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Abstract: In this work, we studied the area coverage control problem (ACCP) based on the time cost
metric of a robot network with an input disturbance in a dynamic environment, which was modeled
by a time-varying risk density function. A coverage control method based on the time cost metric
was proposed. The area coverage task that considers the time cost consists of two phases: the robot
network is driven to cover the task area with a time-optimal effect in the first phase; the second
phase is when the accident occurs and the robot is driven to the accident site at maximum speed.
Considering that there were movable objects in the task area, a time-varying risk density function
was used to describe the risk degree at different locations in the task area. In the presence of the input
disturbance, a robust controller was designed to drive each robot, with different maximum control
input values, to the position that locally minimized the time cost metric function in a fixed time, and
the conditions for maximum control input were obtained. Finally, simulation results and comparison
result are presented in this paper.

Keywords: multi-robot network; dynamic environment coverage; time cost metric; fixed-time control

1. Introduction

Multi-robot cooperative control has drawn increasing attention from academics through-
out the world due to the ongoing development of robotics technologies and related theo-
ries [1–4]. Robots need to be effectively controlled in various applications [5]. The ACCP is
a crucial area of research in multi-robot cooperative control because it deals with how the
robot network is distributed spatially within the area of interest so that it can be successfully
observed or sensed [6–8]. The division of the task area into many sub-areas, with each robot
solely covering its respective sub-area, is a key tactic for the area coverage of a multi-robot
network. Researchers have frequently exploited the divide-and-conquer strategy to create
area coverage control techniques, the most notable of which being Voronoi partitioning [9].

Based on the Voronoi partition method, some work has considered the ACCP in differ-
ent environments and application scenarios. The authors of [10] proposed a cooperative
area exploration strategy of the robot network based on the Voronoi partitioning approach.
Based on the Voronoi partition method, the deployment of unmanned aerial vehicles
(UAVs), while maintaining the connection between UAVs and base stations, was studied
in [11]. Robots with different sensing abilities performed area coverage tasks in [12,13].
Coverage control was carried out for mobile robots with limited sensing or communication
in distance [14–16]. An adaptive method was proposed to deploy sensor nodes to sense an
area with unknown environmental density [17]. The non-parametric Gaussian statistical
regression method to estimate density function online was used in [18].

Generally, the environmental density function, which describes the importance of
each position in the task area, is time-invariant. However, in some applications, there
may be some important movable objects in the task area, and their influence on the area
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environment dynamically changes. Therefore, the environment density functions in some
practical application scenarios are time-varying functions. Consider that there are movable
objects in an ACCP, ref. [19] proposed a decentralized control law for the mobile robot
network. Neutralization of pollutants in a area with mobile pollution sources was addressed
in [20]. In the dynamic environment, the discrete coverage control problem was solved
based on the k-means method in [21]. Considering unicyle model robots, the area coverage
control of underactuated robots in dynamic environments was studied in [22,23].

The purpose of the above research about ACCPs is to minimize the sensing cost
or maximize the monitoring probability. However, if the goal is to respond quickly to
accidents in the area, the coverage control above will no longer be applicable, and the
time cost should be used to measure the coverage effect. A few of scholars have paid
attention to the time cost of coverage and have proposed some time-optimized coverage
control (T-OCC) methods. Ru et al., considering both energy loss and moving time, ref. [24]
solved the minimum cost coverage control problem by using a multi-objective optimization
function. When there is a drift field, the ACCP considering time cost for the unicycle
network was solved in [25]. For time-sensitive coverage tasks, ref. [26] solved the ACCP
when the maximum velocity of each robot was different. The ACCP based on time cost is
generally divided into two phases. The time cost is considered in the metric function of the
coverage effect, and the robot network is driven to minimize the time cost metric function
(TCMF) in the first phase. The second phase is when an accident occurs and the robot is
driven to reach the accident site at maximum speed. However, in the current study of
T-OCC [24–26], the first phase was achieved asymptotically, which did not ensure a quick
response of the robot network.

