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Abstract: Distresses, such as cracks, directly reflect the structural integrity of subway tunnels. There-
fore, the detection of subway tunnel distress is an essential task in tunnel structure maintenance. This
paper presents the performance improvement of deep learning-based distress detection to support the
maintenance of subway tunnels through a new data augmentation method, selective image cropping
and patching (SICAP). Specifically, we generate effective data for training the distress detection model
by focusing on the distressed regions via SICAP. After the data augmentation, we train a distress
detection model using the expanded training data. The new image generated based on SICAP does
not change the pixel values of the original image. Thus, there is little loss of information, and the
generated images are effective in constructing a robust model for various subway tunnel lines. We
conducted experiments with some comparative methods. The experimental results show that the
detection performance can be improved by our data augmentation.

Keywords: deep learning; distress detection; data augmentation; subway tunnels; maintenance

1. Introduction

The subway networks play an essential role in the current urban infrastructure in
transporting millions of commuters in major cities [1–3]. However, it has been reported
in [4] that many concrete structures show significant signs of degradation after only 20 to
30 years due to the joint action of mechanical and environmental effects. Many facilities
consisting of concrete structures were intensively built during rapid economic growth,
and the number of aging facilities has dramatically increased [5,6]. For instance, cracks,
as an important type of distress, can influence the stability of the tunnel structure and
require periodic inspection to assess subway line structural integrity and ensure traffic
safety. Currently, many countries primarily conduct crack detection in subway tunnels
by manual inspection [2]. It has been reported that the annual maintenance costs on a
global scale have increased to more than 3% of the world’s gross domestic product [7].
Furthermore, the inspection time outside operating hours of subways is short, from the
end of the working day to the beginning of the working day, and there is the possibility
of human errors since engineers have been performing their operations based on their
knowledge and experience [3,8,9].

Under these circumstances, advanced infrastructure maintenance techniques that
can reduce costs and the burden on engineers are needed [10–13]. Some infrastructure
maintenance methods have been proposed based on computer vision with images of
infrastructure [14–16]. These methods can be roughly divided into the following three
categories: image processing-based, machine learning-based, and deep learning-based
methods. According to the characteristics of distress, which include color [17], texture [18],
and shape [19], image processing-based methods [20], edge detection [21], minimum
path [22], and morphology [23] are useful. Although these methods have the advantage
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of simplicity and practicability because of the strong correlation with specific tasks, the
detection accuracy is low for images of distress due to their complex backgrounds. Combing
with image processing technology to extract distressed features, machine learning-based
methods use support-vector machines [24,25], neural networks [26–31], clustering [32], and
random forests [27,33,34] to detect distresses. These methods can automatically learn the
relationships between distressed features and improve detection performance. However,
since the features used by these methods are artificially designed and incomplete, the
detection performance is limited by the feature extraction ability. Benefiting from the
advances of deep learning technologies in recent years [35–37], some methods for detecting
distressed regions based on deep learning with images of subway tunnels [38–45] have
been proposed. The study [41] proposed a crack detection method based on a deep fully
convolutional network (FCN) for the semantic segmentation of concrete crack images. They
used concrete crack images collected at various campus buildings of Middle East Technical
University [46], but these images were maintained for crack detection, which differs from
the characteristics of the data used in actual tunnels. In the method [44], pixel-level crack
detection using FCN has also been used to detect cracks in pavement and concrete walls.
These studies were conducted on images taken in environments completely different from
those of subway tunnels. On the other hand, some methods [45,47] have performed crack
detection in subway tunnels, but they focus only on specific lines of tunnels. In the actual
situation, there are many subway lines, and the years of operation and operating conditions
of each line vary widely. Depending on the subway line to be analyzed, insufficient training
data can be collected, or the subway tunnel structure is unsuitable for training the model
since the conventional methods are constructed to be specific to a certain subway line.
Therefore, it is necessary to construct a model with high generalizability that can consider
the diversity of subway lines.

