
Citation: Zhang, W.; Feng, Y.; Han,

G.; Zhu, H.; Tan, X. A Malicious Code

Detection Method Based on

FF-MICNN in the Internet of Things.

Sensors 2022, 22, 8739. https://

doi.org/10.3390/s22228739

Academic Editors: Carles Gomez

and Yuh-Shyan Chen

Received: 5 September 2022

Accepted: 10 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Malicious Code Detection Method Based on FF-MICNN in
the Internet of Things
Wenbo Zhang 1, Yongxin Feng 1, Guangjie Han 2,* , Hongbo Zhu 1 and Xiaobo Tan 1

1 School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Department of Information and Communication Systems, Hohai University, Changzhou 213022, China
* Correspondence: hanguangjie@gmail.com

Abstract: It is critical to detect malicious code for the security of the Internet of Things (IoT). Therefore,
this work proposes a malicious code detection algorithm based on the novel feature fusion–malware
image convolutional neural network (FF-MICNN). This method combines a feature fusion algorithm
with deep learning. First, the malicious code is transformed into grayscale image features by image
technology, after which the opcode sequence features of the malicious code are extracted by the
n-gram technique, and the global and local features are fused by feature fusion technology. The fused
features are input into FF-MICNN for training, and an appropriate classifier is selected for detection.
The results of experiments show that the proposed algorithm exhibits improvements in its detection
speed, the comprehensiveness of features, and accuracy as compared with other algorithms. The
accuracy rate of the proposed algorithm is also 0.2% better than that of a detection algorithm based
on a single feature.

Keywords: IoT; malicious code detection; classification detection of images; improved convolutional
neural network; FF-MICNN

1. Introduction

With the rapid development of scientific and technological information, many new
core technologies have been applied in various fields. In particular, the mutual integration
and innovation of artificial intelligence (AI), 5G, and the Internet of Things (IoT) promote
the continuous expansion of the scale of the IoT industry, which not only has a positive
influence on the industrial field, but also a significant impact on daily life [1].

In the IoT environment, sensor devices are connected through the internet protocol
and they exchange information and communicate through the medium of information
transmission. Due to the communication characteristics of IoT, the number of attacks, such
as distributed denial of service (DDoS), buffer overflow, botnet, malicious code encryption,
and ARP spoofing attacks is rapidly expanding [2]. In addition, the development of IoT
technology has led to increasing demand for IoT devices. To meet this demand, many
manufacturers produce devices with low security and sensitivity to vulnerabilities, thus
making these devices targets of attack and further aggravating the possibility of malicious
attacks. According to research by IBM, the number of internet-connected devices will
increase to 50 billion by 2020. The Kaspersky Lab collected 121,588 IoT malicious code
samples in 2018, about four times more than the 32,614 samples it collected in 2017. Among
these samples, more than 120,000 samples of mutated IoT malicious code were found,
and the attack methods were intelligently evolved [3]. To prevent IoT devices from being
attacked by new or transformable malicious code, it is meaningful to detect malicious
code [4].

In view of these factors, our motivation is to overcome the shortcomings of existing
algorithms for malicious code detection. Aiming at the static and multi-layer features of
malicious code detection, we would use the method of image and feature fusion to design

Sensors 2022, 22, 8739. https://doi.org/10.3390/s22228739 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228739
https://doi.org/10.3390/s22228739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6921-7369
https://doi.org/10.3390/s22228739
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228739?type=check_update&version=2

Sensors 2022, 22, 8739 2 of 16

the detection algorithm, so as to improve the detection speed, the comprehensiveness
of features, and the accuracy. Therefore, a malicious code detection algorithm based on
FF-MICNN is proposed in the present study. The main contributions of this paper are
as follows:

• A grayscale image converted from malicious code is used as the input for the improved
network model, and the malicious code detection task is converted into an image
classification task;

• The FF-MICNN algorithm is proposed. The opcode sequence features and grayscale
image features are fused, and the improved CNN is used for detection.

The remainder of this article is organized as follows. Section 2 describes the previous
work related to malicious code detection methods. Section 3 introduces the proposed
FF-MICNN algorithm in detail. The simulation results and performance analysis are
discussed in Section 4. Finally, Section 5 presents the conclusion and describes directions
for future research.

2. Related Work

Many researchers have developed different algorithms and solutions to address the
research questions discussed in the introduction. The existing methods of malicious
code detection mainly include static detection algorithms [5–7] and dynamic detection
algorithms [8,9].

The static detection method is to identify malicious code by analyzing the data at the
data level and capturing the relevant semantic and grammatical information of the data
without running the malicious code. Many scholars have carried out numerous studies on
different data structures and forms as shown in Table 1.

Table 1. The static detection methods.

Authors Algorithm Description Merits

Zhu et al. [10] A malicious code detection method using Can quickly detect malicious code,
API sequence of malicious code. cannot detect newly emerged

malicious code.
Zhang et al. [11] Use attribute similarity to detect Can quickly analyze malicious

malicious code. code, cannot accurately analyze
confused code.

Abhijit et al. [12] A malicious code detection method based Has high accuracy and can detect
on frequency characteristics. wrong and missed code, consumes a

large number of resources.
Kang et al. [13] An n-gram opcode features-based approach Supports automatic feature discovery

that utilizes machine learning to identify without relying on prior experts
and categorize Android malware. or domain knowledge.

