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Abstract: Owing to the availability of a wide range of emotion recognition applications in our
lives, such as for mental status calculation, the demand for high-performance emotion recognition
approaches remains uncertain. Nevertheless, the wearing of facial masks has been indispensable
during the COVID-19 pandemic. In this study, we propose a graph-based emotion recognition
method that adopts landmarks on the upper part of the face. Based on the proposed approach,
several pre-processing steps were applied. After pre-processing, facial expression features need to
be extracted from facial key points. The main steps of emotion recognition on masked faces include
face detection by using Haar–Cascade, landmark implementation through a media-pipe face mesh
model, and model training on seven emotional classes. The FER-2013 dataset was used for model
training. An emotion detection model was developed for non-masked faces. Thereafter, landmarks
were applied to the upper part of the face. After the detection of faces and landmark locations were
extracted, we captured coordinates of emotional class landmarks and exported to a comma-separated
values (csv) file. After that, model weights were transferred to the emotional classes. Finally, a
landmark-based emotion recognition model for the upper facial parts was tested both on images and
in real time using a web camera application. The results showed that the proposed model achieved
an overall accuracy of 91.2% for seven emotional classes in the case of an image application. Image
based emotion detection of the proposed model accuracy showed relatively higher results than the
real-time emotion detection.

Keywords: face detection; emotion recognition; facial mask; landmark vectors application; facial
expression detection

1. Introduction

The fast development of human–computer interaction and pattern recognition has
brought significant convenience to humanity. Facial expression recognition (FER) is a
crucial task for machines to understand the emotional well-being of people. FER is a
powerful, natural, and universal signal that allows humans to convey their emotional states
and intentions [1]. The range of FER applications is increasing, including online education,
medical care, security, driving control, and other business sectors. The applications of
FER in daily life will enable robots to understand the mental states and intentions of
people based on their facial expressions and respond to them appropriately. In fact, human
facial expression is one of the most pivotal ways for people to represent their emotional
state. The main aim of expression recognition is to understand the inner thoughts of an
individual regarding certain things or actions. For example, in certain countries, we can
see the application of FER in facial expression recognition identification for capturing the
fluctuating moods of elementary school students while in class to analyze their learning
status and treat them as individuals based on their attitude. Alternatively, FER can be
applied to judge the state of fatigue of pilots and drivers and to avoid traffic hazards
through the technical implications. Therefore, in terms of inadvertently showing the true
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feelings of an individual, FER is more diverse than other communication methods [2]. From
the technical side, FER extracts information representing the facial expression images with
the help of computer image processing technology and then classifies the facial expression
features according to human emotional expressions. Basic forms of expressions include
sadness, happiness, fear, disgust, surprise, and anger.

Over the last few years, there has been rapid development in facial expression recogni-
tion technologies. FER research has mainly focused on feature extraction and classification.
Facial expression features are extracted from facial regions, such as geometric and appear-
ance features, which can be used for classification from input images or video streams [3,4].
Facial landmark analysis plays a crucial role in FER, including many applications derived
from face processing operations and biometric recognition [5]. Based on the landmark
implementation, we can analyze eye corners, eyebrows, mouth corners, etc., which enables
us to come to certain facial expression conclusions with regard to the capture of the dy-
namic changes of facial features. The estimation of the feature vector to describe a person’s
emotion is considered one of the foremost steps in facial expression identification. It is
important to know the relative settings of the facial landmark points. To describe the move-
ments of facial muscle landmarks, Yan et al. [6] defined facial landmarks as derivatives
of action units (AUs). In 1971, Ekman [7] first divided expressions into six forms, and
many studies have been based on emotion recognition studies relevant to defining facial
features. Since AUs are suitable for FER, in [8,9], a facial expression analysis was conducted
by computing the AUs using facial landmarks. A previous study [10] introduced a fusion
approach based on landmarks and videos. The proposed models indicate that landmark
features are effective for FER.

