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Abstract: In this study, a bottom-gated ZnO thin film transistor (TFT) pressure sensor with nanorods
(NRs) is suggested. The NRs are formed on a planar channel of the TFT by hydrothermal synthesis
for the mediators of pressure amplification. The fabricated devices show enhanced sensitivity by
16~20 times better than that of the thin film structure because NRs have a small pressure transmission
area and causes more strain in the underlayered piezoelectric channel material. When making a sensor
with a three-terminal structure, the leakage current in stand-by mode and optimal conductance state
for pressure sensor is expected to be controlled by the gate voltage. A scanning electron microscope
(SEM) was used to identify the nanorods grown by hydrothermal synthesis. X-ray diffraction (XRD)
was used to compare ZnO crystallinity according to device structure and process conditions. To
investigate the effect of NRs, channel mobility is also extracted experimentally and the lateral flow of
current density is analyzed with simulation (COMSOL) showing that when the piezopotential due to
polarization is formed vertically in the channel, the effective mobility is degraded.

Keywords: ZnO; pressure sensor; TFT; nanorod; sensitivity

1. Introduction

Semiconductor based micro-electro-mechanical-systems (MEMS) pressure sensors are
attracting a lot of attention in the medical field due to their advantages such as miniatur-
ization, light weight, and low power consumption [1]. High sensitivity pressure sensors
are essential for the development of promising bio-applications such as human-machine
interaction, wearable and flexible electronic skin (E-skin) using tactile sensors, and various
human imitation technologies [2–5]. It even invades blood vessels to monitor pressure
internally through the benefits of miniaturization [1].

Important parameters for sensors are sensitivity, linearity, response time and recovery
time, detection limit, selectivity, stability, and reproducibility [6]. As MEMS pressure
sensors become smaller, the sensing area decreases. Moreover, most of the pressures
detected in the human body are in the low range. A normal adult mean blood pressure
range is 120/80 mmHg (16/11 kPa), intraocular pressure range is 10~21 mmHg (1~3 kPa)
and intracranial pressure range is 5~15 mmHg (0~2 kPa) [7–10]. For the sensor to use these
small pressures as inputs, the sensitivity becomes more important. The high sensitivity
MEMS pressure sensors can solve this problem combining a new process of amplifying a
signal for better recognition.

The main goal of this study is devising a high-sensitive pressure sensor with a new
structure that can amplify small pressure signals while using human-friendly materials
suitable for bio-applications based on piezotronic. Generally, the piezoelectric materials
are capable of interconversion of mechanical and electrical energy. When their structure
is deformed by an external force, the positive and negative charges are separated and
the dipole is formed, creating a piezopotential [11,12]. On the contrary, the piezotronic
material have a coupled effect that interacts the piezoelectric and semiconducting properties
and resistance change is induced by this polarization [13–15]. The piezoelectric materials
include ZnO, PZT, BiFeO3, LiNbO3 and AlN. ZnO is the most suitable for the purpose of
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this study because it has advantages of biosafety, non-toxicity, high piezoelectric constant
and coefficient with simultaneous semiconducting properties [16].

As shown in Table 1, previously reported pressure sensors have the following struc-
ture: vertical film type [17,18], vertical nanostructure type [19–21] with top and bottom
electrode; lateral film type [22–24], lateral nanostructure type [25] with anode and cathode
electrode. Since it was first reported by Wang, X. D.’s group in 2006 [11], materials with
semiconducting properties among piezoelectric materials have been used as electronic
transports, and the study has extended to a lateral structure from the previous vertical
structure with piezoelectric ceramic.

Table 1. Previously reported structure of MEMS presser sensor based on piezoelectric mechanism.