Imran et al. [14] A detection scheme based on the hidden Relies heavily on the API sequence,
Markov model and discriminant classifier. and requires a large amount of

computation.
Siddiquiet et al. [15] A worm prevention technology using a Can improve the detection rate of

data mining framework. new worms without using a large
amount of data.

Moser et al. [16] A binary obfuscation scheme. Easily avoided if malicious code is
packaged or confused.

Due to the deficiency of static detection methods, dynamic detection methods have
been developed as shown in Table 2. This type of detection method generates behavior re-
ports for portable executable files by analyzing the execution code in a virtual environment
and is based on the execution tracking of the code.

Sensors 2022, 22, 8739 3 of 16

Table 2. The dynamic detection methods.

Authors Algorithm Description Merits

Hisham et al. [17] A behavior-based feature model can Can quickly detect malicious code,
dynamically analyze and evaluate cannot detect newly emerged
a dataset of malicious code. malicious code.

Li et al. [18] A detection method based on the Malicious code can be detected,
semantic dynamic characteristics of evasive malicious code cannot.
malicious code.

Rong et al. [19] A MACSPD detection method, which is Better than a similar type of algorithm
an API sequence model mining method. in detecting unknown malicious code.

Ucci et al. [20] A scalable clustering method to Can identify and group similar malware
identify and group malware samples. programs with better accuracy.

Phodeet et al. [21] A model that predicts malware in Determine the presence of malware
executing files. before it executes a payload.

Mohaisenet et al. [22] A behavior-based automated malware Difficult to realize this method in the
analysis and classification System. case of too much malicious code data.

Image detection methods are different from traditional detection methods. This type of
method is improved on the basis of static detection methods via a relatively new approach
to analyze the binary files of malware, and it also detects confused malware, new malware,
and malware variants by converting the malware into image features. The concept of
malicious code visualization has been proposed and is widely used, and realizes malicious
code detection by converting malicious code into a grayscale image and further processing
the image [23]. The typical image detection methods is shown in Table 3.

Table 3. The Image detection methods.

Authors Algorithm Description Merits

Wan et al. [24] A malicious code classification Can improve the performance of the
method based on analytic behavior. algorithm while reducing data dimensions.

Han et al. [25] A malicious code detection method Cannot sufficiently solve the
based on the texture features of artificial influence, nor can it
malicious code. achieve end-to-end detection.

Hashemi et al. [26] An image-based method to detect Can be regarded as a framework with
unknown malicious code. flexibility.

Xiao et al. [27] A strategy to select a deep learning Classification accuracy was 99.72%
model that fits the malware higher than that of other
visualization images. classification methods.

Based on the preceding literature review, the present work proposes a malicious code
detection method based on the FF-MICNN to overcome the deficiency of the traditional
detection of malicious code varieties and the use of single features. The proposed method
combines both feature fusion and deep learning algorithms. First, malicious code is
transformed into grayscale image features by visualization technology. Then, the opcode
sequence features of the malicious code are extracted by the n-gram technique. Finally,
the global and local features are fused by feature fusion technology, the obtained fusion
features are input into FF-MICNN for training, and the appropriate classifier is selected
for detection.

3. FF-MICNN Algorithm

With the rapid development of the IoT, many devices are connected to the Internet.
Deep learning [28–31] has been applied to many fields, and its effects and achievements
have attracted attention. Among the various deep learning frameworks, the CNN is the

Sensors 2022, 22, 8739 4 of 16

most outstanding in image processing as compared with other networks. The algorithm
proposed in this paper is a network model algorithm adapted to the malicious code
environment based on the improvement of the CNN.

Figure 1 demonstrates the overall composition of the malicious code detection method
based on FF-MICNN, which mainly includes three parts: data processing, model training,
and classification detection. The data processing component mainly includes two processes,
namely feature extraction and feature fusion. The purpose of feature extraction is to obtain
the opcode sequence features and grayscale image features in the dataset with a .asm file
suffix. In the feature fusion component, two extracted single features are fused to form a
new feature vector, which is used as the input of the deep learning model and the training
model. During model training, the parameters of the model are set and optimized by
constructing the FF-MICNN, and a set of parameter combinations suitable for the training
of the network model is selected so that the network can be self-adapted for classification
detection. The classification detection component uses classifiers to classify malicious codes
into their corresponding categories.

Figure 1. Malicious code detection method based on FF-MICNN.

3.1. Data Processing
3.1.1. Grayscale Image Feature Extraction

The malicious code visualization method adopts image processing technology to
convert malicious code files into corresponding grayscale images, which can be used
to further analyze malicious code. There is no need to execute the code to convert the
malicious code into a grayscale image. Compared with the manual analysis of confused
malicious code, this not only saves time and reduces the analysis of the code, but also
avoids the harm caused to computers by malicious code. The conversion process of this
method is shown in Figure 2, and the specific conversion process is as follows.

Figure 2. Malicious code visualization process.

Sensors 2022, 22, 8739 5 of 16

First, the decompiled .asm files in the dataset are read in binary form in units of 8 bits.
Then, the binary sequence of each unit is converted into an unsigned decimal numeric form.
The decimal range is between 0 and 255, and different values represent any pixel value in
the image; 0 is black, 255 is white, and other values are in between black and white. Finally,
the resulting decimal value is converted into a two-dimensional array, and the process is
repeated until the binary file is fully read.