Herein, we present a graph-based representation of facial landmarks through a graph
neural network GNN [11] for eye and eyebrow cases and propose an FER algorithm using
a graph-based representation. In the first step of our proposed method, we built a model
for facial expression recognition using the FER-2013 dataset. The model was trained using
a non-masked face and facial expression identification. The second step of our research
required the implementation of a facial expression recognition model weight to masked
faces using transfer learning. Finally, we implemented the media-pipe face mesh algorithm
to create landmarks on masked faces and then created emotional classes based on the facial
expression recognition model.

The major contributions of this paper are as follows:

1. We propose a new GNN structure with landmark features as the input and output;
2. FER with more detailed input landmark modalities is applied by adopting an FER

model by media-pipe face mesh algorithm;
3. Notably, this study proposes a two-fold contribution during expression recognition.

That is, after the implementation of the face mesh algorithm on a masked face, the
model detects facial expressions on either masked or non-masked faces.

There have been many studies on FER with highly accurate results using convolutional
neural network (CNN), as illustrated in Figure 1. Therefore, the main focus of this research
is on masked face emotion recognition.
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The paper is organized as follows: Section 2 reviews existing conventional studies on
facial emotion recognition. Section 3 presents in detail an explanation of the landmark-
based emotion recognition approach. The experimental results based on FER databases
are discussed in Section 4. Section 5 describes specific shortcomings of the proposed
method. Section 6 concludes the paper by giving an outline of our findings and upcoming
research directions.

2. Related Works
2.1. Face Landmark Detection

Face detection is complicated owing to the different variability of human facial pres-
ence, such as pose, position and orientation, expression, complexion, frontal face objects
(e.g., glasses, hairstyle, and beard), and external objects, such as differences in camera
gain, lighting conditions, and resolution. Most researchers [12,13] have shown that precise
landmarks are essential for achieving an accurate face recognition performance. Face detec-
tion is connected to image processing and computer vision interrelations with the instant
detection of human faces. The first step in face recognition involves setting a face location
in the image. In [14], face localization was conducted by finding the nose tip and then
segmenting it by cropping the sphere centered at this tip. After face detection and segmen-
tation, landmark localization is frequently used for face analysis. Many existing proposed
techniques rely on the accurate localization of the corresponding landmarks or regions to
achieve a rough alignment of meshes [15]. Landmark localization of facial features can be
achieved by first locating the facial feature region of interest (RoI). Kakadiaris et al. [16]
conducted face recognition with an annotated model that was non-rigidly registered for
face meshes with an initial orientation of the face. There are several categories of facial
landmark detection methods—holistic, co-strained local model (CLM), and regression-
based [17] approaches. The most commonly used holistic method is the active appearance
model (AAM) [18]. With regard to the CLM method, the most well-known model is the
active shape model (ASM) [19]. Both models have several advantages. The ASM is more
accurate in the case of point or contour localization and is less sensitive to fluctuations in
illumination. Therefore, the ASM is relatively effective and suitable for applications that
require precise contours. According to the anthropometric landmark distance measure-
ments, the upper part of the facial key points contained only the eyebrows. The most likely
landmark location approach treats the finding of a landmark as a two-class classification
problem, such as a site, regardless of whether a location in an image is a landmark.

2.2. Classification of Facial Expressions

Facial expressions can be easily observed and distinguished as a communication
technique in the field of psychology [20]. Facial expressions provide information about
a person’s emotions. FER analysis consists of three steps: (a) face detection; (b) facial
expression detection; and (c) expression classification into an emotional state as shown in
Figure 2.
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slight rise of one side of the lip corner [7].
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2.3. Face Emotion Detection