Vertical Lateral

Thin film
type
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[25] ZnO NWs/Graphene Piezotronic (2020) 
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In many cases, a vertical structure is favored to use the vertically generated piezopoten-
tial without any losses. However, the lateral structure has an inherent advantage that it can
be extended to the TFT structure. Although various structures have been reported, when
examining state-of-art research trends, there have been few studies using nanostructures
as a medium for pressure amplification or fabricating piezotronic pressure sensors with
TFT structures as in our work [26–30]. This study proposes a ZnO NRs-based TFT pressure
sensor with a lateral structure for sensitivity enhanced pressure sensors. This device has
the attractive advantage of power consumption saving as well as sensitivity improvement.
The experimental results of this research show that the sensitivity is improved through the
NRs growth and the gate voltage control of TFT. The power consumption of ZnO sensor,
which operates in the depletion mode (normally on), is decreased through the on/off
switching operation of TFT. In conclusion, this paper can show performance improvement
by improving sensitivity and reducing power consumption through NR growth and TFT
structure. Also, the operation mechanism of this device is interpreted as a piezotronic effect,
and another possible mechanism is proposed in Section 3.3.

The architecture of the paper is organized as follows: Section 2 describes the fabrication
and characteristic evaluation method of the experimental device. Section 3 discusses the
results and analysis. Physical analysis using XRD and SEM, and electrical analysis to
investigate the nanorods effect and TFT gate effect were analyzed. At the end, ‘mobility
degradation’ as a possibility to interpret this was discussed through COMSOL simulation
and TFT parameter extraction. Finally, Section 4 presents our conclusions.
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2. Experiment
2.1. Device Fabrication

The proposed ZnO NRs-based TFT pressure sensor was fabricated. Figure 1 shows
the device structure schematic and process flow. A prime graded n+ c-Si (100) substrate
was used as a back gate. To grow gate oxide 100 nm, thermal oxidation was performed at
1000 ◦C in an O2 atmosphere for 1 h. The channel ZnO (40 nm) was deposited using atomic
layer deposition (ALD). To compare the sensitivity according to the absence or presence of
nanorods, thin film type and NRs stacked type were investigated. Thin film devices leave
out pre-annealing and NRs growth process. For NRs stacked device fabrication, NRs were
formed by hydrothermal synthesis on the ZnO film as a seed layer after 500 ◦C annealing in
N2 ambient for 1 h. In order to verify the nanorod sensitivity improvement effect, the ZnO
thin film annealing type was also analyzed. To define the active region, the ZnO layer was
wet etched with HCl:DI-water solution. After forming the Ti (100 nm) source and drain
using RF sputter, lift-off was conducted, and a Ti back gate electrode was also formed for
better contact on the back side of the Si substrate.
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2.2. Hydrothermal Synthesis

Among the methods for forming nanorods, hydrothermal synthesis is low-cost and
can be mass-produced [31,32], and the morphology (height and diameter) of NRs can be
manipulated by controlling parameters (molarity, temperature and time) [33]. In this study,
a ZnO thin film was used as the device channel and seed layer, and NRs were grown on it
by the hydrothermal growth method. Before growing NRs, the as-depo ZnO thin film was
annealed at 500 ◦C in N2 atmosphere for 1 h. The condition of synthetic solution was that
0.05 M of hexamethylenetetramine (HMTA, ≥99.0%) and 0.05 M of zinc nitrate hexahydrate
(Zn(NO3)2·6H2O, ≥99.0%) were used at the same ratio. This reaction was conducted
under 363 K with foil sealing on the beaker using a hot plate for 40 min, and a steering
bar was used during the growth reaction for a steady flow of the synthesis solution. As an
advanced step, the density of NRs was controlled by changing the synthesis parameters
and using the mesh pattern shadow mask [34,35]. This shows that the denser the nanorods
(occupies a large area or the greater the number), the greater the effect of improving the
sensitivity. Table 2 includes a detailed synthesis condition for controlling the density of
ZnO NRs.

2.3. Characterization

To analyze the effect of NRs in the piezoelectric based pressure sensor, various weights
of the same area were forced on the device. The sensing area was 0.5 × 0.5 cm2 and a
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pressure (or weight) was applied by placing very small weight screws on a tray having an
area of 1 × 1 cm2. To check the gate effect of the suggested ZnO NRs-based TFT, a bottom
gated TFT having a sensing unit of 100 × 100 µm2 was fabricated. In this test, the pressure
was turned on and off using a floating tungsten micro size tip. All electrical analyses
were performed using a 4155B semiconductor parameter analyzer. In our experiment,
simulation (COMSOL) is also performed to illustrate the internal field effect in the device
where the piezopotential is simulated as a gate voltage during the loading state. When
the piezopotential occurs vertically in the channel, changes in lateral current density is
analyzed.

