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Abstract: Obtaining the exact position of accumulated calcium on the inner walls of coronary arteries
is critical for successful angioplasty procedures. For the first time to our knowledge, in this work, we
present a high accuracy imaging of the inner coronary artery using microwaves for precise calcium
identification. Specifically, a cylindrical catheter radiating microwave signals is designed. The
catheter has multiple dipole-like antennas placed around it to enable a 360◦ field-of-view around the
catheter. In addition, to resolve image ambiguity, a metallic rod is inserted along the axis of the plastic
catheter. The reconstructed images using data obtained from simulations show successful detection
and 3D localization of the accumulated calcium on the inner walls of the coronary artery in the
presence of blood flow. Considering the space and shape limitations, and the highly lossy biological
tissue environment, the presented imaging approach is promising and offers a potential solution for
accurate localization of coronary atherosclerosis during angioplasty or other related procedures.

Keywords: biomedical sensors; coronary atherosclerosis; human health monitoring; microwave
imaging

1. Introduction

Coronary atherosclerosis is a deadly disease, yearly taking away millions of lives
worldwide [1]. The majority of acute coronary events are precipitated by the rupture of
a vulnerable atherosclerotic plaque in the coronary system, and subsequent thrombogen-
esis [2]. The key to plaque vulnerability is still obscure, even though recent advances in
intravascular imaging technology have enabled the collection of a wealth of data on unsta-
ble atherosclerosis in all its stages of development [2], both in clinical and in ex vivo settings.
Plaque type and morphology are relevant for intervention planning, and significantly affect
long-term treatment outcome [2]. Hence, devising accurate and robust imaging technology
is critical towards effective treatment strategies for coronary atherosclerosis.

Until now, intravascular ultrasound (IVUS) [3] and optical coherence tomography
(OCT) [4] demonstrated their potential value in assessing plaque morphology and patho-
physiology and generated optimism that intravascular imaging would enable the accurate
detection of high-risk plaques likely to cause clinical events [2]. However, recent histol-
ogy based studies and large-scale studies of coronary atherosclerosis revealed significant
limitations of existing imaging modalities in detecting vulnerable plaque characteristics
and high-risk lesions [2]. The miniaturization of medical devices and advances in image
and signal processing permitted the development of novel modalities, e.g., near infrared
spectroscopy (NIRS) [5], intravascular photoacoustic (IVPA) imaging [6], near infrared
fluorescence (NIRF) imaging [7], and time-resolved fluorescence spectroscopy (TRFS) [8]
that appear to be able to address certain limitations of either IVUS or OCT and provide
additional information about plaque morphology and pathobiology. Nevertheless, no
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single existing technique enables a complete assessment of the plaque. To address this
challenge, hybrid imaging has been suggested by researchers [2]. In this context, microwave
imaging (MWI) can be a complementary choice as it has already demonstrated excellent
contrast between healthy and anomalous tissue [9–18]. Notably, MWI would render added
information to better resolve coronary plaque and help the treatment plan. We remark that
microwave and mm-wave sensors have already shown their potential in different health
monitoring applications [19–21].

In this work, the first ever demonstration of MWI’s capability was performed for
real-time detection and localization of pulmonary atherosclerosis. Specifically, a cylindrical
catheter was designed with multiple dipole antennas imprinted surrounding the entire
outer surface of the catheter. For an unambiguous 3600 field-of-view, the plastic catheter
has a central metallic rod running along its axis. A realistic numerical model of the artery
was employed, and the catheter was placed inside the artery. Subsequently, full 3D image
of the artery was reconstructed employing an imaging functional obtained after suitable
modification from a recent work of the authors. Successful detection and localization of
the plaques on the artery walls were performed from the visualization of the 3D images.
Hence, the presented work can pave the way for successful deployment of MWI in the
real-time imaging of coronary atherosclerosis.

2. Imaging Method
2.1. Catheter Design

As shown in Figure 1, the proposed imaging device is a cylindrical catheter to be
pushed through the coronary artery filled with blood. We model the artery as a circular
cylinder with radius, ra = 5 mm. The cylindrical catheter to be inserted inside the artery has
a radius of rc = 1.5 mm. The catheter is made of plastic material with permittivity, εr,c = 5
and loss tangent, tanδc = 0.001. A metallic rod of radius 0.8 mm is inserted along the axis of
the plastic catheter for a reason explained in Section 4. Overall, 48 curved-dipole antennas,
each 1.8 mm long, are placed conformally on the outer surface of the catheter, as shown in
Figure 1. Any anomaly (fat, calcium, etc.) coagulated on the artery wall will be continuously
detected and localized from the images obtained using the data collected from these 48
dipoles. The data collection is carried out in a multi-static manner, i.e., sequentially exciting
one of the antennas and measuring from all others. Each of the 48 dipoles is connected to
the outer data acquisition circuit through a bundle of 48 wires as shown in Figure 1c. A
standard block diagram of the complete coronary artery imaging system [18] is shown in
Figure 1c. The scattering parameters data are measured by the two-port vector network
analyzer (VNA). The transmit and receive antennas are selected sequentially using the
switching device. Finally, the collected data are sent to the processing unit from the VNA
to calculate and display the image. We remark here that the input power at the transmit
antenna was 1 mW. As a result, the corresponding maximum Specific Absorption Rate
averaged over 1 g of tissue was SAR1g,max ≈ 0.6 W/kg. This value is far below the limit
1.6 W/kg based on the IEEE C95.1-1999 [22] and FCC [23] safety exposure guidelines.
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Figure 1. (a) The imaging catheter placed inside the coronary artery model, (b) overview of the
imaging process, (c) envisioned block diagram of the complete system performing the imaging.