3.1.2. Feature Extraction of Opcode Sequences

The opcode is located in the .text code section of the malicious code file, which
describes the relevant instruction behavior of the malicious code. It can most accurately
describe the local characteristics of the malicious code. The realization of the extraction of
opcode sequence features is as follows.

First, the opcodes are stored in the .text code section in the .asm file, and the contents
of this section must be read as the line reads. The read content is then converted in
hexadecimal fashion. Next, the regular expression is used to match what is read on each
line, which either contains a complete operating instruction or an instruction containing
opcodes and operations. Finally, the opcodes are extracted from the matched instructions
until all the opcodes of the file are extracted and the opcode sequence of the file is obtained.
This algorithm is presented in Algorithm 1.

Algorithm 1 Extraction algorithm of opcode sequences

Input: .asm file;
Output: Opcode sequence;

1: Defines a variable to store an opcode sequence
2: Regularization matching
3: Open the .asm file
4: Read the file by line
5: Judgment, start reading with the .text section
6: Read the content
7: Judgment, match to the content
8: Match, extract opcode; Match failure, this content is followed by an end opcode identi-

fier
9: Return the resulting opcode sequence

10: Finish

During feature extraction, if the extracted opcode sequence is too long, the model
training cannot achieve the ideal effect. Therefore, the n-gram algorithm is used to display
the opcode sequence in the form of a feature vector space. The basic idea is to manipulate
the content information in the text according to the size of the byte n-value by using the
sliding window method. The sequence of byte fragments with the same length of n is
realized, and the frequency of the occurrence of all obtained grams with length n is counted.
Then, filtering is carried out according to the set threshold, the grams that do not meet
the threshold are deleted, and the gram list is formed as a reference [32]. After testing,
it was found that the detection effect was the best when the value of n was 3 and the
occurrence frequency was 700. Therefore, in the experiment conducted in this study, the
opcode sequence features of n = 3 and occurrence frequency = 700 were selected.

3.1.3. Feature Fusion

At the local and global levels, the opcode sequence and grayscale image features
of malicious code represent the similarity of malicious code [33]. There will be some
disadvantages if the similarity of malicious code is represented only by local opcodes [34].
Although it cannot completely describe the similarity of malicious code, it can represent the
features of the core code segment to some extent. The grayscale image can represent not
only the features of the core code segment of malicious code but also the features of other
data resource segments; however, it cannot obtain enough local feature information [35].

Sensors 2022, 22, 8739 6 of 16

During the training process of the deep learning network, regardless of whether local or
global features are used, there may be incomplete feature expression. Therefore, in this
study, the local features of opcodes are combined with the global features of grayscale
images, based on which a high-performance malicious code classification and detection
method is achieved. The core algorithm of the feature fusion method used in this study is
shown in Algorithm 2.

Algorithm 2 Feature fusion algorithm

Input: Opcode sequence feature f 1 and grayscale image feature f 2;
Output: Feature f after feature fusion;

1: Read the first opcode sequence feature f 1
2: Read the second grayscale image feature f 2
3: Read a label file with malicious code labels
4: Find the two features according to the ID of the malicious code
5: Superimpose the opcode sequence feature vectors on the end of the feature vectors of

the grayscale image and fuse them by the function called pandas.merge()
6: Find the corresponding tag based on the ID of the malicious code and merge the two

tags with the function called panda.merge()
7: Obtain the tagged feature f after feature fusion
8: Finish

3.2. Model Building

Compared with machine learning and backpropagation (BP) methods, the advantage
of the CNN is the reduction of the number of parameters of the network training process via
local connection and weight sharing [35,36]. However, a CNN requires that the input image
size be fixed. To solve this problem, the FF-MICNN is proposed for the feature extraction
and detection of malicious codes. It cannot only extract features by self-learning but also
reduces the model parameters and amount of computation while ensuring accuracy [37].
This model can realize the feature extraction and detection of images of different sizes,
which is an improvement based on the CNN, and its composition is demonstrated in
Figure 3.

Figure 3. Network structure of malicious code detection based on FF-MICNN.

First, the input of the input layer is the fused features. Then, the convolution layer
extracts the input features. The weight-sharing function of the network cannot only reduce
the network parameters and retain the main features of the grayscale image but can also
reduce the influence of noise. Then, the pooling layer is located behind the convolution
layer. It selects the features of the feature graph output by the convolution layer, filters out
the irrelevant information, realizes the dimensionality reduction of the data, and carries out
multiple convolutional pooling processes to obtain the most effective features. Next, the
added layer can realize the output of a fixed feature number by selecting different pooling
windows. The fully connected layer can then incorporate local features that increase the
output of the layer. Finally, the integration results are input into the softmax layer for
category judgment to realize the detection of malicious code. The detailed iteration formula
for each layer is as follows.

Sensors 2022, 22, 8739 7 of 16

3.2.1. Convolution Layer

The convolution layer is the first layer in which input data are processed. The main
function is to extract the characteristics of the input grayscale image. The weight-sharing
function of the network can reduce the network parameters, retain the main features of the
grayscale image, and reduce the influence of noise. Each neuron in the convolution layer is
connected with the coefficient of the convolution value output by the upper layer, and the
operation calculation is as follows:

xl
j = f (∑

i∈Mj

xl−1
j ∗ kl

ij + bl
j), (1)

where Mj is the input feature mapping set, kl
ij is the connection of the core of the i-th input

property and the weight of the j-th output feature map, and bl
j is the offset corresponding

to the j-th feature mapping.