Table 2. Hydrothermal synthesis condition.

Device Types
Synthesis Conditions

Pre-Annealing Zn(NO3)2·6H2O HMTA Temperature Time

Thin film - - - - -
Film annealing N2, 500 ◦C, 1 h - - - -

NRs stacked: (0.05 M) N2, 500 ◦C, 1 h 0.05 M 0.05 M 90 ◦C 40 min
NRs stacked: (0.005 M) N2, 500 ◦C, 1 h 0.005 M 0.005 M 90 ◦C 40 min

NRs stacked with shadow mask: (0.05 M) N2, 500 ◦C, 1 h 0.05 M 0.05 M 90 ◦C 40 min

3. Results and Discussion
3.1. Physical Characteristic Analysis

A scanning electron microscope (SEM) was used to identify the nanorods grown by
hydrothermal synthesis. As shown in Figure 2a, the 1D nanorods are formed on a planar
channel of ZnO to improve the sensing ability. This shows NRs hydrothermally synthesized
at 0.05 M (NRs stacked: High density (0.05 M)) on a Si substrate on which 100 nm SiO2 is
grown, 40 nm of ZnO is deposited thereon. The NRs grown under these conditions have
a diameter of about 60 nm and a height of about 400 nm. It can be confirmed from the
image that the nanorods are predominantly grown in the C-axis direction. We are also
fortunate to be able to observe the contact surface of a single isolated nanorod, which has
a hexagonal shape. Through this, it was confirmed that the nanorods were successfully
grown. Figure 2b–d are SEM images of the result of controlling the density of NRs by
manipulating the hydrothermal synthesis conditions. In all three conditions, the ratio,
temperature, and synthesis time were the same; Figure 2b,c predicted the density change
according to the decrease in the diameter of the nanorods as the molar concentration
decreased. However, our SEM results did not show much significance in the density
change. Therefore, the sensitivity improvement in Figure 2b,c was also similar. On the
contrary, in Figure 2d, all the synthesis conditions are the same as in Figure 2b. Instead, the
density was reduced by intentionally blocking the flow rate of the synthetic solution serving
as the source in contact with the ZnO surface. The detailed discussion of the sensitivity
improvement depending on density is described in Section 3.2.

X-ray diffraction (XRD) was used to compare ZnO crystallinity of thin films, film anneal-
ing, and NRs stacked devices. As shown in Figure 3, the crystallinity of the ZnO thin film
shows a slight change through the pre-annealing process. Having a high C-axis orientation
along the (002) plane is highly correlated with piezoelectric activity [36]. NRs have a strong
tendency to grow along the C-axis [37]. As a result of XRD analysis, the (002) peak of ZnO
was remarkably improved when NRs were deposited on the thin film than when the film was
simply annealed. This means that the piezoelectric properties are strengthened, and more
dipoles are generated when the same pressure is applied to the ZnO channel.

3.2. Electrical Characteristic Analysis
3.2.1. ZnO Nanorods effect

Figure 4 is the measurements of various weight loading tests of NRs type. Figure 4a
shows the operational stability of the NRs device after the cycle test. In Figure 4b, the
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weights of 5~20 g were sequentially loaded. As the weight was applied, the current
decreased linearly. It was observed that the fabricated ZnO pressure sensors increased their
resistance when pressure was loaded. This deteriorated conductance can be explained by
mobility degradation based on the piezotronic effect in the lateral ZnO pressure sensor,
which will be considered in Section 3.3. Figure 4c is the measured unloading current
(IUNLOAD) and loading (ILOAD) ratio, and sensitivity was calculated based on Equation (1),
where ∆I is subtraction of loading and unloading current and ∆P is change in pressure.