FER is a technology used to conduct a sentiment analysis of faces from different sources
such as images and videos. Facial expressions are a form of nonverbal communication that
provides hints of human emotions. In the early 1970s, psychologist Paul Ekman developed
the Facial Action Coding System (FACS), which allows the interpretation of a person’s
emotions by examining his/her facial expressions. These expressions are reported as a
combination of isolated muscle movements, also referred to as action units (AUs) [21]. For
example, the usual motion in a face expressing joy is claimed to be a smile, which is the
result of tension in the symptomatic major muscle, classified as AU 12 or a “lip corner
puller” based on the FACS [22]. Currently, big technological advancements, such as in the
field of machine learning and pattern recognition, have played an outstanding role in the
enlargement of FER technologies. Depending on the implementation of the algorithm, facial
expressions can be grouped as basic emotions (e.g., anger, disgust, fear, joy, sadness, and
surprise) or compound emotions (e.g., happy, happily surprised, sadly fearful, sadly angry,
and sadly surprised) [23]. FER has gained special attention from researchers in the field of
computer vision. Moreover, several companies offer their FER services through the web
using an application programming interface (API), where users are able to send an image or
video to their servers and obtain a specific data analysis of the defected facial expressions
as a result [24]. One group of researchers proposed a facial recognition technique that uses
histograms of oriented gradients (HOG) as descriptors and principal component analysis
(PCA) along with linear discriminant analysis (LDA) as techniques for a dimensionality
reduction of such descriptors [25].

2.4. Landmark-Based Emotion Recognition

In [26], a graph convolutional neural network is proposed to utilize landmark features
for FER. Landmarks were applied to detect nodes, and the Delaunay method was used
to build edges in the graph. In [27], a feature vector technique comprised three main
steps in order to recognize emotions on masked faces. Researchers applied a landmark
detection method to extract the features of occluded masked faces, and emotions were
identified based on the upper facial landmark coordinates. In [28], a robust framework
is presented for the detection and segmentation of faces, and landmark localization was
applied to face meshes to fit the facial models. Landmark localization was conducted
on the segmented faces to minimize the deviation of proposed technique from the mean
shape. Similarly, researchers [29] used a mathematical technique to compare real-world
coordinates of facial feature points with 2D points obtained from an image or live video
using a projection matrix and Levenberg–Marquardt optimization. This technique was
implemented to determine the Euler angles of the face and the best sets of facial landmarks.
In addition, numerous studies using facial landmarks for face recognition, face emotion
recognition, 2D- and 3D-based face detection, and other purposes have been conducted, as
shown in Table 1.

Table 1. Comparison of feature parts and landmark application, focus areas.

Methods
Input Feature Parts

(Upper: Eyes, Eyebrows
Lower: Nose, Mouth)

Landmark
Application Area Focus Area

RTFER [30] Upper + Lower Face landmarks Mainly focus to Lower

ResiDen [31] Upper + Lower Face landmarks Mainly focus to Lower

DenseNet [32] Upper + Lower Face landmarks Mainly focus to Lower

Proposed method Upper Face landmarks Mainly focus to Upper
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3. Proposed Method

The proposed method first applies facial identification and face emotion recognition
steps on normal faces by using a Haar–Cascade classifier. The facial emotion recognition
model was developed for faces. There has been a great number of studies on facial
expression. However, as we mentioned, this paper focuses on the analysis of upper part
facial expressions when people have a mask on their faces. For upper part facial landmarks,
we gathered mainly eyes, eyebrows, landmarks disconnected to the nose and mouth.
Figure 3 below represents seven emotional class landmark coordinates.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19 
 

 

In this step, the media-pipe framework was implemented to build machine learning pipe-
lines. Media-pipe is a framework designed to build machine-learning pipelines for pro-
cessing time-series data, such as video and audio. The media-pipe framework provides 
approximately 16 open-source pre-built examples based on specific pre-trained Tensor-
Flow or TF-Lite models. The solution we implemented in our research is referred to as the 
media-pipe face-mesh model, which estimates 468 3D face landmarks in real time [36], as 
shown in Figures 3 and 4. 

 
Figure 3. Media-pipe face-mesh mapping for 468 vertices. 

 
Figure 4. Media-pipe face-mesh application on video capture. 

Face-Mesh (FM) [37] is a face landmark-based machine learning model developed 
through transfer learning. FM was specifically designed to recognize a user’s facial topol-
ogy in three dimensions. The machine learning architecture of FM was built on top of the 
Blaze Face (BF) [38] model. The main purpose of the BF model is to find faces in an image 
or video frame and make estimations in the bounding boxes. After the bounding boxes 
surround the face using BF, FM conducts an estimation in 3D coordinates. The pipeline 
consists of two real-time deep neural network models. The first is a detector that conducts 
operations on the full image and computations on the face locations. The second 3D face 

Figure 3. Media-pipe face-mesh mapping for 468 vertices.

