ﬂ Sensors

Article

Electrochemical Sensor for the Determination of
Methylthiouracil in Meat Samples

Andrea Marco !, Antonio Canals %*, Emilia Morallén !

check for
updates

Citation: Marco, A.; Canals, A.;
Morallén, E.; Aguirre, M.A.
Electrochemical Sensor for the
Determination of Methylthiouracil in
Meat Samples. Sensors 2022, 22, 8842.
https://doi.org/10.3390/522228842

Academic Editor: Rosa Garriga

Received: 3 October 2022
Accepted: 7 November 2022
Published: 15 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Miguel Angel Aguirre 2

Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante,
Apartado 99, 03080 Alicante, Spain

Departamento de Quimica Analitica, Nutricién y Bromatologia e Instituto Universitario de Materiales,
Universidad de Alicante, Apartado 99, 03080 Alicante, Spain

*  Correspondence: a.canals@ua.es

Abstract: Two analytical methods based on miniaturized electrochemical sensors, voltammetric and
amperometric sensors, have been developed for the determination of 6-methyl-2-thiouracil (MTU)
in meat consumption samples (beef liver and foie). A multivariate approach has been considered
to optimize the experimental procedure including extraction and electrochemical detection. Under
optimal conditions and at a typical working potential of 1.55 V (vs Ag pseudo-reference electrode),
response is linear in the range 0 to 20 pg L~ MTU concentration range. The empirical limit of
detection is 0.13 pg L1, lower than the maximum concentration established by legislation. The
electrochemical methods have been used to analyze MTU-spiked meat samples, and recovery values
varying between 85 and 95% with coefficients of variation <30%. The analytical methods developed
with the miniaturized electrochemical sensors can successfully determine the concentration of MTU
in real meat samples with high accuracy, being the results obtained similar to those provided by other
methods such as UV-Vis spectrophotometry. Finally, the degree of sustainability of the electrochemical
sensors-based developed method has been quantified by means of the Analytical Eco-Scale.

Keywords: electrochemical sensor; Methylthiouracil; food analysis; screen-printed electrodes; meat

1. Introduction

The 6-methyl-2-thiouracil (MTU) is one of the most widely used anti-thyroid drugs
to treat hyperthyroidism in both humans and animals, as it inhibits the formation of T3
(triiodothyronine) and T4 (thyroxine) hormones in the thyroid [1-6]. If this substance is
consumed to a healthy person or animal, it causes hypothyroidism and a decrease in basal
metabolism of the body [7]. In short, it causes a faster weight gain, therefore it acts as a
growth promoter and its use for this purpose is banned in the European Union [8-11].

Sometimes this drug is clandestinely given to animals in order to make it grow faster
and the residues may be left in the animal’s meat or by-products (e.g., milk) [7,12]. In
addition, MTU can accumulate in consumers and cause intoxications and even carcinogenic
effects [6]. For this reason, it is necessary to carry out regular controls to determine the
concentration of MTU in meat and animal by-products intended for human consumption.
The maximum allowed concentration of MTU in samples for consumption is, according
to the EU directive [9,11], 100 ug L. This concentration would correspond to a supply
of 5 g day ! for 30 days, a period and quantity higher than that stipulated for medicinal
use [7].

There are different methods for the determination of this analyte in different matrices,
but all include separation or derivatization steps [13-18]. Techniques used for quantita-
tive and qualitative MTU determination include chromatographic, electrochemical and
colorimetric techniques [13-19]. For instance, thin layer chromatography (TLC) is used
to detect the presence or absence of the analyte and both liquid and gas chromatography
are used for quantification. To improve the sensitivity and selectivity of the techniques,
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mass spectrometer is used for the detection step. However, chromatographic techniques
require high-cost instrumentation and high consumption of sample and solvents. To solve
these problems, capillary electrophoresis coupled to electrochemiluminescent detection
(CE-ECL), a technique capable of separating and detecting thiouracils with high efficiency,
is also used [18]. Despite the good results that chromatographic techniques can give
in all their variants, the method considered as official by Spanish law is a colorimetric
method (UV-Vis spectrophotometry) [19]. In this work, the application of electrochemical
techniques for the determination of MTU is investigated.

Electrochemical techniques are a great alternative because they could avoid the separa-
tion of the interferents [20]. In addition, they are portable, they require a minimum sample
volume in the case of miniaturized electrochemical devices [21,22] and they need low-cost
instrumentation.

