases the sensitivity from 73% to 85% and specificity
from 77% to 87%, Trilateral image-based SFMPF model increases the sensitivity from 72% to
87% and specificity from 76% to 84%, the Gabor image-based SFMPF model increases the
sensitivity from 75% to 92% and specificity from 75% to 79%, and LOG image-based SFMFPF
model increases the sensitivity from 77% to 94% and specificity from 74% to 80%. As seen
from the results, at the final level of classification, while the LOG image-based SFMPF model
predicts with the highest sensitivity, the MPF model predicts with the highest specificity.
Similar to slice and perspective-level classification, the LOG image-based SFMPF model
outperforms the other feature image-based SFMPF models as well as the MPF model with
respect to AUC, F1-score, and sensitivity. Whereas the ACC, AUC, F1-score, and sensitivity
increase through the proposed hierarchical fusion scheme, the tendency toward type-I and
type-II errors of the proposed models varies from layer to layer.
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4.5. Experimental Results of MFMPF Model

The idea behind the MFMPF model is the first to make multiple decisions for an object
using different types of features by looking from different perspectives. Then, fusing each
of the decisions made based on different features to make the final decision. Therefore, all
previously proposed feature image-based SFMFP models and the basic MPF model which
uses raw slices are fused to obtain the MFMPF model. By adding another hierarchy, the
class scores obtained at the final (volume) layer of each SFMPF model are in the MFMPF
model. Results from the MFMPF model with the MPF model and the best-performing
SFMPF models based on Gabor and LOG images are given in Figure 39. The MFMPF
model outperforms all proposed feature image-based SFMFP models as well as the MPF
model with respect to all performance measures except specificity. Although the proposed
MFMPF model does not perform better than the MPF model for detecting non-nodules,
since it has higher sensitivity and the same specificity compared to MPF. We can conclude
that while the TPR increases, FPR remains the same in the proposed MFMPF model and it
performs better than all other proposed models. Missed nodules and non-nodules by the
MFMPF model are provided in Figures 40 and 41, respectively.
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Figure 39. Change in final layer classification performance of MPF, SFMPF based on Gabor and LOG,
and MFMPF models.

Sensors 2022, 22, x FOR PEER REVIEW 45 of 50 
 

 

 

 

Figure 40. MFMPF model based on fusion of all—missed nodules (FN). 
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4.6. Performance Comparison of the Proposed Method with Relevant Studies

Table 1 provides the performance comparison of our prosed method with the state-
of-the-art relevant studies with respect to the accuracy, sensitivity, specificity, and false
positives per scan (fp/scan). The comparison table includes the studies that use the
traditional nodule detection approaches using shallow classifiers as well as the state-of-
the-art deep learning approaches. As seen in Table 1, the highest accuracy, sensitivity, and
specificity scores were achieved by Choi et al. [10]. Choi et al. proposed a hierarchical 3D
block-based lung nodules detection and classification method. In their proposed method,
they used the 3D block analysis method to detect nodule candidates from CT scans. Then,
after extracting the features from nodule candidates, they used SVM for classification and
false positive reduction. The nodule candidate detection step in their proposed method
introduces a very large number of false positives. They used 58 CT scans that contain a
total of 151 nodules, and their proposed method detects a total of 3639 nodule candidates
that include 147 nodules that are true positives and 3492 false positives. Then, they used
SVM to reduce the false positives. Therefore, the nodule and non-nodules that are used to
train the SVM classifier are defined by their candidate detection algorithm. However, our
proposed method uses nodules and non-nodules which are annotated by radiologists as
pulmonary lesions [30]. Although Choi et al. use the LIDC/IDRI dataset, the definition
of negative samples (non-nodules) in their study and our study is different. Although
Choi et al. reported the highest performance scores in terms of accuracy, sensitivity,
and specificity, their proposed model has 2.27 fps/scan. Whereas our proposed method
achieved a sensitivity of 95% with only 0.4 fps/scan. In addition, it is not clear how their
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proposed method achieved an accuracy of 97.61% while the sensitivity is 95.28% and
specificity is 96.23%. Accuracy cannot be greater than both sensitivity and specificity at
the same time since accuracy is a weighted average of them. In computer-aided detection
algorithms, the aim is to increase the sensitivity of the model to detect all possible positive
samples while decreasing the false positives. Therefore, according to the comparison table
provided in Table 1, our proposed hierarchical deep-fusion learning scheme achieves very
competitive and promising results compared to the state-of-the-art models in terms of the
sensitivity and fp/scan.

Table 1. Comparison of the proposed hierarchical scheme with the relevant studies.

CAD System Classification Method Accuracy (%) Sensitivity (%) Specificity (%) FPs/Scan

Our proposed method Hierarchical Deep-Fusion 91.20 95 87 0.4
Haung et al., 2022 [31] 3 D CNN-TL 91.07 90.9 91.2 -
Jiang et al., 2021 [32] 3 D CNN-CBAM 90.77 85.3 95 -

Mastouri et al., 2021 [33] Bilinear CNN 91.99 91.8 92.2 0.07
Zhai et al., 2020 [34] MT-CNN - 87.7 88.8 -
Liu et al., 2020 [35] MMEL-3 D CNN 90.60 83.7 93.9 -

Ozdemir et al., 2020 [36] 3 D CNN - 91 - 0.5
Pezeshk et al., 2019 [37] 3 D CNN - 91 - 2
Monkam et al., 2018 [38] Multi-patch CNNs 88.20 83.8 - -