Although several data augmentation methods [48–50] have been recently proposed to
improve the model’s generalizability, it is essential to select an appropriate data extension
method for the training data [51]. Specifically, SamplePairling [49] is a data augmentation
method that randomly extracts two images from a set of images and combines them with
the same transmittance. Mixup [48] is a data augmentation method that randomly extracts
two images from a set of images and combines them with the transmittances determined
according to the beta distribution. These methods [48,49] change the original pixel values
to augment data. The changes in original pixel values can affect the performance of
distress detection. However, random image cropping and patching (RICAP) [50] is a data
augmentation method that randomly selects four images from the dataset and combines
them to generate a new image. RICAP does not change the original pixel values to augment
data. Additionally, RICAP can generate new images containing images of multiple subway
lines. In our previous study, we validated the performance of distress detection using each
data augmentation method [48–50]. The results showed that there is little loss of information
using the data augmentation method that does not change the pixel values of the original
images, and the generated data are effective for distress detection. In the study [52], data
augmentation was conducted by generating new images based on RICAP [50] to include
the regions of multiple lines. Since there is little loss of information in the new images
generated based on RICAP, the generated images are effective training images for building a
robust model for various subway tunnel lines. The detection performance of the distressed
regions has been improved using these images as additional training data. However, most
images of distress contain regions where no distressed region exists. In this case, the data
augmentation methods, such as RICAP, are likely to generate images that contain many
regions where no distressed region exists, limiting the improvement of the distress detection
performance. Therefore, there is a possibility that we can generate further effective images
for building a robust model for various subway tunnel lines by focusing only on the regions
where the distressed regions exist.

In this paper, we propose a new data augmentation method, selective image cropping
and patching (SICAP), to accurately detect subway tunnel regions of distress by extracting
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only the distressed regions from the images of distress from multiple lines and combining
them to expand the data. The proposed method can improve the performance of distress
detection by expanding the data and focusing only on the distressed regions. We can
generate a lot of effective data for training the model for distress detection by focusing
on the distressed regions via SICAP. After the data augmentation, we construct a distress
detection model based on the deep convolutional neural networks from the expanded
training data. The new image generated based on SICAP does not change the pixel values
of the original image, and there is little loss of information. Additionally, it is an effective
training image for building a robust model for various subway tunnel lines since the
expanded data invariably contain distressed regions. Therefore, data augmentation based
on SICAP can improve the detection of regions of distress in subway tunnels.

For obtaining robustness, recent studies have focused on the pre-training of models
based on self-supervised learning (SSL). SSL is an approach for acquiring knowledge
from unsupervised data as model parameters and applying them to learning various
downstream tasks. While this approach is basically effective, it is necessary to optimize
both the training of the SSL model and the model for the downstream task. In research
aimed at real-world applications of AI, such as this research, it is undesirable to train
multiple models, since the model must be re-trained each time new data are obtained. From
the standpoint of such real-world use, data extensions that directly improve the target task
are suitable.

The remainder of the paper is organized as follows. In Section 2, we describe our
data augmentation method for detecting distressed regions of subway tunnels. Section 3
presents the experimental results to verify the effectiveness of the proposed method. Finally,
Section 4 presents the conclusion. For a smooth explanation of the proposed method, the
mathematical variables and symbols used in this paper are shown in Table 1.

Table 1. Explanation of the mathematical variables and symbols.

Variables Meanings

n Index of distress images
m Index of patches

I(n)orig
n-th distress image

I(n,m)
orig m-th patch extracted from I(n)orig

I(s)aug s-th augmented patches

(w, h) Boundary position of the augmented patch I(s)aug
wk, hk Width and height of each region extracted from patch Ik
Ix, Iy Width and height of patch I(n,m)

orig

R(n)
orig Ground truth of image I(n)orig

2. Distress Detection Based on Selective Image Cropping and Patching
2.1. Selective Image Cropping and Patching

In this section, we explain the proposed data augmentation method, SICAP. Figure 1
shows the overview of the proposed method. The proposed SICAP selects four images
from the dataset, performs region extraction for each image, and combines the extracted
images to generate a new image. First, we perform patch segmentation on the image of
distress I(n)orig (n = 1, 2, . . . , |I|, where I is the set of images of distress I(n)orig), to obtain the set

of patches I(n,m)
orig (m = 1, 2, . . . , |I (n)orig|, with |I (n,m)

orig | being the set of patches to be partitioned

from I(n)orig). Then, we perform data augmentation on patches I(n,m)
orig by SICAP. Specifically,

the proposed method selects four patches Ik (k ∈ {1, 2, 3, 4}) from the set of patches |I (n)|
that contain distress regions and include multiple types of lines. Next, the boundary points
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(w, h) for generating one image from these regions are calculated according to the beta
distribution from the following equations:

w = round(w′ Ix), w′ ∼ B(α, β), (1)

h = round(h′ Iy), h′ ∼ B(α, β), (2)

where Ix and Iy are the width and height of the patch I(n,m)
orig . α ∈ (0, ∞) and β ∈ (0, ∞)

are hyperparameters, and round(·) is a function that performs fractional processing. The
width wk and height hk of each region extracted from the four patches Ik are determined
using w and h as follows:

w1 = w3 (3)

= w, (4)

w2 = w4 (5)

= Ix − w, (6)

h1 = h3 (7)

= h, (8)

h2 = h4 (9)

= Iy − h. (10)