Recently, several electrochemical sensors have been developed for several applica-
tions [23-25]. However, screen-printed electrodes (SPE) have some advantages over con-
ventional electrodes, including the flexibility of the printing design, which allows them
to be adapted to the required application [26]. In this work, the application of a miniatur-
ized electrochemical sensor for the determination of MTU is investigated [27-30] using
screen-printed carbon electrode and the comparison with the UV-vis spectrophotometric
determination has been studied. Then, different real samples in which the extraction of the
MTU before the electrochemical determination have been analyzed. The electrochemical
determination of MTU in animal feed using carbon fiber microelectrodes has been studied;
however, from our acknowledgment this work is the first time that the MTU is determined
in meat real samples using electrochemical techniques.

2. Materials and Methods

In this work electrochemical sensors were developed using screen-printed carbon
electrodes (Thick-film Carbon Single-Electrodes, Micrux, Oviedo, Spain) to determine MTU
concentrations in consumer meat samples acquired in Elche, Spain. These devices consist
of a working, a counter and a pseudo-reference electrode, the working and the counter
electrodes made from carbon and a silver reference electrode. The working electrode has a
geometrical area of 7.1 mm?. The active surface area (78.5 cm?) was calculated measuring
the capacitance in the working electrolyte and considering the capacitance of a non-porous
carbon material is 10 pF cm? [31]. All the potentials in this work were referred to an
Ag/AgCl/CI reference electrode. A SP-200 Biologic Potenciostat (Claix, France) was used
for electrochemical determination. Prior to the development of the electrochemical sensors,
which require a liquid sample to perform the measurement, it was necessary to perform
the extraction of the analyte on solid samples, optimizing and validating the method used.

Methanol from Merck (Darmstadt, Germany) was used to carry out the extraction
procedure. Potassium phosphate (>99%), dipotassium hydrogen phosphate trihydrate
(>99%) from VWR (Radnor, OH, USA) and ultrapure water (18.2 MQ-cm) by Milipore®
Milli-Q® water (Burlington, VT, USA) were used to prepare the phosphate buffer solution
(PBS) employed as electrolyte at the developed electrochemical sensors. To validate the
method, it was necessary to prepare MTU standard solutions using 6-methyl-2-thiouracil
from Sigma-Aldrich (Darmstadt, Germany).

A reference MTU determination method was also carried out to compare the ob-
tained results. Methanol (Merck), chloroform (>99%) from Sigma-Aldrich, buffer solution
at pH 7.6 of tris-(hydroxymethyl) aminomethane by ThermoFisher (Dreieich, Germany),
2,6-dichloroquinone-4-chlorimide (100%) from Sigma-Aldrich, 2-propanol by Supelco,
(Darmstadt, Germany) and the use of a Jasco V-670 UV-Vis spectrophotometer (Tokyo, Japan)
were required for the realization of this method [19].

2.1. MTU Determination from Meat Samples

The MTU extraction procedure used is based on the method for the determination of
thiouracils in meat [19] after optimization of several experimental factors [32].
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The method followed for the extraction of MTU from meat samples is shown in
Figure S1. It was consisted of cutting the sample into 1 cm X 1 cm pieces, weighing 20 g
and adding 40 mL of methanol (MeOH). Mechanical agitation was maintained for 10 min
to achieve a good homogenization of the extract. Once the extract has been obtained, it
was centrifuged for 2 min at 1000 rpm. After centrifugation, the supernatant was collected,
however, due to the low surface tension of methanol, it was not possible to carry out the
direct MTU determination using the electrochemical sensor. In other words, it did not
occur the formation of the drop on the screen-printed electrode (SPE). For this reason, it
was necessary to change the medium before carrying out the electrochemical detection.
Moreover, to improve the sustainability of the method, a change to aqueous medium was
selected, being a 0.1 M phosphate buffer solution (PBS) at pH 7.2. After optimizing the ratio
between the extraction medium and the detection medium, the optimum ratio between
them was 1:1.

To reduce the time of the analysis, the effect of the scan rate which determines the
oxidation current of MTU has been studied.

The whole analytical procedure (extraction and electrochemical determination) was
performed in triplicate to ensure the repeatability of the method.