Rushil Anirudh et al., 2016 [19] 3 D CNN - 80 - 10
A. A. Adiyoso Setio et al., 2016 [21] Multi-view CNN - 85.4 - 1

C. Jacobs et al., 2014 [15] GentleBoost - 80 - 1
W. J. Choi et al., 2013 [10] SVM 97.61 95.28 96.23 2.27
D. Cascio et al., 2012 [9] ANN - 88 - 2.5
T. Messay et al., 2010 [8] FLD - 82.6 - 3

K. Murphy et al., 2009 [7] k-NN - 80 - 4.2

5. Conclusions and Future Work

Lung cancer is the leading cancer type in terms of causing mortality in both men and
women. As reported in previous studies, screening lung cancer using CT scans is a very
common and effective method. However, detecting pulmonary nodules in CT scans is a
very challenging problem, particularly for nodules in their early stages. CAD systems can
be used by radiologists during the examination of CT scans to increase the nodule detection
rate as well as to decrease false positives.

In this research, a hierarchical deep-fusion learning model is proposed for lung nodule
detection from CT scans. Three different types of hierarchical deep-fusion learning models
namely, multi-perspective deep-fusion learning (MPF) model, single-feature multi-perspective
deep-fusion learning (SFMPF) model, and multi-feature multi-perspective deep-fusion learn-
ing (MFMPF) model, are proposed. The MPF model employs three levels of multi-perspective
hierarchical deep-fusion-based classification. In the proposed model, each module at each
level is trained separately in a hierarchical modular fashion; that is, the decision made at each
level is predicted based on the decision from the previous layer. The final decision for each
input of 3D volume of interest is made based on the predictions from multiple perspectives. To
test the classification performance of the proposed MPF model, a total of 604 nodule and non-
nodule objects are extracted from 100 CT scans, 70% of the data is used to train the proposed
model and 30% of the data is used to test the proposed model. Experimental results show that
the proposed hierarchical fusion-based deep learning model achieved an ACC of 74%, AUC
of 81%, sensitivity of 74%, and specificity of 74% at the first, slice, level classification, ACC of
79%, AUC of 85%, sensitivity of 86%, and specificity of 71% at the second, perspective, level
classification, and ACC of 87%, AUC of 92%, sensitivity of 87%, and specificity of 87% at the
final, volume, level classification. As seen from the results, the proposed multi-perspective
hierarchical fusion approach increases all the classification performance measures significantly
from slice level to volume level.

In addition, a feature image-based hierarchical deep-fusion learning model called
SFMPF is proposed. Four different feature image-based hierarchical deep-fusion learning
models are explored by utilizing Bilateral, Trilateral, Gabor, and LOG-filtered images. Ex-
perimental results showed that using feature images instead of raw slices increases the
classification performance at all levels. Particularly, the LOG image-based SFMPF model
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increases the AUC from 92% to 95%, and sensitivity from 87% to 94% compared to the MPF
model at the volume-level classification. Finally, a multi-feature multi-perspective hierar-
chical deep-fusion learning model MFMPF is proposed by utilizing the predictions from the
proposed four different SFMPF models. This additional level of hierarchical deep-fusion
increases the ACC from 87% to 91%, AUC from 92% to 96%, F1-score from 88% to 92%, and
sensitivity from 87% to 95% compared to the MPF model.

Although there is a significant classification performance improvement in the proposed
multi-feature multi-perspective hierarchical deep-fusion learning approach, there are open
problems and improvements waiting to be explored. One of the improvements that can
be made to the model is 3D rotation invariance. If the nodule is not circular and elongated
toward one of the axes, and if the rotated version of the similar nodule exists in another sample,
most likely it is not classified as a nodule since DCNN is not rotation invariant. Therefore,
making the proposed model robust to changes in the ratio can increase the classification
performance. One way of making the proposed model invariant to rotation is normalizing the
orientation of the input data to the same angle. This can be performed by fitting an ellipse to
each input sample and finding the orientation of the elongated axis and normalizing them
to the same angle. However, this proposed method requires a segmentation of the nodule
and the non-nodule objects to be able to fit an ellipse to find the initial orientation of the
object. In addition, different hierarchical fusion schemes can be explored utilizing feature
image-based learning models. For instance, the fusion of feature image-based predictions at
the slice or perspective level instead of at the volume level can be explored. In this study, the
proposed MFMPF model synthesis the class scores at the volume level. However, different
feature image-based predictions can be fused at the slice level based on their perspectives.
Then, hierarchical deep-fusion learning can follow with the perspective and volume level
fusions. Another improvement can be explored in the SFMPF model based on Gabor images.
In the proposed SFMPF model based on Gabor images, only a single scale and orientation
Gabor filter is used. To cover more structures with different orientations and scales, multiple
Gabor filters can be used to create multiple Gabor image-based SFMPF models. Then, the
final class scores from each model can be fused with an additional layer of the hierarchical
classifier. Moreover, the long-short-term memory (LSTM) can be explored for classification
after extracting the features with DCNN for slice-level predictions. LSTM is a type of recurrent
neural network (RNN) which is used for prediction of the time-dependent sequence data
such as video. For video content recognition, DCNN+LSTM-based deep learning has been
explored in recent studies. In the CT scans, although there is no time dependency between
the slices, there is a spatial correlation between the slices. Therefore, the DCNN+LSTM
network can be explored for the proposed hierarchical deep-fusion learning scheme utilizing
CT scans. Finally, even though the hierarchical deep-fusion learning scheme is proposed for
lung nodule detection, the authors are planning to explore the proposed hierarchical approach
for COVID-19 pneumonia detection using chest CT scans.
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