3.1. Haar–Cascade Classifier

Face detection is a popular subject area for researchers and offers a variety of appli-
cations. Face detection applications play a crucial role in surveillance systems as well
as in security and biometric identification processes. The face detection process in this
study used the Haar–Cascade classifier method. Motivated by the problem of face de-
tection, the early Viola–Jones object detection framework, also popularly known as the
Haar–Cascade algorithm, was first introduced in 2001 [33]. Haar denotes a mathematical
function (Haar wavelet) in the form of a box. This algorithm identifies faces in an image or
a real-time video. The calculation of the Haar value from a rectangular image is used to
detect a vertical edge with darker pixels on its right and lighter pixels on its left. The Haar
classifier was trained using Haar-like features by combining the integral graph method
with the AdaBoost algorithm. The Haar-like features can reflect the gray-level change of
an image because of the different features of the change in characteristics of the human
face contrast. The Haar-like features process images in squares, where several pixels are
represented. Every box then produces values that specify dark and light areas. Since the
face representation in the image is automatically detected, the face position will adjust to
the face data in each image. Moreover, there are Haar features that detect edges in other
directions and structures by traversing the entire image. To search for particular features
of an image, Haar-like features are continuously monitored from the top left of the image
to the bottom right pixel by pixel. Researchers have also proposed an AdaBoost-based
learning algorithm [34] to obtain an efficient classifier from the implementation of a small
number of essential visual features. In other words, Haar-like descriptors are commonly
used for texture descriptors. Haar–Cascade operates with grayscale images and does not
work directly with image intensities [35].
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3.2. Media-Pipe Model

We developed a landmark detection method for faces with and without masks. In
this stage, we adopted a landmark detection model for all masked and non-masked faces.
In this step, the media-pipe framework was implemented to build machine learning
pipelines. Media-pipe is a framework designed to build machine-learning pipelines for
processing time-series data, such as video and audio. The media-pipe framework provides
approximately 16 open-source pre-built examples based on specific pre-trained TensorFlow
or TF-Lite models. The solution we implemented in our research is referred to as the
media-pipe face-mesh model, which estimates 468 3D face landmarks in real time [36], as
shown in Figures 3 and 4.
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Face-Mesh (FM) [37] is a face landmark-based machine learning model developed
through transfer learning. FM was specifically designed to recognize a user’s facial topology
in three dimensions. The machine learning architecture of FM was built on top of the Blaze
Face (BF) [38] model. The main purpose of the BF model is to find faces in an image
or video frame and make estimations in the bounding boxes. After the bounding boxes
surround the face using BF, FM conducts an estimation in 3D coordinates. The pipeline
consists of two real-time deep neural network models. The first is a detector that conducts
operations on the full image and computations on the face locations. The second 3D
face landmark model operates at these locations and predicts the approximate 3D surface
through a regression.

3.3. Landmark Detection

Obtaining the region of interest (RoI) of both the right and left eyes enables the
extraction of the feature points corresponding to the eyes. Each landmark localization in
the facial muscles presents a strong relationship with other specific landmarks that are
placed in a similar position or connected muscles. It was found that the landmarks of the
external region negatively affected facial emotion recognition performance. Therefore, to
increase the performance of the model, we used the media-pipe face mesh model to detect
landmarks for the eyes and eyebrows, where landmarks were input features:
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LM = {xt,p, yt,p | 1 ≤ t ≤ T, 1 ≤ p ≤ P}. (1)

Here, LM indicates a set of landmarks, and (xt,p, yt,p) are the 2D coordinates of each
landmark, where P and T represent the number of landmarks and frames, comparatively.