Unlike other works that aimed to maximize the coverage monitoring probability or
minimize the sensing cost in ACCP, the influence of the coverage time cost was considered,
and the ACCP was solved with respect to the robot network in a dynamic environment.
In addition, as opposed to the existing work related to the ACCP, a fixed-time robust
controller was designed to drive each robot with a different maximum control input to
minimize the TCMF, considering input disturbances, and the conditions that the control
input should satisfy were analyzed. Finally, several simulation results were obtained,
and the results of the comparison between the proposed control and the classical Lloyd
algorithm [9,26] are presented in this paper.

This remainder of this paper is organized as follows. The kinematics of the robot
and the generalized Voronoi partition method based on the shortest time principle are
presented in Section 2. The coverage metric function with respect to time cost is given
and analyzed in Section 3. The control law of time optimal coverage effect is presented in
Section 4. Sections 5 and 6 present, respectively, the simulation results and conclusions.

2. Preliminaries

Mobile robots mainly include aerial aircraft [27,28], mobile cars on the road [29–31]
and unmanned surface vessels on the water [32,33]. If we consider that N single integral
model robots are used in a two-dimensional convex task area Q ∈ R2, we define the robots’
set V (V = {1, 2, . . . , N}), and the robots’ kinematics are modeled as [29,34]

ṗ =

[
ẋ
ẏ

]
=

[
ux
uy

]
+

[
dx
dy

]
=u+d, (1)

where p = [x, y]T ∈ R2 is a robot’s position in the earth-fixed frame, the control input is
u =

[
ux, uy

]T and the disturbance d =
[
dx, dy

]T is bounded (‖ d(t) ‖< ρ). It is assumed
that the maximum control inputs of each robot are different and bounded.

This paper considered coverage control with respect to the time cost metric. Inspired
by Voronoi division [9,35], which is based on the principle of proximity as shown in
Figure 1a, the task area Q was divided using the principle of shortest time, called the
generalized Voronoi partition, as shown in Figure 1b:



Sensors 2022, 22, 8938 3 of 13

Vi = {q ∈ Q|t(pi ,q) ≤ t(pj ,q), ∀j ∈ V}, (2)

where t(pi ,q)=
‖pi−q‖
vi_max

is the minimum time taken for the i-th robot to move from position pi

to position q (q ∈ Q) at the maximum speed vi_max.
The risk degree in Q is described by a time-varying function ψ(q, t),

ψ(q, t) = φ(q)+
M

∑
j=1

φj(q, t),

where φ(q) represents the constant risk in the area and φj(q, t) (j = 1, . . . , M) is the contri-
bution of the j-th movable object on the task area. This was different from most studies that
have only considered the time-invariant risk φ(q) [7–9,12–18,24–26].

(a) (b)

Figure 1. The Voronoi partition based on the proximity principle (a) and the generalized Voronoi
partition based on the shortest time principle (b) (where the blue point “•” represents the position of
the robot, and each robot had a different maximum speed vi_max(i ∈ V)).

3. Time Optimal Coverage Analysis

The purpose of this paper was to dynamically deploy the robot network in the task
area to achieve the time optimal coverage effect, which was quantified by the TCMF

Ht(P, t) =
N

∑
i=1

∫
Vi

(
t(pi ,q)

)2
ψ(q, t)dq. (3)

Lemma 1 (The Leibniz integral rule [36]). The area V, which is smoothly dependent on position p,
has a uniquely defined outer normal vector n(q) anywhere on its boundary ∂V(q). For the function

Ω=
∫

V(q)

h(p, q)dq,

one has
∂Ω
∂p

=
∫

V(q)

∂h(p, q)
∂p

dq +
∫

∂V(q)

h(p, q)n(q)T ∂q
∂p

dq.
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For the TCMF (3), one has

Ht(P, t) =
∫

Vi

(
t(pi ,q)

)2
ψ(q, t)dq

+ ∑
j∈Ni

∫
Vj

(
t(pi ,q)

)2
ψ(q, t)dq

+ ∑
j/∈{i}∪Ni

∫
Vj

(
t(pi ,q)

)2
ψ(q, t)dq,

(4)

where Ni is the neighbor set of the robot i, which is defined as the other robots that the
Voronoi partitions have a common edge, Vi, with. The pi partial derivative of Ht(P, t) yields

∂Ht(P, t)
∂pi

=

∂

(∫
Vi

(
t(pi ,q)

)2
ψ(q, t)dq

)
∂pi

+

∂

(
∑

j∈Ni

∫
Vj

(
t(pi ,q)

)2
ψ(q, t)dq

)
∂pi

.