2.2. Optimization of the Analytical Method

To determine the optimum conditions of both extraction procedure and the electro-
chemical detection, a multivariate optimization was performed employing a Plackett-
Burmann design in order to identify the significant factors [32]. The software NEMRODW
(“New Efficient Methodology for Research Optimal Design”) version 2007/2010 (LPRAI,
Marseille, France) was used to design the experimental matrices and to evaluate the re-
sults obtained. The recovery factor was used as response and was calculated using the
following equation:

Cs —Co
A

Recovery factor (%) = x 100 1)
where Cy, C4 and Cg represent the concentration of the initial sample, the spiked concen-
tration to the sample and the observed concentration of the spiked sample, respectively.

Using the factors involved in the determination method, a matrix was constructed
(Table S1), from which a small number of randomized experiments (Table S2) were per-
formed. In this work, the experiments are randomly performed to nullify the effect of
extraneous or nuisance factors. After the screening study, only one significant factor was
found and univariate optimization was carried out by monitoring the effect of this factor
(i.e., extractant volume) on the recovery factor values. In these studies, a standard solution
containing 50 pg L~ of MTU was used.

2.3. MTU Determination by UV-Vis Spectroscopy

To compare the results obtained using the electrochemical sensors developed, the de-
termination of MTU using a reference method such as UV-Vis spectroscopy was employed
(official method).

As in the extraction used for the electrochemical method, the samples had to be cut into
1 cm x 1 cm pieces and weigh 20 g. However, in this procedure the volume of extractant
that had to be added is 100 mL of MeOH. Mechanical agitation was maintained for 10 min
to achieve a good homogenization of the extract. Once the extract has been obtained, it was
centrifuged for 5 min at 2000 rpm. After centrifugation, the supernatant was collected. This
is the extraction method described by other authors in bibliography [19].

The determination procedure, summarized in Figure 52, was consisted of evaporating
the MeOH extract in a rotary evaporator at 65 °C until the volume was reduced to half
the initial volume. After this, the residue was collected in at pH 7.6 buffer solution of
tris-(hydroxymethyl) aminomethane and 2 mL of a solution of 2,6-dichloroquinone-4-
chlorimide (C¢H,CI3NO) was added. Then it was rested for 20 min so that colour develops
in the solution. After this time, it was transferred to a funnel of decanting and a liquid-
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liquid extraction with 10 mL of chloroform was made. The chloroform extract was collected,
and the absorbance was measured at 435 nm.

This procedure was also performed for the standards, whose absorbance spectra are
shown in Figure S3a.

3. Results and Discussion
3.1. Preliminary Studies

To check the viability of the developed sensors, the electrochemical activity of the
analyte was determined. Other authors [27] demonstrated that MTU presents an oxidation
process at 1.35 V in MeOH with the presence of TBAP (tetrabutylammonium perchlorate).
However, it was necessary to study the potential at which the analyte undergoes this
process in the working aqueous solution.

This study was performed using an external glassy carbon as working electrode and us-
ing both the counter electrode (CE) and the reference electrode (RE) of the
screen-printed electrode.

By performing cyclic voltammetry of different solutions with increasing concentra-
tions of MTU, the potential at which the oxidation process of the compound occurs was
determined. As shown in Figure 1, the current of the oxidation peak, that starts at 1.55 V
increases with increasing MTU concentration.
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Figure 1. Cyclic voltammogram using a glassy carbon electrode at different MTU concentrations
(Scan rate = 50 mV s~ 1). PBS:MeOH 1:1.

The 1.55 V potential determined using the external electrode arrangement is the
one used to perform the electrochemical determinations by CV and CA on the SPE. The
electrochemical characterization is shown in Figures 54 and S5 in the Supplementary
Information of this article. In addition, the voltammogram of a real sample is given in
Figure S6. The oxidation peaks of uric acid (UA) and ascorbic acid (AA), the two probable
interferents, do not appear in this voltammogram.

The electrochemical stability window (ESW) of the PBS:MeOH solution used as elec-
trolyte was determined by cyclic voltammetry in the SPE, being the stable potential window
from —0.3Vto19 V.
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3.2. Optimization of the Analytical Method

When an analytical method is developed, it is necessary to optimize its experimental
factors. The Plackett-Burmann design was used to construct the matrix of experiments,
including six factors (Table S1) in twelve runs (Table 52). The Pareto chart of this screening
study is shown in Figure 2. In this chart, bars that exceed dashed lines can be considered
significant with 95% probability. In addition, rightward bars indicate a positive effect on
the response when increasing the corresponding factor from a lower to a high level, while
leftward bars indicate a negative effect on the response when passing from a lower to an
upper level of the corresponding factor.