3.4. Gaussian Processes

From probability theory and statistics, a Gaussian process (GP) is considered a col-
lection of random variables indexed by time or space. In the proposed model, an infinite
collection of scalar random variables is the input space between landmark key points
for any finite set of inputs X = {x1, x2, . . . , xn}, where the random variables fΣ[f(x1), (x2),
. . . , f(xn)] are allocated with regard to a multivariate Gaussian distribution f(X)–GP(m(x),
k(x,x′)) [39]. The GP is specified by the mean function m(x) = E[f(X)] and a covariance
function given by:

k(x,x′) = E[(f(x) −m(x) × (f(x′) −m(x′))T]. (2)

We defined the landmark key points as a vertex covariance matrix through location
information. For edge construction, the Delaunay method was implemented [40]. Each
vertex represents a 2D feature vector, as shown in the following equations:

V = {vt,p | 1 ≤ t ≤ T, 1 ≤ p ≤ P} (3)

vt,p = [xt,p, yt,p]. (4)

The Delaunay technique constructs triangular meshes among all landmarks [38] and
is an efficient method for analyzing facial emotions [41,42]. While the mesh composition
only indicates whether edges are connected, we include the squared exponential kernel,
i.e., radial basis function (RBF) kernel, as shown below:

k(x,x′) = σ2
fexp(−0.5l2(x − x′)2), (5)

where σ2
f represents the variance of the functions, and l2 indicates the length of the scale of

any two uncorrelated inputs (xi, xj).
Thereafter, multiplication is included to show the length of scale (l2) of the distance to

represent the strength of the edges, as follows:

C = {et,i,j|1 ≤ t ≤ T, 1 ≤ I, j ≤ P} = {|vt,i − vt,j|1 ≤ t ≤ T, 1 ≤ i, j ≤ P} (6)

F = DM({xt,p × yt,p|1 ≤ t ≤ T, 1 ≤ i, j ≤ P}) = {|at,i,jj|1 ≤ t ≤ T, 1 ≤ i, j ≤ P}, (7)

where DM represents the Delaunay method, and F depicts the adjacency matrix that
contains binary values. Subsequently, V and C are the compositions of 2D vectors and
scalar values that comprise a graph structure.

G = (V,C), (8)

where G indicates the geometric information of the facial emotions. Since we defined how
to classify facial emotions, we trained the proposed model by first using the Haar–cascade
classifier to detect faces, implemented media-pipe face mash landmark detection on the
faces, and finally developed seven emotional classes for that model.

4. Experiments and Results

In this section, we present the implementation of the proposed method using machine
learning and deep learning tools.
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4.1. Dataset

Based on the purpose of this study, the first step was collecting the dataset. We
applied the 2013 Facial Expression Recognition dataset (FER-2013), which is available
on Kaggle.com. The FER-2013 dataset was introduced at the International Conference
on Machine Learning (ICML) in 2013 [43] by Pierrol and Aaron. The dataset consists of
35,887 images, with seven different types of facial expressions, as shown in Figure 5.
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Figure 5. FER2013 dataset representation for seven emotional classes.

To detect emotion, we needed a face classifier to determine whether face features exist.
The Keras, Tensorflow, and OpenCV tools were applied to train the model using the FER
2013 dataset. In the model development, 24,176 images were used for the training set, and
3006 images were used for the validation set. There were seven classes, i.e., Happy, Angry,
Disgust, Fear, Sadness, Surprise, and Neutral. Each figure was composed of a grayscale
image with a fixed pixel resolution of 48 × 48 (Table 2).

Table 2. FER-2013 dataset distribution for training and testing sets on seven emotional classes.

Angry Happy Sad Neutral Fear Disgust Surprise

Train 3987 7205 4829 4954 4093 436 3165

Test 958 1774 1247 1233 1025 112 829

To train the model with only eye- and eyebrow-based landmarks, we first gained
weights for the emotion detection model. We trained the Haar–cascade classifier to detect
faces and emotions. After detection, we captured coordinates of emotional class landmarks
and exported to a comma-separated values (csv) file in seven emotional classes. After the
emotion detection model was trained, we applied landmarks of the eyes and eyebrows and
specified emotional classes to that model. Landmarks were adjusted to relative emotional
classes. In Figure 6 we can see some relevant landmark points for seven emotional classes.
The model was trained on a multi-class classification model in order to understand the
relationship between emotional classes and representative coordinates.

Figure 6 depicts more than two hundred facial landmark coordination of facial key-
points on seven emotional classes. Figure 6 presents a small set of examples to show how
emotional class coordinates represent in between minus three (−3) and four (4) in x axes.
In real testing, the case model will make a prediction based on thousands of emotion class
coordinates, as shown in Figure 7.
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Figure 7. Dataset distribution for emotion recognition research.