3.2.2. Pooling Layer

The pooling layer processes the output of the convolution layer. The main function is
to carry out feature selection based on the output of the convolutional layer, which cannot
only filter out irrelevant information and realize the dimensionality reduction of data, but
can also reduce the influence on image deformation and the dimension of image features,
thus improving the accuracy of the model [38]. The operation calculation of the pooling
layer is

xl
j = f (down(xl−1

j) + bl
j), (2)

where down(.) represents a sub-sampling function and bl
j is the deviation.

3.2.3. Added Layer

This layer is located before the fully connected layer and after the last pooling layer.
First, the input criteria for the CNN are fixed. Second, the disassembly file of malicious
code is caused by the different sizes of information storage, and the converted grayscale
images are also different sizes. Hence, this cannot meet the input criteria of the network
model. However, the input criteria for the network model are determined by the fully
connected layer. Neurons in the fully connected layer are fixed and are fully connected to
the neurons in the previous layer. Therefore, as long as the sizes of the grayscale image
features are guaranteed before the fully connected layer, the standardization of the image
input can be achieved. This layer is shown in Figure 4, and the specific implementation
steps are as follows:

(1) The output of the convolutional layer is pooled several times, and the output of the
pooling layer is improved;

(2) The normalized processing of the feature image is carried out after pooling;
(3) The obtained three feature images are cascaded;
(4) A feature image of the same size is obtained after the output.

3.2.4. Fully Connected Layer

Each neuron in the fully connected layer is fully connected to the neuron in the
previous layer. The fully connected layer can integrate local features in the convolutional
layer or pooling layer, as given by the following:

xl = ∑ αl−1 ∗W l + bl , (3)

where α represents the output of the previous layer, W represents the weight, and b
represents the offset.

Sensors 2022, 22, 8739 8 of 16

3.3. Classification

The softmax layer is selected as the classifier and final structural level for the FF-
MICNN to realize the function of malicious code detection based on the extracted features.
The neurons in the softmax layer are completely connected with the neurons in the upper
layer. The activation function is the softmax function, which maps the result in the interval
from 0 to 1. The mapped value is the probability of each category, and the probability of all
categories adds up to 1.

The vector dimensions of the output of the softmax layer are determined by the
number of types of malicious code datasets. In this detection model, the detection code
results for which category. Therefore, the output of the softmax layer in this study is a
nine-dimensional vector, which is given by the following equation:

fθ(x) =
1

eθ0x+θ1x+···+θjx

 θ0x
· · ·
θjx

 =

 p(y = 0|x, θ)
· · ·

p(y = j|x, θ)

, (4)

where θ represents the parameter matrix of the neural network, p(y|x, θ) represents the
probability of category Y, namely the detection result, and the category with the largest
value is taken as the target category.

Figure 4. Process of adding layers.

4. Simulation and Analysis
4.1. Experimental Data

The data used in the Malicious Code Classification Competition initiated by Microsoft
in 2015 were used in this study. These data contain nine different types of malicious code,
including 10,867 samples that have been labeled. Table 4 presents the types and amounts
of malicious code.

4.2. Evaluation Index

Table 5 presents the confusion matrix of the sample; TP, TN, FP, and FN can be
calculated from the confusion matrix. TP represents the number of samples of a certain type
of malicious code that is correctly classified as this type of malicious code after classification,
TN represents the number of samples of other types of malicious codes that are correctly
classified as other types of malicious codes after classification, FP represents the number of
samples of certain types of malicious codes that are mistakenly classified as other types
of malicious codes after classification, and FN represents the number of samples of other
types of malicious codes that are mistakenly classified as these types of malicious codes
after classification.

To facilitate and quantitatively analyze the detection effect of malicious code, unified
evaluation indexes, including the accuracy rate, precision rate, recall rate, and F1 score,
were used to evaluate the relevant performance of the model during the experiments

Sensors 2022, 22, 8739 9 of 16

conducted in this study. The calculation formulas for these four evaluation indexes are,
respectively, as follows.

accuracy =
TP + TN

TP + TN + FP + FN
(5)

precision =
TP

TP + TN
(6)

recall =
TP

TP + FN
(7)

F1 =
2 ∗ recall ∗ precision

recall + precision
(8)

4.3. Parameter Setting

In the malicious code classification method based on FF-MICNN, FF-MICNN is used
to automatically extract the deep features of malicious code. To show the comprehensive
features of different malicious codes and improve the malicious code classification ability,
the network structure of FF-MICNN was optimized via continuous experiments and
parameter adjustment during the experiments. The parameters adjusted in the experiment
included the learning rate and iteration number, among others. Only a single parameter
was adjusted when all other parameters remained the same. The parameter with the
best generalization power was selected and set as a fixed parameter, after which the
next parameter was adjusted. This was continued until all parameters were adjusted
and optimized, and an optimal parameter set of FF-MICNN was obtained. The model
parameter setting is shown in Table 6.

4.4. Experimental Simulation

A deep learning framework was selected as the detection model in this study. After
the improvement of the model, the limitation of converting malicious code files of different
sizes into two-dimensional images is solved. The input criteria for the network model
are determined by the fully connected layer. The neurons in the fully connected layer
are fixed and are fully connected to the neurons in the previous layer. In this study, a
layer was added before the fully connected layer to ensure the size of grayscale image
features. Therefore, the improved network is referred to as the FF-MICNN. The following
demonstrates the effectiveness of the network model by comparing the simulation results
of single and fused features.