Sensitivity (S) =
∆I/ILOAD

∆P

[
kPa−1

]
(1)
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contact with the seed layer, the density was reduced by interfering with nanorod growth; (e) NRs 
SEM image after 5~120 g loading test over 200 cycles. It showed that it was not broken; (f) SEM 
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Figure 2. Nanorod SEM image of the fabricated device: (a) Cross section of NRs stacked: High
density (0.05 M). Average diameter 60 nm and height 400 nm; (b) Top view of NRs stacked: High
density (0.05 M); (c) Top view of NRs stacked: High density (0.050 M). By reducing the molarity,
a change in density with decreasing diameter was expected, but there was no significant change
in density with 0.05 M; (d) Top view of NRs stacked: Low density (0.05 M). During hydrothermal
synthesis, the mesh pattern shadow mask was covered. By intentionally reducing the amount of
source in contact with the seed layer, the density was reduced by interfering with nanorod growth;
(e) NRs SEM image after 5~120 g loading test over 200 cycles. It showed that it was not broken;
(f) SEM image of unbroken NRs after 450 g heavy weight durability test.
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Figure 4. Pressure test results of fabricated devices; (a) NRs stability test. 15 g loading results after
200 cycles of NRs stacked type; (b) Time dependent current result of NRs stacked type. The amount
of change in current was measured by repeatedly raising and lowering an object of 5~20 g; (c) Weight
dependent current ratio result in a small range (5~20 g); (d) Sensitivity measurement up to 8 kPa.
( S1 : 0∼0.5 kPa, S2 : 0.5∼ 2 kPa S3 : 2∼ 8 kPa). Inset is pressure sensor device with a wide sensing
area for various weight measurements.



Sensors 2022, 22, 8907 7 of 14

To compare the sensitivity according to the presence or absence of nanorods, the thin
film type and the NRs stacked type were compared, and the film annealing type device
was also investigated to distinguish it from the effect of pre-annealing in the process of
fabricating the NRs device. According to the data in Figure 4c, the response current ratio
result of stacking NRs on the ZnO channel is 26~44%. This is much better than 1~2% of
the thin film type, and is better than 25% reported by Lee, C. T.’s group in 2015 [38]. In the
case of the annealed film type the sensitivity is improved by 6~20% and this is because
as the crystallinity of the ZnO channel is improved through the pre-annealing process,
the piezoelectric properties get better leading to enhance the sensitivity. So, large ratio
of response current is very important to increase sensitivity. In the NRs stacked type,
the sensitivity is remarkably improved and can be predicted through the simple physical
formula of P = F/A calculating a pressure (P) when a force (F) is on the force transmission
area (A).

In the suggested device structure, NRs transmit a vertically applied force to the sensing
unit. NRs have a smaller area for transmitting pressure compared to the thin film type
sensor. Therefore, when the sensor is pressed with the same force, the NRs stacked device
receives the amplified pressure.

Table 3 shows the sensitivity and response current ratio according to the density of
NRs. Compared to the thin film type, the annealing type is slightly improved. The NRs
stacked type showed better sensitivity than the others. The high density had better output
response current ratio than the low density. NR stacked: (0.05 M) and (0.005 M) have
similar densities, and the measurement results are also similar. The larger the area occupied
by the nanorod, the higher the output.

Table 3. Comparison of sensitivity and response current ratio with previous studies.

Device Types Material ∆I/I0 [%] Sensitivity
[
kPa−1]

Thin film

ZnO

8 S1 : 0.034, S2 : 0.006 S3 : 0.002
Film annealing 10 S1 : 0.116, S2 : 0.003 S3 : 0.001

NRs stacked: (0.05 M) 53 S1 : 0.534, S2 : 0.123 S3 : 0.009
NRs stacked: (0.005 M) 49 -

NRs stacked with shadow mask: (0.05 M) 25 -

Piezoelectric [39] PDMS/Graphene S1 :0.009
Piezoresistive [40,41] Graphene - S1 ∼S3 : 0.009

Piezoresistive [42] GO/Gr - S1 ∼S3 : 0.032
Piezoresistive [43] JGF - S1 ∼S3 : 0.005

Capacitive [44] PDMS - S1 ∼S2 : 0.42, S3 : 0.04
Capacitive [45] PDMS - S1 ∼S2 : 0.55, S3 : 0.15
Capacitive [46] PDMS/Graphene - S1 : 0.33, S2 ∼S3 :0.007

In Figure 5, when the sensitivity of this study and the reported pressure sensors were
compared, the performance was not inferior. If the output linearity is improved in future
work, it is expected that best sensitivity will be obtained.