4.2. Pre-Processing the Model

Table 3 below is a representation of a convolutional neural network development
that is specialized to detect emotional classes of the human face. The convolution layer
is the core of the CNN used to represent the characteristics of a local connection and
value sharing. The input image and several trainable convolution filter algorithms were
implemented to produce the C1 layer, including the batch normalization technique, a
rectified activation function (ReLU) activation function, and max pooling parameters,
which were also implemented in the first layer of the emotion recognition model.
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Table 3. CNN layers for emotion recognition.

Layer (Type) Output Shape Parameter Numbers Activation

conv2d (Conv2D) (None, 48, 48, 32) 320 ReLU

conv2d_1 (Conv2D) (None, 48, 48, 32) 9248 ReLU

max_pooling2d (MaxPooling2D) (None, 24, 24, 32) 0 ReLU

conv2d_2 (Conv2D) (None, 24, 24, 64) 18,496 ReLU

conv2d_3 (Conv2D) (None, 24, 24, 64) 36,928 ReLU

max_pooling2d_1 (MaxPooling 2D) (None, 12, 12, 64) 0 ReLU

conv2d_4 (Conv2D) (None, 12, 12, 128) 73,856 ReLU

conv2d_5 (Conv2D) (None, 12, 12, 128) 147,584 ReLU

max_pooling2d_1 (MaxPooling 2D) (None, 6, 6, 128) 0 ReLU

flatten (Flatten) (None, 4608) 0 None

dense (Dense) (None, 512) 2,359,808 ReLU

dense_1 (Dense) (None, 64) 32,832 ReLU

dense_2 (Dense) (None, 7) 455 Softmax

The batch normalization technique was used to standardize the inputs to a layer,
stabilize the learning process of the algorithms, and save more time by reducing the
number of training epochs. Subsequently, ReLu was applied. Without the activation
function, our model behaves as a linear regression model. Since our model was trained in
the case of an image dataset, ReLU allowed the network to learn complex patterns in the
data. Mathematically, the ReLU is expressed as follows:

f(x) = max(0,x). (9)

Next, a max-pooling operation was applied to calculate the maximum value in each
patch of the facial feature map. The pooling operation involves sliding a two-dimensional
filter over each channel of the feature map and reducing the number of dimensions of
the feature map. The pooling layer summarized the features present in a region of the
feature map generated by the convolution layer, and operations were then conducted
based on the summarized features instead of precisely positioned features. This process of
dimensionality reduction makes the model more robust to variations in the positions of the
features in the input image.

After the convolution and pooling operations were applied to the input, the model
was sufficiently small and adjusted to high-level features. The last layer of the proposed
CNN used a softmax classifier, which is a multi-output competitive classifier, as given in
Table 3 It provided the probability of the input belonging to one of the possible outcomes
with regard to the labeled classes of the dataset. When every sample was an input, every
neuron made an output in a value range between 0 and 1. Depending on the value ranges
of input data, the model made a probability prediction of the labeled classes.

4.3. Evaluation Metrics

The general acceptance of agreement with true facts can be evaluated based on the
computation of correctly recognized class numbers (true positives—TP), the number of
correctly recognized examples that do not belong to the class (true negative—TN), and
examples that either were incorrectly assigned to the class (false positive—FP) or that were
not recognized as class examples (false negative—FN), as in our previous studies [44–49].
The number of samples in each combination of example classes and prediction classes was
then summarized in the sample of confusion matrix in the metrics of TP, TN FP and FN.