(5)

According to the Leibniz formula, one has the following:

∂Ht(P, t)
∂pi

=
2

vi_max2

∫
Vi

(pi − q)Tψ(q, t)dq

+ ∑
j∈Ni

∫
∂Vi,j

(
‖ pi − q ‖

vi_max

)2

ψ(q, t)ni(q)T ∂q
∂p

dq

+ ∑
j∈Ni

∫
∂Vj

(
‖ pj − q ‖

vj_max

)2

ψ(q, t)nj(q)T ∂q
∂p

dq,

(6)

where ∂Vi,j is the common edge of Vi and Vj and ni(q), nj(q) are the outward normal vectors
of Vi, Vj at the boundary ∂Vi,j, respectively, and one has

ni(q) = −nj(q). (7)

Substituting (7) into Equation (6) yields

∂Ht(P, t)
∂pi

=
2

vi_max2

∫
Vi

(pi − q)Tψ(q, t)dq + ∑
j∈Ni

∫
∂Vi,j

(
‖ pi − q ‖

vi_max

)2

ψ(q, t)ni(q)
∂q
∂p

dq

− ∑
j∈Ni

∫
∂Vi,j

(
‖ pj − q ‖

vj_max

)2

ψ(q, t)ni(q)
∂q
∂p

dq

=
2

vi_max2

∫
Vi

(pi − q)Tψ(q, t)dq

+ ∑
j∈Ni

∫
∂Vi,j

(‖ pi − q ‖
vi_max

)2

−
(
‖ pj − q ‖

vj_max

)2
ψ(q, t)ni(q)

∂q
∂p

dq.

(8)
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Note that, when the point p is on the common edge ∂Vi,j, one has

tmin(pi ,q)=tmin(pj ,q) ⇒
‖ pi − q ‖

vi_max
=
‖ pj − q ‖

vj_max
. (9)

Substituting (9) into (8) yields

∂Ht(P)
∂pi

=
2

vi_max2

∫
Vi

(pi − q)Tψ(q, t)dq

=
2

vi_max2 MVi

(
pi − CVi

)
,

(10)

where
Mi =

∫
Vi

ψ(q, t)dq

is the mass of Vi, and

Ci =

[
Cxi
Cyi

]
=

∫
Vi

qψ(q, t)dq∫
Vi

ψ(q, t)dq

is the centroid of Vi.
Obviously, if the position pi coincides with the centroid Ci, the pi derivative of metric

function Ht(P, t) is zero. That is, the robot i achieves the optimal coverage effect of the
partition Vi with the metric function Ht(P, t). When each robot achieves the optimal
coverage effect of its Voronoi partition, the robot network achieves the local optimal
coverage effect of the task area Q. Next, the T-OCC of the robot network was designed to
achieve a time-optimal coverage effect.

4. Fixed-Time Coverage Control

The above chapter analyzed and obtained the optimal position configuration of a robot
network. Based on the sliding mode control method and the fixed-time stability theory,
the fixed-time coverage controller was designed for a robot network. First, the controller
forced states in the robot network to stabilize it on the sliding surfaces in a fixed time.
Then, the position configuration of the robot network could track the optimal position
configuration on the sliding surface in a fixed time. The control process is shown in
Figure 2.

 
 
 
 
 
 
 
 
 
 
 
 

Metric function 
analysis

Obtain the optimal 
position configuration

The controller forces the 
states to the sliding 

surface in a fixed time

On the sliding surface, 
the robot network tracks 

the optimal position 
configuration in a fixed 

time

Section 3 Section 4
 

Figure 2. Fixed-time coverage control process of a mobile robot network with respect to the time
cost metric.

Lemma 2 (Fixed-time stability theory [37–39]). Consider the system ẋ(t) = f (x(t)), if there
is a function V(x) : RN → RN that is continuously positive definite and there are real numbers
k1, k2 > 0, q > 1, p ∈ (0, 1) that satisfy:

V̇(x) ≤ −(k1(V(x))q + k2(V(x))p), x ∈ RN\{0},

then the system can stabilize to the origin in fixed time.
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Define the position error as follows:

ei =

[
exi
eyi

]
=

[
xi − Cxi
yi − Cyi

]
(i ∈ V).