-22,00 -11.00 0.00 11.00 22.00

Extraction volume b1 ;
‘Centrifugation time b2 i
Extraction time b3 EID.QZ
Centrifugation speed b4 :

Ratio MeOH:PBS b5 :

Scan rate b6 |

I
I

Figure 2. Pareto chart obtained in the Plackett-Burmann screening study.

From the Pareto chart it is possible to obtain information on the best conditions to
perform the electrochemical determination. In the first place, the extraction time stands out
as the only factor that presents a positive effect, however, its effect is not significant. The
rest of the factors show negative effects, being the extraction volume the only significant
factor. Therefore, it was necessary to perform a univariate study at different extraction
volumes, keeping constant the non-significant factors at the most favorable level.

To perform this study, different volumes were set around the previous lower level
(50 mL). Extractions were performed with different volumes of MeOH, both with and
without spiking, to obtain the recovery factors. The results obtained for the recovery factor
during the univariate study are shown in Table S3.

The Table S3 shows that the optimum volume is 40 mL of extractant, since a higher
value is obtained in the recovery factor determined by the electrochemical method. There-
fore, the optimum conditions for all the experimental factors are: extraction volume: 40 mL,
extraction time: 10 min, centrifugation time: 2 min, centrifugation speed: 1000 rpm, ratio
PBS:MeOH 1:1 and scan rate: 50 mV s~ 1.

These are the conditions under which all determinations were performed with the two
electrochemical sensors developed.

3.3. Evaluation of Analytical Figures of Merit

To evaluate the analytical figures of merit by CV, a study was carried out by cyclic
voltammetry at a scan rate of 50 mV s~ ! between 0 and 1.8 V, using a screen-printed carbon
electrode in the different MTU standard solutions.

By plotting the current of each of the standards at a potential of 1.55 V as a function of
concentration, it is possible to construct a calibration curve (Figure 3).
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Figure 3. Calibration curves obtained by Cyclic Voltammetry (CV) and Chronoamperometry (CA).
PBS:MeOH 1:1. Carbon SPE.

Once the potential in which MTU oxidation occurs was determined, the next study
was carried out by means of chronoamperometry (amperometric sensor), measuring how
the current intensity changes with time at different concentrations. To compare with the
voltammetric method, the same potential was chosen as in the previous section: 1.55 V.

The value of the current, once a steady state chronoamperogram is obtained, can be
plotted as a function of concentration (Figure 3).

The electrodes used in the electrochemical sensors developed were commercial screen-
printed electrodes with carbon ink that can be used once. In this work, commercial elec-
trodes of different batches were used. Therefore, each of the electrodes could initially
present different composition, which leads to large relative errors when performing repli-
cates of the calibration curves. However, these relative errors do not significantly affect the
results provided by the developed electrochemical sensors.

By plotting the absorbance of each of the standards at a wavelength of 435 nm as
a function of concentration, it is possible to construct a calibration curve of the UV-Vis
spectrophotometry method (Figure S3b).

For a better comparison, the figures of merit of the two developed electrochemical
methods based on screen-printed carbon electrodes along with the method based on UV-Vis
spectrophotometry are presented in Table 1.

Table 1. Analytical figures of merit of the methods for MTU determination.

UV-Vis
Parameters cv CA Spectrophotometry
r 0.9957 0.9823 0.9956
Sensitivity (LA L ug™1) 6.49 + 0.03 2273 £ 0.015 0.36 & 0.02 2
LOD (ugL~1)b 0.13 0.13 15
LOQ (ug L~ 1)P 0.4 0.4 50
C.V. (%) © 16 30 6

aIna.u. L ug~!. ® The LOD and LOQ is empirically determined [33]. ¢ Three replicates have been performed for
each of the experiments. [MTU]cy,ca =0.13 ug L1 and [MTU]yv.vis = 15 ug L1

Comparing the linearities obtained (Table 1), it is observed that one of the electrochem-
ical methods, chronoamperometry (CA), presents the worst coefficient of correlation value.
This method also has the highest value of coefficient of variation. However, the comparison
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of the electrochemical methods with the UV-vis spectrophotometry one reveals that both
electrochemical methods show higher sensitivity. Moreover, when the LOD and the LOQ
of the three procedures are compared, the best values are obtained in the electrochemical
ones with values two order of magnitude lower.