Using wk and hk, we determine the coordinates xk and yk for region extraction accord-
ing to the uniform distribution as follows:

xk ∼ U (0, Ix − wk), (11)

yk ∼ U (0, Iy − hk). (12)

The determination of xk and yk is repeated until all four regions contain distressed
regions. Finally, the four regions extracted based on (xk, yk) and (wk, hk) are joined so
that they touch at the boundary point (w, h) to generate a new patch I(s)aug (s = 1, 2, . . . , |S|,
where S is the set of augmented patches). We also apply the same process into the label
R(n)

orig (n = 1, 2, . . . , |R|, whereR is the set of the distress label R(n)
orig) to obtain a patch R(s)

aug

corresponding to the new patch I(s)aug. Consequently, the data augmentation using SICAP
for the distressed images of subway tunnels can generate the training data for constructing
robust models for various subway tunnel lines.

The previous study [50] claims that RICAP replaces the classification task with the
occupancy estimation task by mixing the four class labels with ratios proportional to the
areas of the four cropped images. They also claim that RICAP forces the CNN to classify
each pixel in a weakly supervised manner, and thereby, the CNN can focus on minor
features, partial features, backgrounds, and any other information that is often ignored.
Therefore, although there may not be a significant change in the diversity of the data, the
data augmentation with RICAP and SICAP will allow a variety of objects to be recognized
more efficiently than with the original images alone. Furthermore, pixel-wise blending
methods such as mixup [48] superimpose images, which can lead to over-focusing on
salient regions in the image. On the other hand, RICAP and our SICAP are spatial blending
approaches that can effectively learn the original local features and newly extract global
features from the combined images. Thus, this approach avoids overfitting compared to
conventional data augmentation methods.
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Figure 1. Overview of the proposed method for detecting regions of distress in subway tunnels.

2.2. Distress Detection with DeepLabv2

In this section, we perform the training of DeepLabv2 [53], which detects the distressed
region for each input image pixel, using the patches acquired from the images of distress
and the corresponding pixel-level distress labels. DeepLabv2 is a model that introduces an
Atrous convolution layer into ResNet-101 [36]. The Atrous convolution layer performs wide-
area convolution compared to the normal convolution layer to achieve robust features. We
replace the classification layer in ResNet-101 with Atrous spatial pyramid pooling (ASPP).
ASPP applies the Atrous convolution layer on multiple scales and integrates and pools
features spatially. This approach is inspired by the success of the spatial pyramid pooling
method [54], which shows that regions of an arbitrary scale can be accurately and efficiently
classified by resampling convolutional features extracted at a single scale. ASPP has been
implemented as a variant of the scheme that uses multiple parallel Atrous convolutional
layers with different sampling rates. The features extracted for each sampling rate are
further processed in separate branches and fused to generate the final result. Therefore,
DeepLabv2 can calculate the feature map with an Atrous convolution feature layer while
maintaining the resolution.

In the training phase, we take a patch-based training strategy since subway tunnel
images have high resolution. In the proposed method, we divide subway tunnel images
into multiple patches and perform data augmentation based on SICAP. Then, we use the
augmented patches I(s)aug to train our network. The network is initialized with parameters
trained on the ImageNet dataset [55]. We perform a multi-class classification, such as
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“cracks”, “all the others”, and “no distress”, to detect the distressed region for each pixel of
the input image. Since the pixels of the background class that do not contain a distressed
region are more than those of the distress classes, the training may be relatively dominated
by the background class. The final classification layer of the DeepLabv2 network is a
spatial pyramid pooling layer consisting of several classification layers with different
dilation rates. Layers with different dilation rates have different receptive field sizes, thus
facilitating multiple-scale detection. At the end of the training, we use validation data
to observe the training process and fix the parameters of our model. Note that the data
are class-unbalanced due to the overwhelming number of background areas. To consider
this situation, we added weights to the losses related to crack segmentation during the
DeepLabv2 training.

In the test phase, we divide subway tunnel images into multiple patches, input the
test patches into the trained model, and estimate the distressed regions. The results of
each test patch are integrated into a single image. In this way, we successfully perform
distress detection. In the proposed method, we train the model with patches generated
based on SICAP so that the patches invariably contain distressed regions. Thus, we can
build a robust model for various subway tunnel lines.