3.2.2. TFT Gate Effect

To investigate the effect of the TFT gate in a pressure sensor with a lateral structure,
a device with a width (W) of 100 µm and a length (L) of 100 µm was fabricated. Figure 6
shows the I-V characteristics of this TFT. As can be seen from the results of the drain current
(IDS) according to the gate voltage (VG), the ZnO device is turned on in the negative voltage
region. In other words, the ZnO device operates in depletion mode, which is always on at
0 V. By varying the gate voltage, the resistivity of ZnO can be controlled without any special
doping techniques. Figure 7 investigates IDS with the gate floated like a 2-terminal device
and when 0 V is applied in a 3-terminal device. It is shown that the stand-by current can be
reduced by applying the gate voltage especially in depletion mode TFT, which means that
the stand-by power consumption will be saved by applying the gate voltage. Also, the gate
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sweep voltage is independent of the power composition as the gate input impedance is
infinite.
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3.2.2. TFT Gate Effect 
To investigate the effect of the TFT gate in a pressure sensor with a lateral structure, 

a device with a width (W) of 100 μm and a length (L) of 100 μm was fabricated. Figure 
6 shows the I-V characteristics of this TFT. As can be seen from the results of the drain 
current (𝐼 ) according to the gate voltage (𝑉 ), the ZnO device is turned on in the negative 
voltage region. In other words, the ZnO device operates in depletion mode, which is al-
ways on at 0 V. By varying the gate voltage, the resistivity of ZnO can be controlled with-
out any special doping techniques. Figure 7 investigates IDS with the gate floated like a 2-
terminal device and when 0 V is applied in a 3-terminal device. It is shown that the stand-
by current can be reduced by applying the gate voltage especially in depletion mode TFT, 
which means that the stand-by power consumption will be saved by applying the gate 
voltage. Also, the gate sweep voltage is independent of the power composition as the gate 
input impedance is infinite. 

Figure 5. Comparison of sensitivity between previously reported MEMS pressure sensors and
this study; As compared to the reported semiconductor-based pressure sensors, this work device
does not lag behind the previous research showing excellent performance. The pressure ranges are
S1 : 0∼0.5 kPa, S2 : 0.5∼2 kPa S3 : 2∼8 kPa. [39] Chen et al., (2017). [40] Wang et al. [41] Jia et al.,
(2022). [42] Liu et al., (2017). [43] Song et al., (2018). [44] Luo et al., (2019). [45] Mannesfeld et al.,
(2010). [46] He et al., (2018).
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Figure 8 is the IDS vs. VDS of the loaded and unloaded device and IDS changes
according to the pressure. The solid symbol is the loaded state, and the open symbol is the
unloaded state. In all cases, the current decreased when pressure was applied. The amount
of current reduction at the NRs stacked type is larger than that of the thin film type. When
the same pressure is applied, a large change of response current means high sensitivity.
Because the ZnO was more deformed, more piezoelectric effects occurred, which induced
greater resistance. Figure 9 and Table 4 are the result of output enhancement tests due to
the proposed structure. NRs stacked type had a significantly larger response current ratio
than the others, and in all types, as the gate voltage decreased, the response current ratio
increased. The cause of this will be discussed in Section 3.3.
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Table 4. Comparison of response current ratio according to TFT back gate voltage control.

Gate Voltage [V]
Ratio of Response Current, ∆I0/I [%]

Thin Film Film Annealing NRs Stacked

0 8.45 13.9 50.6
1 6.14 10.0 45.4
2 6.09 6.04 40.7
3 5.64 3.52 33.7
4 3.63 2.11 27.4
5 2.67 3.28 21.8
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Also, due to the NRs effect, about 6~7 times higher response current ratio was obtained
in the NRs stacked type compared to the thin film. The film annealing type is slightly
improved over the thin film type. This shows a similar tendency to Section 3.2.1.