As it is shown in Table 1, the coefficients of variation of the electrochemical methods
are larger in percentage but if the concentrations of MTU are compared, the errors are lower
than the obtained errors of UV-Vis spectrophotometric method. This means that the errors
in the developed methods are acceptable for the miniaturized electrochemical sensors.

Comparison with Other Published Methods in Literature

A comparison of the results obtained in this work with other relevant methods used
in the MTU determination previously reported in literature is summarized in Table 2.

Table 2. Comparative performance of some methods used in the MTU determination in meat samples
reported in literature.

LOD

Analytes Samples Method Derivatization (ug L) References
Biological matrices,
TU, MTU, ETU, DMTU, PTU, . ¢ . . .
’ . 4 ’ ! including bovine and LC-ESI-MS/MS Yes, 3-iodobenzyl bromide 1.6 [17]
PhTU, BTU, MBI porcine liver
MBI, TU, MTU, PTU, PhTU Beef meat GC-MS-SIM Yes, PFBBr under basic conditions 2 [16]
TU, MTU Pork meat LC-ED No 10 [15]
TU, MTU, PTU, PhTU, TAP Bovine meat CE Yes, under basic conditions 20 [18]
TAP, TU, MTU, PTU, PhTU Beef meat LC-MS/MS (QqQ) Yes, 3-iodobenzyl bromide 0.80 [14]
MTU, PTU Bovine meat GC-FPD Yes, methylation reaction 10 [13]
TAP, TU, MTU, PTU, PhTU Beef meat LC-MS/MS (IT) Yes, 3-iodobenzyl bromide 2.07 [14]
MBI, PTU, PhTU, TAP, TU, MTU Liver (pork, beef, HPLC-MS/MS No 5 [18]
venison, rabbit)
MTU Beef liver and foie CVand CA No, only change of medium 0.13 This work

TU: 2-thiouracil, MTU: 6-methyl-2-thiouracil, ETU: 6-ethyl-2-thiouracil, DMTU: 5,6-dimethyl-2-thiouracil, PTU:
6-propyl-2-thiouracil, PhTU: 6-phenyl-2-thiouracil, BTU: 6-benzyl-2-thiouracil, MBI: 2-mercaptobenzimidazole,
TAP: 1-methyl-2-mercaptoimidazole, PFBBr: pentafluorobenzyl bromide, LC-ESI-MS/MS: Liquid chromatog-
raphy with electrospray ionization coupled to tandem mass spectrometry, GC-MS-SIM: Gas chromatography
coupled to ion selective mode mass spectrometry, LC-ED: Liquid chromatography with electrochemical detection,
CE: Capillary electrophoresis, LC-MS/MS (QqQ):Liquid chromatography coupled tandem mass spectrometry
with triple quadrupole, GC-FPD: Gas chromatography with flame photometric detector, LC-MS/MS (IT): Liq-
uid chromatography coupled ion trap tandem mass spectrometry, HPLC-MS/MS: High performance liquid
chromatography coupled tandem mass spectrometry, CV: Cyclic Voltammetry, CA: Chronoamperometry.

As can be seen in Table 2, most of the methods previously reported are based on
chromatography associated with some detection technique. This characteristic is the main
advantage over the sensors developed in this work, since with the amperometric and
voltammetric sensors only MTU is determined, whereas the chromatographic methods
allow the determination of multiple analytes in the same analysis.

However, the LOD obtained in this work is lower than the previously reported by
other authors, and it is obtained with a simple and cheap instrumentation.

From the point of view of sample preparation, all the reported methodologies require
extraction of the analyte from the matrix, since they are not able of determine MTU directly
from the meat sample. It can be established as a common characteristic for all of them that
extraction is carried out using different organic solvents such as acetonitrile or methanol
and in relatively high quantities, approximately 50 mL. Most of the previously reported
procedures require the combination of several high-hazard organic solvents to perform
the extraction and purification prior to detection. However, only the HPLC-MS/MS [18]
methodology and the one developed in this work avoid these steps.