3. Experimental Results
3.1. Dataset

In this section, we explain the dataset used in our experiments. The dataset used
in our experiment consists of distressed images of two lines (lines A and B), and their
corresponding distress labels were provided by Tokyo Metro Company Limited. Figure 2
shows some examples of images in the dataset. Since the years of operation and the
operating conditions of each line vary, the condition of the tunnels and the color of the
images vary widely. Specifically, 44 images of distress were taken for each line (lines A
and B). The images were taken as RGB images of approximately 5000 × 6400 pixels. We
adopted “crack”, “desquamation chipping”, “cold joint”, “deposition”, “masonry joint”,
and “peeling”, as shown in Figure 3. In the images of distress, we have pixel-level labels
of distress assigned by technical experts, as shown in Figure 4. Each label in Figure 4
corresponds to the kind of distress in Figure 3.

Figure 2. Examples of image of two lines (lines A and B) in the dataset.
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Joint;
masonry 

joint
PeelingCrack Exfoliation/

desquamation 
chipping

Cold joint Deposition

Figure 3. Examples of distresses in the dataset.

Joint;
masonry 

joint
PeelingCrack Exfoliation/

desquamation 
chipping

Cold joint Deposition

Figure 4. Examples of labels in the dataset, corresponding to Figure 3.

3.2. Settings

In this section, we describe our experimental settings. We conducted the experiment
and ablation study to validate the effectiveness of the proposed method. In the experiment,
we perform distress detection using SICAP for all kinds of images of distress using two
subway lines to verify the robustness of the proposed method for various lines. In the
ablation study, we perform distress detection using SICAP for each kind of distress using
one subway line to verify the effectiveness of selecting the target distress.

We first explain the experimental settings. We selected 44 images from each of lines
A and B. We used five images for validation and five images for the test from the dataset.
Since the images of distress were taken with high resolutions, we divided them into patches
with a patch size of 256 × 256 pixels and a slide width of 100 pixels. We generated
72,238 and 75,240 patches from the images of distress of lines A and B, respectively. The
distress labels used in this experiment were “crack” and “all the others”, according to the
literature [47]. Note that the “all the other” label includes “desquamation chipping”, “cold
joint”, “deposition”, “masonry joint”, and “peeling”. The DeepLabv2 network was trained
to classify each pixel in the input image into three classes: “cracks”, “all the others”, and
“no distress”. Note that the hyperparameters α and β were set to 5.0. In the training phase,
we used stochastic gradient descent as the optimizer with a batch size of 16, momentum of
0.9, and weight decay of 5× 10−4, and the number of training epochs was four.

In this experiment, we used intersection over union (IoU) as the evaluation index,
which is defined by the following equation:

IoU =
TP

TP + FN + FP
, (13)

where TP, FN, and FP are the number of true-positive, false-negative, and false-positive
samples, respectively.
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We used the following comparative methods (CMs1–6) in this experiment to verify
the effectiveness of the proposed method.

• CM1: A method using patches obtained from images of distress of lines A and B
together without data augmentation.

• CM2: A data augmentation method based on SamplePairing [49] for CM1. Two images
are randomly extracted from the set of images and combined with the same transmittance.

• CM3: A data augmentation method based on SamplePairing [49] using only patches
that contain regions of distress for CM1 (Selective SamplePairing).

• CM4: A data augmentation method based on Mixup [48] for CM1. Two images are
randomly extracted from the set of images to be augmented, and their transmittances
are determined according to the beta distribution.

• CM5: A data augmentation method based on Mixup [48] using only patches that
contain regions of distress for CM1 (Selective Mixup).

• CM6: A data augmentation method based on RICAP [50] for CM1. This corresponds
to the conventional method [52] in our research.

Note that CMs2–5 change the original pixel values when performing data augmenta-
tion. The reasons for adopting each comparison method are described below. We verified
the effectiveness of introducing data augmentation by comparing ours with CM1. CMs 2,
4, and 6 are common data augmentation methods, as described in the introduction, and
we verified their effectiveness as data augmentation methods by comparing ours with
these methods. In addition, CMs 3 and 5 are data augmentation methods that introduce
the supervised information into CMs 2 and 4, respectively. By comparing the proposed
method with these methods, we verified the effectiveness of the proposed method as the
data augmentation method with the supervised information.

Next, we explain the settings of the ablation study. The number of pixels in the region
of distress in the training data varies significantly for each distress. Therefore, it is expected
to improve the final detection performance by reducing the influence of the distressed
region other than the detection target by performing SICAP for each arbitrary distress.
Therefore, in this experiment, we applied SICAP to each arbitrary distress in the detection
of subway tunnel images to verify the detection performance. The distress labels used in
this experiment were “crack”, “peeling”, and “all the others”. The DeepLabv2 network
was trained to classify each pixel in the input image into four classes: “cracks”, “peeling”,
“all the others”, and “no distress”. Note that the hyperparameters α and β were set to
5.0; the number of training epochs was 4, and the batch size was 16. In this experiment,
we used IoU as the evaluation index, as in the first experiment. We calculated the IoU of
each distress and used the average of the IoU when detecting “crack” and “others” as the
evaluation index. We used the following comparative methods (CM1–2) in this experiment
to verify the effectiveness of the proposed method.