3.3. Sensing Mechanism: Mobility Degradation

The measurement results can explain that lateral ZnO piezotronic pressure sensor has
conductivity degradation under loaded state. In piezoelectric phenomenon, the reason
is explained by that ZnO has an asymmetric wurtzite structure. When the structure is
deformed due to external stress, there is a difference between the movement of + charged
Zn2+ and—charged O2−, so the neutral breaks and surface charges occur [47,48]. This
polarization causes E-filed in the vertical direction in the ZnO lateral channel, and this
force interrupts the flow of electrons moving in the lateral (source to drain) direction and
reduces mobility. Figure 10a shows that when pressure is applied to the conventional ZnO
pressure sensor, the resistance of the channel increases and the current decreases.
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this, it was simulated that polarization occurred at the interface of the ZnO channel when 
pressure was loaded. In this simulation, it is assumed that a negative charge is formed on 
the top of the ZnO channel by applying a negative voltage to the gate electrode. While the 
drain voltage of 1 V was fixed, the current change according to the change of the gate 
voltage was measured. In Figure 11a, the blue arrow is the vertical electric field induced 
by the polarization. The white arrow is the electron current density flowing lateral in the 
channel. When the piezopotential due to polarization was formed vertically in the chan-
nel, the lateral flow of current density was disturbed. This means that the channel mobility 
decreases when pressure is applied. 

Figure 10. Schematic illustration of mobility deterioration sensing mechanism of lateral ZnO
piezotronic pressure sensors. The dot outline indicates the changed component due to the effect;
(a) Conventional thin film ZnO pressure sensor; (b) Nanorods effect. The vertical E-field is enlarged
due to the amplified pressure; (c) TFT gate effect. The lateral current flow in the channel is intention-
ally weakened by the gate voltage; (d) Suggested device. Both NRs effect and TFT gate effect can be
used to achieve improved sensitivity and reduced power consumption.

Table 5 is the results of extracting the parameters of the TFT pressure sensors used in
this study (W: 100, L: 100 µm). The threshold voltage (Vth) was extracted using the CC
(constant current) method. [49]. Subthreshold swing (SS) and TFT turn on/off switching
current ratio (Ion/o f f ) were also calculated. Field-effect mobility (µFE) was extracted by the
method of Park. J. S’s group published in 2007 [50]. According to the results of Table 5, the
field-effect mobility decreases when pressure is applied. This is consistent with the result of
increasing resistance when loading weight, as shown in Figures 4 and 8. To further prove
this, a COMSOL simulation was performed.

Table 5. TFT parameter extraction.

Thin Film NRs Stacked

No Press Press No Press Press

Vth
[V] −13.9 −13.6 −4.5 −3.62

SS
[V/dec] 6.23 6.92 7.29 6.80

Ion/o f f 1.44 × 106 1.16 × 106 8.37 × 105 1.77 × 106

Mobility[
cm2/V s ] 5.71 3.83 2.99 0.98

Figure 11 is the result of COMSOL simulation. As shown, Figure 11a is a simulation
of the pressed ZnO channel. The drain and source were defined like an inset and the gate
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electrode was defined locally on the top, which means locally grown nanorods. Through
this, it was simulated that polarization occurred at the interface of the ZnO channel when
pressure was loaded. In this simulation, it is assumed that a negative charge is formed on
the top of the ZnO channel by applying a negative voltage to the gate electrode. While
the drain voltage of 1 V was fixed, the current change according to the change of the gate
voltage was measured. In Figure 11a, the blue arrow is the vertical electric field induced
by the polarization. The white arrow is the electron current density flowing lateral in the
channel. When the piezopotential due to polarization was formed vertically in the channel,
the lateral flow of current density was disturbed. This means that the channel mobility
decreases when pressure is applied.
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Figure 11. COMSOL simulation for validation of mobility change; (a) Lateral current density change
by vertical E-field in the ZnO. Drain-source was defined at both ends like an inset. To simulate the
polarization at the ZnO channel interface, the gate electrode was defined on the top and it means
the place where the nanorod was locally grown; (b) Results of current density flowing through the
ZnO channel when a gate voltage (piezopotential) is applied. As the polarization increased, the
current decreased.