Table 4. The types of malicious code.

Serial Number Malicious Code Category Description Sample Size

1 Lollipo — 2478
2 Ramni Contains the code for a powerful botnet 1542
3 Simda Consists of four types of malicious code,

The most sophisticated of which are botnets, 42
Trojans, backdoors, and password theft

4 Vundo Trojans and worms 474
5 Tracur Trojans 751
6 Gatak Trojan horse 1013
7 Kelihos_ver3 Encrypted P2P botnets 2942
8 Kelihos_ver1 Bot 398
9 Obfuscator.ACY Malicious code formed by a

combination of four methods 1228

Sensors 2022, 22, 8739 10 of 16

Table 5. The confusion matrix.

Types Real Samples Pseudo-Samples

Real samples TP FN
Pseudo-samples FP TN

Table 6. The parameter setting of the model network.

Parameter Numerical Value Instruction

Input size variable Fusion features of malicious code
Convolution kernel 3 × 3 Size of the convolution kernel

Step length 1 Step size of the convolution kernel and pooling window
Pool size 2 × 2 Size of the pool window

Learning rate 0.001 Learning rate of FF-MICNN
Iterations 15 Number of iterations

Activation function ReLU Activation function selected by FF-MICNN
Classifier softmax Softmax regression classification model

Dataset partition 7:3 Ratio of training data to test data

4.4.1. Simulation Experiment of Opcode Sequence

As presented in Figure 5, the traditional machine learning algorithm, deep confidence
network algorithm, and CNN algorithm were selected for analysis and comparison with
the proposed FF-MICNN algorithm. The figure reveals that the detection ability of each
model varied under different n-gram frequencies. However, from the overall view of the
figure, the detection ability of the proposed model was relatively better than those of the
other models. The detection ability of the proposed model was the best when the n-gram
frequency of the opcode was about 700 and was about 0.2 percentage points higher than
those of the other three models. Therefore, the opcode sequence detection of the deep
learning model was effective.

Figure 5. Simulation of opcode sequence.

Sensors 2022, 22, 8739 11 of 16

4.4.2. Grayscale Image Simulation Experiment

Figure 6 presents the simulation results of the effect of the use of grayscale image
features on the FF-MICNN network model and other network models. It can be seen from
the graph that the proposed network model was more stable than the other models, and its
accuracy tended to be stable. On average, the accuracy of the proposed network model
was higher than those of the other network models, and it was also more stable.

Figure 6. Simulation of gray image.

4.4.3. Simulation Detection of Fused Features

To compare the influence of fused features and single features on model classification
detection, opcode sequence features, grayscale image features, and fused features were
respectively detected and compared to display the detection ability of single and fused
features. The comparison is shown in Figure 7.

Figure 7. Simulation of single feature and fusion feature.

Sensors 2022, 22, 8739 12 of 16

It can be seen from Figure 7 that the detection curve of fused features was always
above the detection curve of a single feature. This indicates that feature fusion-based
detection was better than single feature-based detection, and the accuracy reached 99.36%;
this is 0.3% higher than the average accuracy of single feature-based detection, which is
enough to demonstrate the superior detection ability of feature fusion.

The FF-MICNN was compared with the VGG15 network improved by VGG16 and a
simple refinement of the CNN, as shown in Figures 8 and 9. Although the performance
of the VGG15 and CNN networks was better than that of the proposed network in ap-
proximately the first 15 rounds, with the increase in the number of training rounds, the
FF-MICNN outperformed them. The reason for this is that a layer was added to the pro-
posed method to solve the problem of unequal image sizes, and the appropriate number of
convolution layers and the appropriate convolution kernel size were chosen. Regarding
the other two networks, one is a simple 5-layer neural network, and the other lacks the
processing of the image size. From the perspective of the network structure, the proposed
network is more complex; thus, more specific image features can be extracted, thereby
achieving a better detection effect.

Figure 8. Change of loss in network training.

Figure 9. Change of accuracy in network training.

Sensors 2022, 22, 8739 13 of 16

To verify the detection capability of the model, three network algorithms, namely
a parallel CNN, a CNN, and a CNN with a balanced dataset, were selected for compar-
ison with the proposed FF-MICNN algorithm. The model was verified to have better
performance in malicious code detection. The experimental results are reported in Table 7.

Table 7. The comparison of different methods.

Algorithm Name TPR FPR Accuracy F1

Parallel-CNN [30] 0.959 0.0326 0.9818 0.9805
CNN-Image [31] 0.9387 0.0735 0.9406 0.9317

CNN+Image+Bat [32] 0.9255 0.0311 0.9346 0.9221
FF-MICNN 0.9614 0.0311 0.986 0.9817

In Table 7, the four indexes of the true positive rate (TPR), false positive rate (FPR),
accuracy, and F1 value are respectively compared and analyzed. This experiment resulted
in good results on the performance ability of the proposed algorithm based on the four
indexes. Among them, the accuracy index can best reflect the detection ability of the
proposed model; the accuracy reached 98.6%, which is better than those of the other three
detection algorithms. In terms of the TPR and FPR indexes, although the comparison of
the accuracy index was not obvious, the results also indicate that the detection ability of
this model was the best. Regarding the F1 score, the prediction accuracy of the proposed
method was also good, indicating that the method has certain advantages in the aspect of
malicious code feature extraction, thus leading to better detection.