• CM1: A method using patches obtained from images of distress of line A without
data augmentation.

• CM2: A data augmentation method based on RICAP [50] for CM1. This corresponds
to the conventional method [52] in our research.

3.3. Experiment: Performing SICAP for All Kinds of Distress

In this section, we describe the experimental result and quantitative and qualitative
evaluation of the proposed method. Table 2 presents the experimental results of IoU for
each data augmentation method when the test data are the images of distress of lines A
and B. The number of augmented patches of each line is 1.5 times the original patches.
As presented in Table 2, the averages of the IoU of the proposed method are higher than
those of the other comparative methods in all cases of the test images from lines A and B.
The comparison of the IoU between CM1 and PM suggests the effectiveness of performing
the data augmentation for the training images. Additionally, the comparison of the IoU
among CMs2–6 and PM suggests the effectiveness of SICAP for data augmentation for
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distress detection. Furthermore, the comparison of the IoU of CM6 and PM suggests the
effectiveness of focusing only on the regions where distress exists, especially for RICAP, in
the data augmentation method. These results show that data augmentation focusing only
on distressed regions without changing the original pixel values is effective in detecting
subway tunnel distress.

We qualitatively validated the performance of the proposed method. Figures 5 and 6
show the detection results using the proposed method on lines A and B, respectively. The
images in the left column are test images used in the experiment. The images in the center
column are the pixel-level ground truth corresponding to the test images. The images in
the right column are the estimated region using the proposed method. Figures 5 and 6
show that the proposed method can accurately estimate the distressed regions for the
most part and can accurately detect a long and bold crack. These results suggest that
data augmentation without changing the original pixel values effectively improves the
performance of subway tunnel distress detection. Although there are many joints, most
of them are not included in the detection results. Rather, the proposed method can detect
cracks with high accuracy since it detects horizontal cracks without detecting horizontal
joints. The above experimental results confirm the effectiveness of the proposed method.

Table 2. Average of IoU when detecting “crack” and “others” based on each data augmentation
method (DA method) in experiment I.

DA Method
Line A Line B

Crack Others Average Crack Others Average

CM1 - 0.2600 0.4884 0.3741 0.2278 0.6201 0.4240
CM2 SamplePairing [49] 0.2878 0.3168 0.3023 0.2084 0.5862 0.3973

CM3 Selective
SamplePairing 0.2763 0.3872 0.3318 0.1827 0.6471 0.4149

CM4 Mixup [48] 0.2751 0.4443 0.3597 0.2365 0.6073 0.4219
CM5 Selective Mixup 0.2479 0.2514 0.2497 0.1270 0.5254 0.3262
CM6 RICAP [50] 0.2781 0.5177 0.3979 0.2467 0.6229 0.4348
PM SICAP 0.2983 0.5120 0.4052 0.2171 0.6547 0.4359

We demonstrate the effectiveness of the proposed method through a new evaluation
that takes into account real-world applications. Specifically, since one of the most impor-
tant aspects of tunnel maintenance is the density of cracks, a region-based evaluation is
performed. For this evaluation, the image is divided into patches of 50 pixels of slide
width and 200 × 200 pixels. If cracks are present in 1% or more of the pixels in each patch,
the patch is then considered positive; otherwise, it is considered negative. We adopted
the f-value to compare the results of our methods with the ground truth. As an example,
Figure 7 shows the correct response region in Figure 5C and the region estimated by the
proposed method. This region-based comparison confirms that it is possible to qualitatively
and adequately identify the cracked area. Using the f-value as the region-based evaluation
in this image is about 80%. Therefore, it was confirmed that the performance is absolutely
high quantitatively. This method has already reached the level of practical application and
is being considered for introduction into the system of a collaborating company.

3.4. Ablation Study: Performing SICAP for a Certain Kind of Distress

In this section, we describe the results of the ablation study and quantitative and
qualitative evaluation of the proposed method. In this experiment, “PM-Crack” and “PM-
Peeling” apply SICAP only to the area of “cracks” and “peeling”, respectively. “PM-Others”
applies SICAP only to the area of “others”, including “desquamation chipping”, “cold
joint”, “deposition”, and “masonry joint”. In each method, the number of patches used
for training is determined experimentally. Table 3 presents the experimental results of
the IoU and the number of patches used for training for each method when the test data
are the distress images of lines A. As presented in Table 3, the average IoU values of
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PM are higher than those of the other comparative methods in all cases where the test
images are the distress images. Note that the methods showing the highest IoU values for
“crack”, “peeling”, and “other distress” are “PM-Crack”, “PM-Peeling”, and “PM-Others”,
respectively. Thus, the proposed method effectively improves the detection performance of
arbitrary distress in the images of distress in subway tunnels.