Design the sliding surfaces as follows:[
sxi
syi

]
=

[
xi − gxi
yi − gyi

]
(i ∈ V). (11)

The variables gxi and gyi are defined as follows:

ġxi = Ċxi − k1 ‖ exi‖α1 sgn(exi)− k2 ‖ exi‖α2 sgn(exi),
ġyi = Ċyi − k3 ‖ eyi‖α3 sgn(eyi)− k4 ‖ eyi‖α4 sgn(eyi),

(12)

where k1, k2, k3, k4 are positive constant coefficients, 0 < α1, α3 < 1, α2, α4 > 1 and Ċi is a
bounded time derivative [40].

Considering the presence of the input disturbance, the fixed-time controller for the
robot i can be designed as

ui =

[
uxi
uyi

]
=


ġxi − b1 ‖ sxi‖β1 sgn(sxi)
−b2 ‖ sxi‖β2 sgn(sxi)− ρ · sgn(sxi)

ġyi − b3 ‖ syi‖β3 sgn(syi)

−b4 ‖ syi‖β4 sgn(syi)− ρ · sgn(syi)

, (13)

where the coefficients b1, b2, b3, b4 > 0, −1 < β1, β3 < 0 and β2, β4 > 1.
Let

uxi_max = max(||uxi(t)||), uyi_max = max(||uyi(t)||)

be the maximum values of the control input uxi, uyi, the main result is stated as follows.

Theorem 1. For the mobile robot network with dynamics (1), the controller (13) can drive the state
of robot i(i ∈ V) to reach the sliding surface (11) within the fixed time T1, and the time T1 depends
only on the controller parameters, not on the initial state of the robot i,

T1 =
1

2(b1)
2

β1+1 (1− β1+1
2 )

+
1

2(b2)
− 2

β2+1 ( β2+1
2 − 1)

,

where the maximum values of the control inputs need to be[
uxi_max
uyi_max

]
≥
[

ρ+ ‖ ġxi ‖
ρ+ ‖ ġxi ‖

]
.

Proof of Theorem 1. Define a Lyapunov function

V1(sxi) =
1
2

sxi · sxi. (14)



Sensors 2022, 22, 8938 7 of 13

Taking the time derivative of V1(sxi) yields

V1(sxi)

dt
=sxi · (ẋi − ġxi)

=sxi · (uxi + dxi − ġxi)

=sxi · (−b1 ‖ sxi‖β1 sgn(sxi)− b2 ‖ sxi‖β2 sgn(sxi)− ρ · sgn(sxi) + dxi)

=− b1 ‖ sxi‖β1+1 − b2 ‖ sxi‖β2+1 − (ρ ‖ sxi ‖ −dxi · sxi).

(15)

Since the input disturbance dxi(t) is bounded (‖ di(t) ‖< ρ), it can be given that
dxi · sxi < ρ ‖ sxi ‖. For function (15), it gives

V1(sxi)

dt
<− b1 ‖ sxi‖β1+1 − b2 ‖ sxi‖β2+1 − (ρ ‖ sxi ‖ −ρ· ‖ sxi ‖)

<− b1 ‖ sxi‖β1+1 − b2 ‖ sxi‖β2+1

<− {2(b1)
2

β1+1 V1(sxi)}
β1+1

2 − {2(b2)
− 2

β2+1 V1(sxi)}
β2+1

2 .

(16)

According to the Lemma 2, for the time t > T1,

T1 =
1

2(b1)
2

β1+1 (1− β1+1
2 )

+
1

2(b2)
− 2

β2+1 ( β2+1
2 − 1)

,

sxi = 0 is implemented. Similarly, syi = 0 can be implemented within a fixed time.
Next, the lower bounds of the uxi_max, uyi_max are analyzed. When t < T1, it has

to satisfy
−uxi_ max ≤ ġxi − b1 ‖ sxi‖β1 sgn(sxi)

− b2 ‖ sxi‖β2 sgn(sxi)− ρ · sgn(sxi)

≤ uxi_ max,

such that
−uxi_ max − ġxi + ρ · sgn(sxi) ≤
−b1 ‖ sxi‖β1 sgn(sxi)− b2 ‖ sxi‖β2 sgn(sxi)
≤ uxi_ max − ġxi + ρ · sgn(sxi).