In addition, the champion detection method of the Kaggle Competition and four
methods presented in the extant literature [39–42] were also selected for comparative
analysis to verify the effectiveness of the proposed feature selection method. The detection
algorithm of the champion team uses the image features of malicious code, the fused
features of opcode and headers, and the random forest algorithm to realize code detection.
In the method by Lang et al. [39], three groups of features are extracted by texture maps
and disassembly files for fusion classification, and the random forest algorithm is used
as the classifier for code detection. In the method by Liu et al. [40], the frequency and
behavior of the opcode sequence are used as feature vectors for dynamic and static feature
fusion, and the KNN algorithm is then used to detect malicious code. In the method
by Li et al. [41], grayscale image and color feature vectors are fused, and malicious code
detection is then realized via the random forest algorithm. In the method by Luo et al. [42],
texture image features and command frequency features are used for feature fusion, and
a deep confidence network is used for detection. These five algorithms were compared
with the proposed FF-MICNN algorithm, and the results show that the FF-MICNN model
achieved better performance in malicious code detection. The experimental results are
presented in Table 8.

Table 8. Comparison of different methods.

Paper Author Accuracy Description

Kaggle champion 98% Feature fusion of image features, opcodes, and headers
Lang et al. 87% Feature fusion of opcode sequences and gist features
Xiu et al. 96% Feature fusion of opcode sequence frequency and behavior
Li et al. 95.518% Feature fusion of grayscale image and color

Luo et al. 95.76% Feature fusion of grayscale image texture and operation frequency
FF-MICNN 98.6% Truncated scale grayscale image and opcode sequence

According to the analysis method described previously, two characteristic features
were selected for use in the proposed method, and very high detection accuracy was
achieved. It was verified that the two features selected for use in the proposed method

Sensors 2022, 22, 8739 14 of 16

can sufficiently express the global and local features of malicious code, and almost all the
features of malicious code can be extracted for detection. In addition, the proposed method
can automatically learn and extract deep-level features; this is different from the machine
learning algorithm, which extracts only surface-level features.

The fusion of the two features extracted from the FF-MICNN model can achieve a
comprehensive representation of malicious code features, which can improve the clas-
sification detection of the model to a certain extent. In addition, the fused features can
reveal more superficial features than single features in the representation of malicious code
features, and deeper features can be further obtained through the FF-MICNN model, thus
improving the results of malicious code detection. Therefore, the proposed model has a
certain significance for the detection of malicious samples. It not only achieves detection
with less time and resource consumption but also is not subject to the amount and type of
malicious code, and can solve the problems of the explosive growth of malicious code and
analysis difficulty.

In this work, a malicious code detection method based on the combination of the se-
quence features of the opcodes and grayscale image features was proposed. This algorithm
mainly extracts the features of the sequence of operation codes as the local features and
extracts the features of malicious code disassembly files converted into grayscale images
as the global features. The two features are fused through a fusion algorithm and input
into the FF-MICNN for comprehensive abstract feature extraction. Classifiers are used to
divide them into respective categories to complete the detection of malicious code. The
experimental results show that feature fusion is more conducive to the representation of
code features and can represent more comprehensive and abstract features, which aids in
the detection of malicious code.

5. Conclusions

This paper proposed a malicious code detection algorithm to solve the problems of
the constant increase of malicious code and deformation based on malicious code. First, the
confused code causes the expression of extracted features to be unclear, and its behavior and
instructions are difficult to understand. Therefore, the algorithm can avoid the confusion
of malicious code by converting the code into grayscale image space vectors, and the
detection of malicious code can be converted into an image detection task. Second, the
grayscale image input into the CNN limits the size of the grayscale image, so the extracted
feature expression is incomplete. Hence, the CNN is improved by adding a structural
layer to realize the function of the input of grayscale images without limiting the size,
thereby improving the detection performance. The results of simulations demonstrated
that this algorithm is better than the machine learning algorithm in terms of the objective
indicators of the accuracy, recall rate, and precision rate, and more accurate detection results
were obtained.

Aiming at the problem of the incomplete feature description of malicious code, a
feature fusion detection algorithm was proposed. First, the opcode sequence in the dis-
assembled .asm file of malicious code is selected as the local feature, and the .asm file
is then transformed into a grayscale image space vector as the global feature. The static
features of the malicious code can be described completely by fusing these two features.
The fused features are input into the FF-MICNN to realize automatic feature extraction, and
the types of malicious code are represented by the softmax layer in the form of probability,
thus realizing the detection of malicious code. The results of simulations revealed that the
proposed algorithm can fully express the characteristics of malicious code because of the
fusion of local and global features. The proposed FF-MICNN realizes the deep feature
extraction and autonomous learning of malicious code and avoids human interference. The
results of the simulations showed that the accuracy of the proposed algorithm was better
than those of algorithms using a single feature.

Although the proposed algorithm is optimized for the graphical processing of mali-
cious code, it is characterized by some shortcomings. In the present study, the test dataset

Sensors 2022, 22, 8739 15 of 16

was unbalanced and the accuracy was meaningful in the specified condition. Furthermore,
the test dataset size was not large, which cannot indicate the superiority of FF-MICNN.
Moreover, the algorithm does not take into account the uneven distribution of malicious
code types in the dataset. In future research, the test dataset will be balanced and enlarged
to further improve the proposed malicious code detection algorithm under these conditions.