Test image Generated resultsGT (Crack)

(C)

(B)

(A)

(D)

Figure 5. Examples of the resultsof the proposed method in line A. Figures (A–D) show the tunnel
walls at various locations on line A.

Figure 8 shows the detection result using the proposed method performed only for
“crack” (PM-Crack) on line A. The images in the left column are test images used in the
experiment. The images in the center column are the pixel-level ground truth corresponding
to the test images. The images in the right column are the estimated region using the
proposed method. Figure 8 shows that the proposed method can accurately estimate the
distress regions. Therefore, we improved the final detection performance by reducing the
influence of the region of the distress other than the detection target by performing SICAP
for each arbitrary distress. The above experimental results confirm the effectiveness of the
proposed method when performed for a certain kind of distress.
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(C)

(B)

(A)

(D)

Test image Generated resultsGT (Crack)

Figure 6. Examples of the results of the proposed method in line B. Figures (A–D) show the tunnel
walls at various locations on line B.

Table 3. Number of patches used for training after data augmentation and the average of IoU when
detecting “crack”, “peeling”, and “others” based on each data augmentation method (DA method) in
the ablation study.

DA Method

Number of Patches IoU

No
Distress Crack Peeling Others Crack Peeling Others

CM1 - 75,265 19,304 3555 2483 0.3417 0.1018 0.4332
CM2 RICAP [50] 151,075 51,830 12,800 7730 0.3236 0.1147 0.4096
PM-All SICAP 151,075 94,899 46,007 33,445 0.3094 0.1355 0.4982
PM-Crack SICAP 94,569 38,608 3555 2483 0.3503 0.1242 0.4635
PM-Peeling SICAP 91,014 19,304 19,304 2483 0.3219 0.1583 0.4098
PM-Others SICAP 92,086 19,304 3555 19,034 0.3355 0.1423 0.5036
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(a) Ground truth (b) Result

Figure 7. Examples of region-based results. The examples correspond to Figure 5C. Cracks in the
image represent the ground truth. The closer the color in a patch is to red, the more positive patches
are included.

(C)

(B)

(A)

Test image Generated resultsGT (Crack)

Figure 8. Examples of the results of the proposed method in the ablation study. Figures (A–C)
represent each test image.
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4. Conclusions

In this paper, we proposed a new data augmentation method, SICAP, for distress
detection to support the maintenance of subway tunnels. The proposed SICAP extracts
only the distress regions from the images of distress of multiple lines and combines them
to expand the data. The new image generated based on SICAP does not change the pixel
values of the original image; thus, there is little loss of information. Additionally, since the
expanded data invariably contain distressed regions, they are effective in building a robust
model for various subway tunnel lines. Our new approach quantitatively outperformed
the other data augmentation methods. We also confirmed the effectiveness of the proposed
method by constructing a distress-specific detection model.

It is necessary to consider the introduction of other subway lines. This will be done as
future work, as acquiring a sufficient amount of data is needed. Furthermore, we address
the comparison with other data augmentation algorithms as future work.
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10. Tešić, K.; Baričević, A.; Serdar, M. Non-destructive corrosion inspection of reinforced concrete using ground-penetrating radar: A

review. Materials 2021, 14, 975. [CrossRef]
11. Bergquist, B.; Söderholm, P. Data analysis for condition-based railway infrastructure maintenance. Qual. Reliab. Eng. Int. 2015,

31, 773–781. [CrossRef]
12. Xu, P.; Sun, Q.; Liu, R.; Souleyrette, R.R.; Wang, F. Optimizing the alignment of inspection data from track geometry cars.

Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 19–35. [CrossRef]
13. Huang, Z.; Fu, H.; Chen, W.; Zhang, J.; Huang, H. Damage detection and quantitative analysis of shield tunnel structure. Autom.