Moreover, considering that most chromatographic methodologies require derivatiza-
tion prior to detection, the developed electrochemical sensors are the only method that
allows the determination in aqueous medium without derivatization of the analyte.

The above characteristics of the electrochemical determination, in addition to the low
sample volume necessary to perform the detection, as well as the short time required and
the relatively low cost of the electrochemical instrumentation, make it a good and promising



Sensors 2022, 22, 8842

8of 12

methodology that could be implemented to improve and speed up the determination of
MTU in meat samples.

3.4. Method Applicability

It was necessary to check the applicabiity of the MTU extraction procedure in meat
samples for consumption, because the method has not been previously tested. Thus, to
validate the procedure, the real meat samples should be spiked, and the recovery should
be calculated [34].

The enrichment procedure consists of adding the analyte to the solid sample and then
carrying out the extraction process. And after the extraction process, the recovery factor
is calculated. Then, to know what type of calibration was necessary, the samples were
spiked, and their concentration were determined by external calibration (Table 3) and using
standard addition calibration (Table S4). The spiked concentration was 50 pg L~! which,
after the dilution, is in the linear working range of MTU concentrations (0 — 20 pg L~1).

Table 3. Analytical results obtained in the analysis of two spiked samples by the analytical method
proposed using external calibration. The concentration and recovery values are expressed as the
mean =+ standard deviation of three replicates.

Cyclic Voltammetry Chronoamperometry
Sample SP(IE;(iY?)l ue Found (ug L—1) R (%) Found (ug L-1) R (%)
Beet i - 66 + 6 - 67 + 18 -
eet lrver 50 113+ 8 9443 110 £ 21 85+ 6
Foi - 73 4+ 17 - 70 + 25 -
o€ 50 121 + 18 95+ 2 114 £ 29 88 +8

No significant differences are observed between the recovery values obtained by
external calibration and by standard addition calibration, so it can be concluded that it
is not necessary to perform the standard addition calibration since there were no serious
matrix effects that falsify the results obtained. Because of this, the following determinations
were performed using external calibration, which is an advantage since it reduces the
analysis time.

3.5. Comparison with UV-Vis Spectrophotometric Determination

The electrochemical determination methods are compared with UV-Vis spectrophoto-
metric determination method using the same real samples (Table S5).

The results obtained are compared by means of a significance test (Fisher’s test) that
measures the differences between the variances of two sets of values [35].

In this work the results obtained by the two electrochemical sensors are compared, as
well as the values provided by each of the electrochemical techniques with the spectropho-
tometric method.

Table S6 shows the values obtained after applying Fisher’s test.

From the values obtained, several conclusions can be obtained: (i) No significant
statistical differences are observed between the results obtained using the two electro-
chemical sensors under the conditions studied; (ii) No significant differences in the results
obtained with the chronoamperometric sensor and the spectrophotometric method in the
two types of matrixes analyzed. However, differences are observed when comparing the
spectrophotometric method with the voltammetric sensor in the beef liver sample. The
spectrophotometric method can determine several analytes of the thiouracil family, and
the existence of significant statistical differences between the results could indicate the
presence of another thiouracil compound in the sample.
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3.6. Application of the Analytical Eco-Scale

An ideally sustainable analysis should be characterized by the total, partial elimination
or reduction of reagent use, minimization of energy consumption and no waste generation.
Then, the sustainability of the new analytical method using electrochemical determination
has been analyzed.

Several methods are developed to evaluate quantitatively the sustainability of analyti-
cal methodologies, including the Analytical Eco-Scale [36].

In this Eco-Scale, the more sustainable and environmentally friendly the process, the
higher the final score obtained. By establishing these criteria, the analytical processes can
be classified as excellent (>75), acceptable (50-75) and inadequate (<50).

Table 4 shows the total score obtained for the different procedures used in this work
according to the analytical Eco-Scale. The breakdown of penalty points (PP) is attached in
the Supplementary Material of this article.

Table 4. Total score and penalty points (PP) of the analytical methods evaluated after the application
of the Analytical Eco-Scale.