When sxi > 0, the maximum value uxi_ max needs to satisfy

−uxi_ max − ġxi + ρ < 0,

which can be rewritten as
uxi_ max > −ġxi + ρ.

When sxi < 0, the maximum value uxi_ max needs to satisfy

uxi_ max − ġxi + ρ · sgn(sxi) > 0,

which can be rewritten as
uxi_ max > ġxi − ρ.

In conclusion, it gives
uxi_ max >‖ ġxi ‖ +ρ.

Similarly, the maximum value uyi_ max needs to satisfy

uyi_ max >‖ ġyi ‖ +ρ.
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Hence, the maximum values of the control inputs need to be[
uxi_max
uyi_max

]
≥
[

ρ+ ‖ ġxi ‖
ρ+ ‖ ġxi ‖

]
. (17)

The above analysis proves that the controller (13) can force states in the robot network
to stabilize on the sliding surfaces in a fixed time, and the lower bounds for the maximum
values of the control inputs are given.

Remark 1. It can be noted that the values of ġxi, ġyi are related to Ċi and parameters k1, k2, k3, k4.
The smaller the values of k1, k2, k3, k4, the closer the values of ġxi, ġyi are to Ċxi, Ċyi. In ad-
dition, it can be noted that the larger the values of uxi_max, uyi_max, the larger the coefficients
b1, b2, b3, b4, β2, β4 can be, the smaller the coefficients β1, β3 can be and the smaller T1 can be.

Theorem 2. When the robot’s state reaches the sliding surface (11), the controller (13) can drive
the position pi of robot i (i ∈ V), track the Voronoi centroid Ci within a fixed time T2 and the time
optimal coverage effect is achieved, where

T2 = T1 +
1

2(k1)
2

α1+1 (1− α1+1
2 )

+
1

2(k2)
− 2

α2+1 ( α2+1
2 − 1)

.

Proof of Theorem 2. Define a positive definite Lyapunov function

V2(exi) =
1
2
(xi − Cxi) · (xi − Cxi). (18)

Taking the time derivative of V2(exi) yields

V2(exi)

dt
=(xi − Cxi) · (ẋi − Ċxi)

=(xi − Cxi) · (uxi + dxi − Ċxi).
(19)

According to Theorem 1, when t > T1, sxi = 0, syi = 0 and ẋ = ġxi can be obtained.
For the function (19), one has

V̇2(exi)

= exi · (−k1 ‖ exi‖α1 sign(exi)− k2 ‖ exi‖α2 sign(exi))

= −(k1 ‖ exi‖α1+1 + k2 ‖ exi‖α2+1)

= −({2(k1)
2

α1+1 1
2

e2
xi}

α1+1
2 + {2(k2)

2
α2+1 1

2
e2

xi}
α2+1

2 )

= −{2(k1)
2

α1+1 V2(exi)}
α1+1

2 − {2(k2)
2

α2+1 V2(exi)}
α2+1

2 .

(20)

According to Lemma 2, the position error exi can be stabilized to 0 (exi = 0) within the
fixed time T2, where

T2 = T1 +
1

2(k1)
2

α1+1 (1− α1+1
2 )

+
1

2(k2)
− 2

α2+1 ( α2+1
2 − 1)

.

The quantify uxi_ max needs to satisfy

− uxi_ max ≤ ġxi − b1 ‖ sxi‖β1 sgn(sxi)

− b2 ‖ sxi‖β2 sgn(sxi)− ρ(‖ sxi‖β1+ ‖ sxi‖β2)sgn(sxi)

≤ uxi_ max.

.
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When t > T1, one has sxi = 0, and

−b1 ‖ sxi‖β1 sgn(sxi)− b2 ‖ sxi‖β2 sgn(sxi)− ρ(‖ sxi‖β1+ ‖ sxi‖β2)sgn(sxi) = 0.

Therefore, the quantity uxi_ max needs to satisfy

−uxi_ max ≤ ġxi ≤ uxi_ max.