Constr. 2018, 94, 303–316. [CrossRef]
14. Liu, J.; Huang, Y.; Zou, Q.; Tian, M.; Wang, S.; Zhao, X.; Dai, P.; Ren, S. Learning visual similarity for inspecting defective railway

fasteners. IEEE Sens. J. 2019, 19, 6844–6857. [CrossRef]
15. Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Correlation-aware attention branch network using multi-modal data for

deterioration level estimation of infrastructures. In Proceedings of the IEEE International Conference on Image Processing,
Anchorage, AK, USA, 19–22 September 2021; pp. 1014–1018.

http://doi.org/10.1109/JSEN.2021.3089718
http://dx.doi.org/10.1155/2015/184639
http://dx.doi.org/10.1016/j.tust.2020.103487
http://www.mlit.go.jp/common/001269888.pdf
http://dx.doi.org/10.1016/j.autcon.2015.02.003
http://dx.doi.org/10.1016/j.cemconres.2015.01.010
http://dx.doi.org/10.18770/KEPCO.2016.02.02.293
http://dx.doi.org/10.1109/JPETS.2015.2395388
http://dx.doi.org/10.3390/ma14040975
http://dx.doi.org/10.1002/qre.1634
http://dx.doi.org/10.1111/mice.12067
http://dx.doi.org/10.1016/j.autcon.2018.07.006
http://dx.doi.org/10.1109/JSEN.2019.2911015


Sensors 2022, 22, 8932 14 of 15

16. Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Distress image retrieval for infrastructure maintenance via self-Trained deep
metric learning using experts’ knowledge. IEEE Access 2021, 9, 65234–65245. [CrossRef]

17. Calderón, L.S.; Bairán, J. Crack detection in concrete elements from RGB pictures using modified line detection kernels. In
Proceedings of the Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 799–805.

18. Zhang, D.; Li, Q.; Chen, Y.; Cao, M.; He, L.; Zhang, B. An efficient and reliable coarse-to-fine approach for asphalt pavement crack
detection. Image Vis. Comput. 2017, 57, 130–146. [CrossRef]

19. Nguyen, H.N.; Kam, T.Y.; Cheng, P.Y. Automatic crack detection from 2D images using a crack measure-based B-spline level set
model. Multidimens. Syst. Signal Process. 2018, 29, 213–244. [CrossRef]

20. Luo, Q.; Ge, B.; Tian, Q. A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM. Constr.
Build. Mater. 2019, 204, 244–254. [CrossRef]

21. Nayyeri, F.; Hou, L.; Zhou, J.; Guan, H. Foreground–background separation technique for crack detection. Comput.-Aided Civ.
Infrastruct. Eng. 2019, 34, 457–470. [CrossRef]

22. Amhaz, R.; Chambon, S.; Idier, J.; Baltazart, V. Automatic crack detection on two-dimensional pavement images: An algorithm
based on minimal path selection. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2718–2729. [CrossRef]

23. Qu, Z.; Guo, Y.; Ju, F.; Liu, L.; Lin, L. The algorithm of accelerated cracks detection and extracting skeleton by direction chain
code in concrete surface image. Imaging Sci. J. 2016, 64, 119–130. [CrossRef]

24. Ai, D.; Jiang, G.; Kei, L.S.; Li, C. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods.
IEEE Access 2018, 6, 24452–24463. [CrossRef]

25. Hadjidemetriou, G.M.; Christodoulou, S.E.; Vela, P.A. Automated detection of pavement patches utilizing support vector machine
classification. In Proceedings of the Mediterranean Electrotechnical Conference (MELECON), Limassol, Cyprus, 18–20 April
2016; pp. 1–5.

26. Turkan, Y.; Hong, J.; Laflamme, S.; Puri, N. Adaptive wavelet neural network for terrestrial laser scanner-based crack detection.
Autom. Constr. 2018, 94, 191–202. [CrossRef]

27. Basavaraju, A.; Du, J.; Zhou, F.; Ji, J. A machine learning approach to road surface anomaly assessment using smartphone sensors.
IEEE Sens. J. 2019, 20, 2635–2647. [CrossRef]

28. Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Convolutional sparse coding-based deep random vector functional link
network for distress classification of road structures. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 654–676. [CrossRef]

29. Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Estimation of deterioration levels of transmission towers via deep learning
maximizing canonical correlation between heterogeneous features. IEEE J. Sel. Top. Signal Process. 2018, 12, 633–644. [CrossRef]

30. Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Deterioration level estimation based on convolutional neural network using
confidence-aware attention mechanism for infrastructure inspection. Sensors 2022, 22, 382. [CrossRef]

31. Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Neural network maximizing ordinally supervised multi-view canonical
correlation for deterioration level estimation. In Proceedings of the IEEE International Conference on Image Processing (ICIP),
Taipei, Taiwan, 22–25 September 2019; pp. 919–923.

32. Fan, X.; Wu, J.; Shi, P.; Zhang, X.; Xie, Y. A novel automatic dam crack detection algorithm based on local-global clustering.
Multimed. Tools Appl. 2018, 77, 26581–26599. [CrossRef]

33. Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell.
Transp. Syst. 2016, 17, 3434–3445. [CrossRef]

34. Guo, X.; Hao, P. Using a random forest model to predict the location of potential damage on asphalt pavement. Appl. Sci. 2021,
11, 10396. [CrossRef]

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778.

37. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

38. Wang, A.; Togo, R.; Ogawa, T.; Haseyama, M. Detection of distress region from subway tunnel images via U-net-based deep
semantic segmentation. In Proceedings of the IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 15–18
October 2019; pp. 766–767.

39. Koch, C.; Georgieva, K.; Kasireddy, V.; Akinci, B.; Fieguth, P. A review on computer vision based defect detection and condition
assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 2015, 29, 196–210. [CrossRef]

40. Tizani, W.; Mawdesley, M.J. Advances and challenges in computing in civil and building engineering. Adv. Eng. Inform. 2011,
25, 569–572. [CrossRef]

41. Dung, C.V. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58.
[CrossRef]

42. Zhang, W.; Zhang, Z.; Qi, D.; Liu, Y. Automatic crack detection and classification method for subway tunnel safety monitoring.
Sensors 2014, 14, 19307–19328. [CrossRef]

43. Khoa, N.L.D.; Anaissi, A.; Wang, Y. Smart infrastructure maintenance using incremental tensor analysis. In Proceedings of the
ACM Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 959–967.

http://dx.doi.org/10.1109/ACCESS.2021.3074019
http://dx.doi.org/10.1016/j.imavis.2016.11.018
http://dx.doi.org/10.1007/s11045-016-0461-9
http://dx.doi.org/10.1016/j.conbuildmat.2019.01.150
http://dx.doi.org/10.1111/mice.12428
http://dx.doi.org/10.1109/TITS.2015.2477675
http://dx.doi.org/10.1080/13682199.2016.1146816
http://dx.doi.org/10.1109/ACCESS.2018.2829347
http://dx.doi.org/10.1016/j.autcon.2018.06.017
http://dx.doi.org/10.1109/JSEN.2019.2952857
http://dx.doi.org/10.1111/mice.12451
http://dx.doi.org/10.1109/JSTSP.2018.2849593
http://dx.doi.org/10.3390/s22010382
http://dx.doi.org/10.1007/s11042-018-5880-1
http://dx.doi.org/10.1109/TITS.2016.2552248
http://dx.doi.org/10.3390/app112110396
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.aei.2015.01.008
http://dx.doi.org/10.1016/j.aei.2011.08.006
http://dx.doi.org/10.1016/j.autcon.2018.11.028
http://dx.doi.org/10.3390/s141019307


Sensors 2022, 22, 8932 15 of 15

44. Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic pixel-level crack detection and measurement using fully
convolutional network. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 1090–1109. [CrossRef]

45. Gong, Q.; Zhu, L.; Wang, Y.; Yu, Z. Automatic subway tunnel crack detection system based on line scan camera. Struct. Control
Health Monit. 2021, 28, e2776. [CrossRef]

46. Özgenel, Ç.F.; Sorguç, A.G. Performance comparison of pretrained convolutional neural networks on crack detection in buildings.
In Proceedings of the International Symposium on Automation and Robotics in Construction, Berlin, Germany, 20–25 July 2018;
Volume 35, pp. 1–8.

47. Li, Z.; Togo, R.; Ogawa, T.; Haseyama, M. A note on retrieval of visually similar distress regions in subway tunnel images:
Introduction of deep features extracted by semantic segmentation network. IEICE Tech. Rep. 2020, 119, 65–68.

48. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
49. Inoue, H. Data augmentation by pairing samples for images classification. arXiv 2018, arXiv:1801.02929.
50. Takahashi, R.; Matsubara, T.; Uehara, K. Data augmentation using random image cropping and patching for deep cnns. IEEE

Trans. Circuits Syst. Video Technol. 2019, 30, 2917–2931. [CrossRef]
51. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
52. Haruyama, T.; Maeda, K.; Togo, R.; Ogawa, T.; Haseyama, M. A note on improving performance of deep learning-based distress

detection for supporting maintenance of subway tunnels Accuracy verification focusing on tunnel wall characteristics. ITE Tech.
Rep. 2021, 120, 1–6.

53. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

54. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

55. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

http://dx.doi.org/10.1111/mice.12412
http://dx.doi.org/10.1002/stc.2776
http://dx.doi.org/10.1109/TCSVT.2019.2935128
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1109/TPAMI.2015.2389824

	Introduction
	Distress Detection Based on Selective Image Cropping and Patching
	Selective Image Cropping and Patching
	Distress Detection with DeepLabv2

	Experimental Results
	Dataset
	Settings
	Experiment: Performing SICAP for All Kinds of Distress
	Ablation Study: Performing SICAP for a Certain Kind of Distress

	Conclusions
	References