Polarization occurs at the position where the nanorods are formed and pressed, and
the current flow is distorted at the position where the vertical E-field is induced. Through
this, the deformation of the ZnO structure changes depending on the pressure, the amount
of dipole generation changes, and the piezopotential changes, which leads to deterioration
of mobility and change in resistance. As a detailed condition, before defining the gate
electrode, it was isolated from the drain-source by using a thin insulator gate under it.
The oxide relative permittivity of the thin insulator was 4.5 and the thickness was 120 nm.
Figure 11b explains this well. As shown, −0.4 V to 0 V was applied to the gate electrode
(step is 0.05 V). The voltage applied to the gate voltage means the piezopotential generated
in the ZnO channel. It can also be seen from this simulation result that the flow of lateral
electrons decreases as the voltage generated by the polarization increases.

Therefore, the sensing mechanism of the proposed piezotronic pressure sensor is as
follows: When pressure is applied, a vertical E-field (piezopotential) is generated by polar-
ization, which impedes the lateral current flow in the channel and increases its resistance.
In other words, sensing is performed according to how much it is affected by the vertical
E-field reactively. When the same input pressure is given, the sensitivity can be improved
depending on how sensitively the lateral current flow responds to the vertical E-field. As a
way to increase the influence of the vertical E-field, we propose two methods. Growing
nanorods on the channel and using bottom-gate TFT.
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3.3.1. Nanorods Effect on Mobility Changes: Vertical E-Filed Enhancement

Figure 10b shows the NRs effect. NRs transmit pressure locally to the sensing unit,
and the deformation occurs more by the amplified pressure. As a result, the vertical E-field
becomes larger than that of a thin film without NRs. As shown in Figure 2a, the shape of the
NRs has a smaller force transmission area compared to the film type, so greater pressure is
transmitted, even if the same force is applied. That is, the transfer pressure can be amplified
by reducing the area even at the same force, according to the relation of P = F/A where P
is the pressure, F is the external force and A is sensing area. In addition, ZnO nanorods
grow in the C-axis and crystallinity in the direction (002) is dominant. This improves the
crystallinity of the channel and the piezoelectric material, ZnO. As a result, the offset of
polarization is reduced, and piezoelectric properties are also improved. In conclusion, by
growing the NRs on the planar channel, the vertical effect is enhanced, which induces a
larger change in the lateral current even under the same pressure load.

3.3.2. TFT Gate Effect on Mobility Changes: Lateral Current Flow Degradation

Figure 10c shows the gate effect of TFT. While traditional sensors are two-terminal
devices, the suggested device has three terminals. It has a new merit that the conductivity
control of the channel is possible. By adjusting the gate voltage, the flow of lateral current is
intentionally weakened. A weakened lateral current flow seems to respond more strongly
to the vertical E-field. Through this, even when the same piezopotential of the same
pressure is generated, it can be detected more sensitively.

In addition, this has the additional advantage of lowering power consumption by
reducing the leakage current in the stand-by mode. It is difficult to apply a doping technique
to control the resistivity of ZnO. However, the TFT-structured ZnO pressure sensor can
normally be turned off by adjusting the resistance in the channel due to the role of the gate.

4. Conclusions

In this study, a ZnO NRs-based TFT pressure sensor is proposed, and ‘mobility degra-
dation’ is suggested as another possible mechanism of the piezotronic effect sensor. It
responds sensitively to stimulation through pressure enhancement with NRs by a small area
effect. The NRs amplifies the transmitted pressure when a force is applied. The sensitivity
is improved by about 16~20 times compared to the thin film type device. In the suggested
device, the lateral current flow is deteriorated under the loaded state by the vertical E-field
which is caused by piezoelectric phenomenon. The device has a three-terminal TFT struc-
ture and it becomes possible to control the electrical conductivity of the sensor. By adjusting
the gate voltage, the lateral current is intentionally weakened and the sensitivity to the
input is improved. Moreover, the stand-by current of the ZnO device operating in depletion
mode can be reduced by the gate voltage, which is in favor of the power consumption.
Mobility degradation was proposed to explain all these results. The polarization creates a
weak vertical E-field in the channel and blocks the flow of electrons moving to the lateral,
increasing the resistance. This was reviewed through COMSOL and field effect mobility
extraction. This work can contribute to the development of semiconductor-based MEMS
pressure sensors that are harmless to the human body, improve sensitivity at low pressure
range with 1D nanorods and reduce stand-by power consumption with TFT structure.
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