Author Contributions: W.Z. researched the extant literature, conceived the study concepts, designed
the improved convolutional neural network, proposed the malicious code detection algorithm based
on FF-MICNN, carried out the simulation, analyzed the simulation results, and took charge of the
entire manuscript. Y.F. and G.H. assisted with the integrity of the entire study, provided crucial
intellectual support, and revised the manuscript. H.Z. transformed malicious code into grayscale
image features, extracted the opcode sequence features of malicious code, and fused the global and
local features. X.T. contributed to polishing the revised version of the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: The work is supported by the National Key Research and Development Program under
grant no. 2017YFE0125300, China Academy of Military Sciences Fund (2019), Liaoning Distinguished
Professor Project (2017), the National Natural Science Foundation of China–Guangdong Joint Fund
under grant no. U1801264, the Jiangsu Key Research and Development Program under grant no.
BE2019648, Project of Shenzhen Science and Technology Innovation Committee under grant no.
JCYJ20190809145407809, National Science and Technology Major Project under grant no. 2017-V-
0011-0062, the project of Fujian University of Technology under grant no. GY-Z19066.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, G.; Chen, Z.; Wang, H.; Chen, H.; Wang, S. Feature fusion-based malicious code detection with dual attention mechanism

and BiLSTM. Comput. Secur. 2022, 119, 1–14. [CrossRef]
2. Trivikram, M.; Nir, N. Improving malicious email detection through novel designated deep-learning architectures utilizing entire

email. Neural Netw. 2022, in press.
3. Wang, Q.; Qian, Q. Malicious code classification based on opcode sequences and textCNN network. J. Inf. Secur. Appl. 2022, 67,

1–12. [CrossRef]
4. Hou, J.; Liu, F.; Lu, H.; Tan, Z.; Zhuang, X.; Tian, Z. A novel flow-vector generation approach for malicious traffic detection. J.

Parallel Distrib. Comput. 2022, 169, 72–86. [CrossRef]
5. Malka, N. Estimation of the success probability of a malicious attacker on blockchain-based edge network. Comput. Netw. 2022,

in press.
6. RAsim, M.; Fargana, J.; SAbira, S. Image-based malicious Internet content filtering method for child protection. J. Inf. Secur. Appl.

2022, 65, 103123.
7. Lara, K.; Divakaran, L. Predicting stock market returns from malicious attacks: A comparative analysis of vector autoregression

and time-delayed neural networks. Decis. Support Syst. 2022, 51, 745–759.
8. Marcus, B.; Marco, Z.; Daniela, O.; Andre, G. HEAVEN: A Hardware-Enhanced AntiVirus ENgine to accelerate real-time,

signature-based malware detection. Expert Syst. Appl. 2022, 201, 117083.
9. Wu, J.; Wang, W.; Huang, L.; Zhang, F. Intrusion detection technique based on flow aggregation and latent semantic analysis.

Appl. Soft Comput. 2022, 127, 109375. [CrossRef]
10. Zhu, J.; Wu, Z.; Guan, Z. API Sequences Based Malware Detection for Android. In Proceedings of the Ubiquitous Intelligence &

Computing & IEEE Intl Conf on Autonomic & Trusted Computing & IEEE Intl Conf on Scalable Computing & Communications
& Its Associated Workshops, Beijing, China, 21 July 2016; pp. 673–676.

11. Zhang, F.; Zhao, T. Malware Detection and Classification Based on N-Grams Attribute Similarity. In Proceedings of the 2017 IEEE
International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; pp. 793–796.

12. Abhijit, Y.; Maninder S. Malware detection based on opcode frequency. In Proceedings of the 2016 International Conference on
Advanced Communication Control and Computing Technologies (ICACCCT), Pyeongchang, South Korea, 31 January–3 February
2016; pp. 646–649.

13. Kang, B.; Yerima, S.Y.; Sezer, S.; McLaughlin, K. N-gram Opcode Analysis for Android Malware Detection. Int. J. Cyber Situat.
Aware. 2016, 1, 231–254. [CrossRef]

14. Imran, M.; Afzal, M.T.; Qadir, M.A. Similarity-Based Malware Classification Using Hidden Markov Model. In Proceedings of
the 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec), Jakarta, Indonesia,
29–31 October 2015; pp. 129–134.

15. Siddiquiet, M.; Wang, M.; Lee, J. Detecting Internet Worms Using Data Mining Techniques. J. Syst. Cybern. Inform. 2008, 6, 48–53.

http://doi.org/10.1016/j.cose.2022.102761
http://dx.doi.org/10.1016/j.jisa.2022.103151
http://dx.doi.org/10.1016/j.jpdc.2022.06.004
http://dx.doi.org/10.1016/j.asoc.2022.109375
http://dx.doi.org/10.22619/IJCSA.2016.100111

Sensors 2022, 22, 8739 16 of 16

16. Moser, A.; Kruegel, C.; Kirda, E. Limits of Static Analysis for Malware Detection. In Proceedings of the Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007; pp. 421–430.

17. Hisham, S.G.; Yousef, B.M.; Mohammed, A.A. Behavior-based features model for malware detection. J. Comput. Virol. Hacking
Tech. 2016, 12, 59–67.

18. Li, M.; Jia, X.; Wang, R.; Lin, D. A Feature Selection and Modelling Method for Malicious Code. Comput. Appl. Softw. 2015, 32,
266–271.

19. Rong, F.; Zuo, Z.; Fang, Y. MACSPMD: Malicious Code Detection Based on Malicious API Call Sequence Pattern Mining. Comput.
Sci. 2018, 45, 131–138.

20. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.
[CrossRef]

21. Davuluru, V.S.P.; Narayanan, B.N.; Balster, E.J. Convolutional Neural Networks as Classification Tools and Feature Extractors for
Distinguishing Malware Programs. In Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON),
Dayton, OH, USA, 15–19 July 2019; pp. 273–278.

22. Mohaisen, A.; Alrawi, O.; Mohaisen, M. AMAL: High-fidelity, behavior-based automated malware analysis and classification.
Comput. Secur. 2015, 52, 251–266. [CrossRef]

23. Liu, Y.; Wang, Z.; Hou, Y. Malware visualization and automatic classification with enhanced information density. J. Tsinghua Univ.
2019, 59, 9–14.

24. Wan, L.; Xia, J.; Zhu, Y.; Lv, Z. An Improved Semi-supervised Feature Selection Algorithm Based on Information Entropy. Stat.
Decis. 2021, 17, 66–70.

25. Han, X.; Qu, W.; Yao, X.X.; Guo, C.Y.; Zhou, F. Research on Malicious Code Variant Detection Method Based on Texture Fingerprint.
J. Commun. 2014, 35, 125–136.

26. Hashem, H.; Ali, H. Visual malware detection using local malicious pattern. J. Comput. Virol. Hacking Tech. 2019, 15, 1–14.
[CrossRef]

27. Xiao, G.; Li, J.; Chen, Y.; Li, K. MalFCS: An effective malware classification framework with automated feature extraction based
on deep convolutional neural networks. J. Parallel Distrib. Comput. 2020, 141. [CrossRef]

28. Chu, Q.; Liu, G.; Zhu, X. Visualization Feature and CNN Based Homology Classification of Malicious Code. Chin. J. Electron.
2020, 29, 154–160. [CrossRef]

29. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
30. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Ke, J.; Lin, R.; Sharma, A. An Automatic Instrument Recognition Approach Based on Deep Convolutional Neural Network.

Recent Adv. Electr. Electron. Eng. 2021, 14–16. [CrossRef]
32. Qiang, H.; Guo, Y.; Tian, L. Research on malicious code detection method based on deep belief network. Comput. Technol. Dev.

2019, 29, 93–97.
33. Kumar, R.; Zhang, X.; Wang, W.; Khan, R.U.; Kumar, J.; Sharif, A. A Multimodal Malware Detection Technique for Android IoT

Devices Using Various Features. IEEE Access 2019, 7, 64411–64430. [CrossRef]
34. Ren, W.; Zhai, L.; Jia, J.; Wang, L.; Zhang, L. Learning selection channels for image steganalysis in spatial domain. Neurocomputing

2020, 401, 10012–10026. [CrossRef]
35. Chechlinski, U.; Siemitkowska, B.; Majewski, M. A System for Weeds and Crops Identification-Reaching over 10 FPS on Raspberry

Pi with the Usage of MobileNets, DenseNet and Custom Modifications. Sensors 2019, 19, 3787 [CrossRef]
36. Hamzeh, A.; Bakhshinejad, N. Parallel-CNN Network for Malware Detection. IET Inf. Secur. 2019, 14, 210–219.
37. Gibert, D.; Mateu, C.; Planes, J. Using convolutional neural networks for classification of malware represented as images. J.

Comput. Virol. Hacking Tech. 2019, 15, 15–28. [CrossRef]
38. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. IEEE Trans. Ind.

Inform. 2018, 14, 3187–3196. [CrossRef]
39. Lang, D.; Ding, W.; Jiang, H.; Chen, Z. Malicious Code Classification Algorithm Based on Multi-feature Fusion. J. Comput. Appl.

2019, 39, 2333–2338.
40. Xiu, Y.; Liu, J. Malware Detection Based on Opcode Sequence Frequency Vector and Behavior Feature Vector. Inf. Secur. Commun.

Priv. 2016, 9, 97–101.
41. Li, S.; Wang, C.; Shi, Y. Malicious Code Detection Based on Multi-feature Random Forest. Comput. Appl. Softw. 2020, 37, 328–333.
42. Luo, S. Research on Deep Learning Malicious Code Analysis and Detection Technology. Ph.D. Thesis, Xinjiang University,

Ürümqi, China, 2018.

http://dx.doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1007/s11416-018-0314-1
http://dx.doi.org/10.1016/j.jpdc.2020.03.012
http://dx.doi.org/10.1049/cje.2019.11.005
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.2174/2352096514666210322155008
http://dx.doi.org/10.1109/ACCESS.2019.2916886
http://dx.doi.org/10.1016/j.neucom.2020.02.105
http://dx.doi.org/10.3390/s19173787
http://dx.doi.org/10.1007/s11416-018-0323-0
http://dx.doi.org/10.1109/TII.2018.2822680

	Introduction
	Related Work
	FF-MICNN Algorithm
	Data Processing
	Grayscale Image Feature Extraction
	Feature Extraction of Opcode Sequences
	Feature Fusion

	Model Building
	Convolution Layer
	Pooling Layer
	Added Layer
	Fully Connected Layer

	Classification

	Simulation and Analysis
	Experimental Data
	Evaluation Index
	Parameter Setting
	Experimental Simulation
	Simulation Experiment of Opcode Sequence
	Grayscale Image Simulation Experiment
	Simulation Detection of Fused Features

	Conclusions
	References