2.2. Imaging Process

As already mentioned, microwave imaging is a highly ill-posed problem, and it often
requires time-consuming algorithms to obtain the image. These algorithms are not well-
suited for this artery wall imaging problem as in this case we need a method that yields fast
image recovery. Moreover, the conventional MWI problems deal with closed-domains, i.e.,
the antennas surround the imaging domain [9–18]. However, the problem of imaging the
artery walls using an intravascular catheter is not a closed-domain scenario, see Figure 1b.
Rather, in this case, the transceiver antenna locations are restricted to be on the catheter only.
To address all these challenges, we employ a modified version of the recently proposed
loss compensated back propagation (LC-BP) technique [22] by the authors. Notably, LC-BP
was originally proposed for a closed-domain case to enable fast and accurate detection and
localization of the anomaly inside highly lossy biological medium. In LC-BP, the imaging
functional is given by [24]

I2D
(

xpix, ypix
)
=

∣∣∣∣∣∣∣∣∑
Q
q=1 ∑Q

m = 1,
m 6= q

ρρ′G∗2D
(
ρ, ρ′, ϕ, ϕ′

)
Ss

qm
(
ρ′, ρ, ϕ, ϕ′

)∣∣∣∣∣∣∣∣ (1)
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where the 2D Green’s function, G2D of the medium is given by,

G2D
(
ρ, ρ′, ϕ, ϕ′

)
=

β2

4ωε

n=+∞

∑
n=−∞

[
H(2)

n
(

βρ′
) Jn(βa)

H(2)
n (βa)

H(2)
n (βρ)ejn(ϕ−ϕ′)

]
(2)

Here, SS
qm is the scattered field when q-th antenna is excited and the signal is measured

at the m-th antenna, H(2)
n (·) refers to n-th order Hankel function of the second kind, Jn(·)

refers to n-th order Bessel function, ω is the frequency in rad/s, ε = ε0εr is the permittivity
of the medium, and β = 2π/λ is the propagation constant of the medium. In addition,
Q is the total number of antennas placed on the cylindrical catheter,

(
xpix, ypix

)
is the

coordinate position of the pixel to be imaged, ρ and ρ′ are the distances from the pixel to
the transmitting and receiving locations, respectively.

The imaging functional of (1) was originally employed to obtain image on a 2D plane
perpendicular to the dipole antenna orientation (TM polarization) [24]. However, to obtain
a full 3D image for the cylinder-shaped artery domain shown in Figure 1, modifications
of the imaging functional given in (1) have to be brought about. These modifications are
required for two reasons: (1) to incorporate the change in antenna gain with respect to
varying pixel positions in the 3D space, (2) to obtain the E-field component that fulfils the
TM polarization condition (E-field ⊥ image cut plane). To address the first modification,
we consider that the 3D imaging domain is composed of a number of 2D planes with
ϕ = α (0

◦ ≤ α < 360
◦
) (ρz planes where ρ is the distance from z-axis), as shown in Figure 2.

On each of these 2D planes, the pixel intensities (image) are to be calculated. To do this,
we introduce two antenna radiation pattern factors, gT and gR for the transmit and receive
antennas, respectively, in (1) to account for the pattern variations for each pixel. For the
second modification, we introduce two polarization factors, [cos(α1) ]

g1
T and [cos(α2) ]

g2
R

in (1). We remark that these factors will take maximum value (equal to unity) whenever
the pixel to be imaged is located on the reference plane (α = 0

◦
) shown in Figure 2. After

introducing the above factors, we obtain the image at a pixel given by

I3D
(

xpix, ypix, zpix
)
=

∣∣∣∣∣∣∣∣
Q

∑
q=1

Q

∑
m=1,
m 6=q

ρρ′G∗2D(ρ, ρ′, ϕ, ϕ′) Ss
qm(ρ

′, ρ, ϕ, ϕ′)gT(ρ, ϕ, z)gR(ρ, ϕ, z)

×
∣∣∣[cos(α1) ]

g1
T [cos(α2) ]

g2
R

∣∣∣
∣∣∣∣∣∣∣∣ (3)

where, gT = the E-field radiation pattern of the transmit antenna,
gR = the E-field radiation pattern of the receive antenna,
α1 = the azimuth angle between the plane perpendicular to the transmit dipole and

the plane where the pixel is located,
α2 = the azimuth angle between the plane perpendicular to the receive dipole and the

plane where the pixel is located,
g1, g2 = factors to adjust the cosine polarization factors.
As pointed out in [24], suitable coordinate transformation has to be performed every

time (3) is employed to ensure the center of each pixel coincides with the center of the
coordinate system.
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3. Data Generation and Imaging Results