UV-Vis Method Electrochemical Sensors

PP PP

Reagents 40 Reagents 14
Waste 8 Waste 8
Energy consumption 3 Energy consumption 0
Occupational hazard 3 Occupational hazard 1

Score 46 Score 77

As shown in Table 4, the score obtained for the UV-Vis spectrophotometry method
(official method) is less than 50, so the methodology can be categorized as inadequate
from the point of view of sustainability. In contrast, the electrochemical methods are in the
excellent category with a score higher than 75, although close to its limit. This indicates
that the development of this methodology may be the beginning for the implementation of
more sustainable determination processes, but further studies are required. For example,
the optimization of the conditions of the electrochemical sensors in droplet is necessary to
increase their degree of ecology.

4. Conclusions

The electrochemical techniques studied in this work, chronoamperometry and cyclic
voltammetry, together with the use of commercial screen-printed carbon electrodes, are
used in the determination of a veterinary drug such as MTU in real meat samples. The
methodology used is adequate for MTU determination in real samples, recording similar
results than those provided by UV-vis spectrophotometry determination. Comparing the
methodology developed with previously published procedures in literature, it is concluded
that it is the one with the best detection limit. Moreover, the electrochemical methodology
is the only one that allows determination in aqueous medium without the need for any
derivatization which is an advantage in comparison with UV-vis spectrophotometric de-
termination within others. Moreover, the electrochemical determination requires portable
instrumentation with lower cost in comparison to methods used in the literature. However,
its main disadvantage is the impossibility of performing multiple analyte determinations
on the same sample, unlike techniques that use chromatography.

The great advantage of using SPE and electrochemical determination is the low sample
volume required for the analysis (100 uL). However, it is necessary to change the solvent
at the sample preparation stage. Then, this change of medium, from organic to aqueous
solvent, can lead to an increase in experimental errors, although it makes the method
more sustainable.
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After the optimization of the most significant variables by means of a multivariate
method both in the extraction of the samples and in the electrochemical detection, the
optimal conditions for the methodology are obtained, managing to reduce the volume of
MeOH, used as extractant, and the preparation time.

The MTU concentrations determined by electrochemical methods in meat samples are
lower than the legal limit established by legislation and the results agree with the UV-Vis
spectrophotometric method.

The results obtained for electrochemical determination do not show significant statisti-
cal differences for the two electrochemical techniques investigated, and therefore one or
the other can be selected indistinctly for analysis of MTU in real samples.

After the application of the analytical Eco-Scale, it can be assured that the method
developed by means of electrochemical sensors using commercial screen-printed carbon
electrodes is more sustainable and eco-friendlier than the method UV-Vis spectrophotome-
try method considered as official.

The future challenge before the implementation of these electrochemical sensors is
the decrease of the volume of extractant, since the volume needed to perform the determi-
nation is small, around 100puL. The use of less harmful solvents, which generate less non-
degradable residues and less toxicity, such as ionic liquids or DES (Deep Eutectic Solvents),
should also be studied. All these are now under investigation.
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spectra of solutions that contains different concentrations of MTU in CHCI3 (16.3, 49.3, 82.3 and
164.5 pg L—1); Figure S3b: Calibration curve of MTU in CHCI3 obtained by UV-Vis spectropho-
tometry (A = 435 nm); Figure S4: Cyclic voltammograms during the 5th cycle of carbon SPE in a
solution that contains different concentrations of MTU (0, 2.5, 7.5 and 17.5 ug L—1). MeOH:PBS
(50:50) solution, v =50 mV s—1; Figure S5: Chronoamperometry at 1.55 V for a carbon SPE in a
solution that contains different concentrations of MTU (0, 2.5, 7.5 and 17.5 ug L—1). MeOH:PBS
(50:50) solution; Figure S6: Cyclic voltammogram during the 5th cycle of carbon SPE in a solution that
contains the extract of beef liver sample. MeOH:PBS (50:50) solution, v = 50 mV s—1; Table S1: Factors
and levels of Plackett-Burmann design; Table S2: Matrix of experiments in the Plackett-Burmann
design; Table S3: Effect of the extractant volume in MTU determination; Table S4: Analytical results
obtained in the analysis of two spiked samples by the analytical method proposed using standard
addition; Table S5: Analytical results obtained by the three analytical methods used in this work;
Table S6: Application of Fisher’s test to determine the existence of statical differences of the results
obtained from the different methods used; Table S7: Assignment of penalty points (PP) for the
UV-Vis spectrophotometric method; Table S8: Assignment of penalty points (PP) for the miniaturized
electrochemical sensors-based method.
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