Substituting (12) gives

−uxi_ max ≤ Ċxi − k1 ‖ exi‖α1 sgn(exi)− k2 ‖ exi‖α2 sgn(exi) ≤ uxi_ max,

since the parameters k1, k2(k1, k2 > 0) can be arbitrarily small positive numbers, such that

uxi_ max >‖ Ċxi ‖ . (21)

In Theorem 1, the lower bound of the control input uxi_ max is given in (17), which has
already satisfied the condition (21). Similarly, eyi = 0 can be obtained within a fixed time
T2. Therefore, the robot network can achieve the optimal position configuration in a fixed
time, and the time optimal coverage effect for the task area is achieved.

Remark 2. If the quantities uxi_max, uyi_max are large enough, the parameters k1, k2, k3, k4, α2, α4
can be designed for larger values and the parameters α1, α3 can be designed for smaller values. Then,
the fixed time T2 can be smaller, and the robot i (i ∈ V) can track the Voronoi centroid faster.

5. Simulation Examples

Several simulation experiments were carried out to verify the proposed T-OCC method.
Consider a 100 m × 100 m convex 2-D area, the robot network composed of four robots
with maximum control inputs of 8 m/s, 10 m/s, 12 m/s and 9 m/s performed the area
coverage task cooperatively. There were two important movable objects in the task area,
and their motion trajectory was as follows:

x1 = 30− 10 sin(t/15), y1 = 30 + 10 cos(t/15),

x2 = 90− 0.5t, y2 = 90− 0.5t.

The contribution function φj(q, t) of the object j to the risk density is given as

φ1(q, t) = 5e−
‖q−m1(t)‖

2

200 ,

φ2(q, t) = 3e−
‖q−m2(t)‖2

200 ,

The input disturbance is given as dxi = 1 ∗ sin(t), dyi = 1 ∗ cos(t). When the pa-
rameters of the designed controller were k1 = k2 = k3 = k4 = 0.2, α1 = 0.8, α2 = 2,
b1 = b2 = b3 = b4 = 0.2 and β1 = 0.5, β2 = 2, the variation curves of states sx, sy are shown
in Figure 3a,b, and the position errors ex, ey are shown in Figure 3c,d. It can be noted that
the sliding mode surfaces sx and sy stabilized to 0 within 20 s, and the position errors ex
and ey stabilized to 0 within 30 s.

We compared the proposed control algorithm (13) with the classical Lloyd algorithm [9,26].
The time evolution of the TCMF Ht(P, t) is shown in Figure 3e. In Lloyd’s algorithm,
the control proportionality coefficient was set as 0.4, so that the two algorithms made
the decrease rate of the metric function almost equal to the initial time. Figure 3f shows
the comparison of the two algorithms. It could be noted that the control algorithm (13)
could make the metric function smaller, therefore, the control algorithm had a better effect.
The coverage evolution process of the robot network is shown in Figure 4. The distribution
of the robot network was random at the initial time. Then, the robot network moved to the
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optimal position configuration and maintained the optimal coverage effect, despite several
important objects in the area that were constantly moving.
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time(sec)

-50
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(a) The variation curve of the sliding
mode surface sx with respect to time t.
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(b) The variation curve of the sliding mode
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(c) The variation curve of
the position error ex with respect to time t.
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Figure 3. The variation curves of sx, sy, ex and ey of the four robots with respect to time, the varia-
tion curves of metric function Ht(P, t) and the comparison of optimization effects with the classic
Lloyd algorithm.
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t = 0 s t = 5 s t = 10 s t = 15 s

t = 20 s t = 30 s t = 40 s t = 50 s
Figure 4. The coverage evolution process of the robot network to the task area, where the blue
point “•” represents the position of the robot, and different colors in the area represent different
risk degrees.

6. Conclusions

In this work, we studied the ACCP for a robot network in a dynamic environment
considering the time cost. The most important findings are listed as follows:

1. When it is necessary to respond quickly to accidents, the coverage time cost is intro-
duced to measure the coverage effect of the robot network on the task area;

2. Based on the TCMF, a fixed-time robust controller was designed to drive the robot
network to achieve the minimum coverage time cost considering input disturbances;

3. The conditions that the maximum value of the control inputs should satisfy were ob-
tained.

Collision avoidance in the coverage control will be the subject of future research.
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