As already mentioned, we modeled the artery as a circular cylinder. All dipoles
are identical curved copper sheets with the feed point in the center of the two arms (see
Figure 1a). They are resonant at the operating frequency of 6 GHz. The artery was
filled in with blood whose permittivity and loss tangent were set to, εr,b = 52.18 and
tanδb = 0.39, respectively, at 6 GHz obtained from [25,26]. Two cylindrical anomalies
(possible coagulated calcium/fat) of radius 1 mm and height 2 mm were placed near the
artery wall at two different places and subsequent data collection was carried out for three-
dimensional image reconstruction using (3). The anomaly permittivity and loss tangent
were set to, εr,a = 4.94 and tanδa = 0.19, respectively, as they are the typical values for fat
at 6 GHz [25,26].

The entire imaging set-up–the artery along with the catheter with curved dipoles on
its outer surface–is designed in Ansys HFSS, and the synthetic data were obtained using its
full-wave simulations. The data thus obtained are corrupted with additive white Gaussian
noise to obtain a signal-to-noise ratio (SNR) of 20 dB, typically employed for microwave
image reconstructions [9]. The image intensity is normalized between 0 to 1 after setting
the intensity value under 0.2 to zero [27].

3.1. Justification of Using Metallic Rod in the Catheter (Resolving ‘Image Ambiguity’)

If no metallic rod is employed inside the catheter, it was observed that the recon-
structed image generates a false anomaly at the 1800 opposite location (and around) of
the actual one on the xy plane (see Figure 3a). This is attributed to the radiation pattern
of the curved dipole shown in Figure 4b (no metallic rod). As seen from this pattern, the
dipole can also transmit (and receive) signals coming from its backward direction (see
Figure 4a). Hence, Equation (3) would not be able to resolve whether the scattered signal is
coming from the backward or forward direction and will show high intensity on both the
actual and opposite location of the anomaly. This issue, referred to as ‘image ambiguity’,
can simply be resolved by inserting a metallic rod along the axis of the catheter as already
mentioned in Section 2. This metallic rod will block the scattered signals coming from the
opposite side of the actual anomaly location, which is evident from the radiation pattern
shown in Figure 4c. After inserting the rod, the reconstructed image is shown in Figure 3b
where no false anomaly location is being shown.
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3.2. Imaging Scenario and Results

Next, we explore a typical imaging scenario where two locations of fat accumulation
(anomalies) are present on the inside wall of an artery. The cylindrical anomalies are
located at (−4 mm, 3 mm, 4 mm) and (4 mm, 1.5 mm, −2 mm) and have radius = 1 mm,
1 mm and height = 2 mm, 1 mm, respectively. The catheter is inserted into the artery and
slowly pushed down through it, while measurements are being recorded from the dipoles
continuously at different time instances. We assume a scenario where, at two time instances
t1 and t2 (see Figure 5), we have two sets of measurements S1 and S2, respectively. At time
t1, the anomalies are out of the imaging zone, hence, S1 measurements would only ‘see’ the
artery walls (without anomalies). However, at time t2, the anomalies are present within the
imaging zone, hence S2 measurements will ‘see’ the anomalies located on the artery walls.
To obtain the scattered field, SS to be employed in (3) to carry out the image reconstruction,
we get SS = S1 − S2. The reconstructed image is thus a differential image, which shows
the locations of the anomalies present on the artery walls. In Figure 6b, the reconstructed
anomalies are shown inside the cylindrical artery, along with their actual size and location
presented in Figure 6a. For a complete understanding of the image reconstruction on
different planes taken from the full 3D reconstructions, Figure 7 is presented, where the
image is shown on several xy, yz, and zx planes. By examining these, one can conclude that
the anomalies on the artery walls are reliably detected and localized on all the planes of the
3D imaging domain.
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and reconstructed images on zx planes (y = −4, 0, 4 mm), respectively.

4. Conclusions

The imaging of calcium deposit on the coronary artery walls is essential to successful
treatment and preventive medical care. To this end, microwave tomographic techniques
using a catheter can be an effective real-time imaging approach. However, traditional
MWI imaging relies on a closed domain with the radiators/receivers placed surrounding
the imaging domain. In contrast, the proposed approach in this work employs dipoles
imprinted on a cylindrical catheter that radiate outwardly towards the artery walls, sur-
rounding the catheter itself. To do so, a previously developed real-time imaging algorithm
is modified and adapted. The key to the modification is the shielding of radiations on
the catheter walls to ensure that only half of the artery walls are illuminated. Thus, false
images are avoided, and accurate pinpointing of the calcium is made possible. Moreover,
the use of simple dipoles as the microwave transceivers allows for future fabrication and
measurements, likely for this geometry of small dimensions. Based on the presented imag-
ing performance, it is anticipated that MWI can be a potential alternative or complementary
technology to the existing ones for the real-time imaging of coronary atherosclerosis.
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