Sensors 2022, 22, 8704 12 of 18

Sensitivity, the true positive rate (TPR), or recall =
TP

TP + FN
(10)

Specificity or False Positive Rate (FPR) =
TP

FP + TN
(11)

Precision =
TP

TP + FP
(12)

F− 1 score =
2∗Recall ∗ Precision
Recall + Precision

. (13)

4.4. Proposed Model Performance

Table 4 shows the performance of the proposed emotion detection model for the
seven emotion classes. Our research suggests that it is more difficult to recognize an
individual’s emotional state when a mask covers their mouth and nose than when it does
not. Consistent with our prediction, we found that the accuracy with which people could
identify an expression on a masked face was lower for all the emotions we studied (anger,
disgust, fear, happy, neutral, sad, and surprise expressions). The performance of the
proposed emotion recognition for seven emotion classes is shown in Table 4. The emotions
of happiness and surprise achieved the highest precision based on the fact that people’s
eyebrows and eyes shift and change more in situations of joy and wonder—0.85 and 0.78,
respectively. In contrast, in the cases of fear, anger, and sadness, the landmark contours of
the eyebrows and eyes did not change much; therefore, 0.50, 0.53, and 0.54 precision was
achieved, respectively. Furthermore, 0.69 precision was achieved even though eyebrows
and eyes in disgust are similar landmark contours to the fear emotion.

Table 4. Classification report of emotional classes.

Precision Recall F1-Score Support

Anger 0.53 0.60 0.56 957

Disgust 0.69 0.20 0.31 111

Fear 0.50 0.42 0.46 1024

Happy 0.85 0.87 0.86 1773

Neutral 0.59 0.68 0.63 1232

Sad 0.54 0.51 0.53 1246

Surprise 0.78 0.76 0.77 828

Accuracy 0.65 7171

Macro avg 0.64 0.58 0.59 7171

Weighted avg 0.65 0.65 0.65 7171

Figure 8 below allows visualization of the performance metrics of the proposed method
in seven emotional classes in a comparison of “actual” and “predicted” sets. Based on the
numbers represented in Figure 8, we can analyze the values of TP, FP, TN and FN.

A receiver operating characteristic (ROC) curve was created by plotting the TPR
against the FPR, as illustrated in Figure 9.
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Figure 9. Classification performance depicted as ROC curves and corresponding area under the
curve (AUC) for the overall emotion recognition performance when applying the FER-2013 dataset.

The ROC curve shows the performance of the classification model at all classification
thresholds by plotting the TPR and FPR parameters. Plots of the four results (TP, FN, FP,
and TN) in the ROC space are shown in the figure. Evidently, the result of the real Happy
class shows the highest predictive accuracy among other emotional classes. As compared to
the ROC curve analysis, based on Table 5 the Happy, Surprise, and Disgust emotion classes
are classified as perfect with a range of 97%, 96%, and 91%, respectively. This indicates
that the facial expression recognition of our proposed model is more uniform than that of
the other emotional classes. The other emotions, such as the Neutral, Anger, and Sadness
classes, were comparatively low in their range, reaching 90%, 88%, and 86%, respectively.
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Table 5. Comparison of the proposed method with other algorithms, and classifier results.

Method Recognition Rate (%) Proposed Method with Four
Different Classifiers (%) Classification Rate (%)

R-CNN algorithm [50] 79.34 Linear regression 99.04%

FRR-CNN algorithm [51] 70.63 Random forest 99.8%

CNN-Edge detection method [52] 88.86 Gradient boosting 99.42%

Our proposed method 91.2

In Table 5, the proposed model is compared with other models, showing an outper-
forming recognition rate. Table 5 shows the evaluation of our prediction model against the
actual data. We checked the model evaluation in three varied classification models, such as
linear regression, random forest and gradient boosting. Figure 10 shows loss and accuracy
of proposed model in training and testing history of 150 epochs.
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To evaluate the qualitative performance of the proposed method, a practical live video
analysis was performed. The model performed two detections, such as class and the
probability percentage of the model. Figure 11 depicts Haar-cascade based face detection
and emotion detection without probability estimations.
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The recognition percentage of the emotional class and emotional class name is shown
in the top left corner of the web camera and on the right side of the face. Figure 12 de-
picts the model’s performance in the real-time emotion analysis. Captures were taken for
five emotional classes when the model reached its best detection percentage. Results indi-
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cate that, in real-time, the emotion analysis model achieved relatively higher percentages
when landmark contours vary significantly.
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5. Limitations

Since the model applies FER based only on the upper facial landmarks, lower facial
landmarks are still represented as a building bias in our model, as shown in Figure 13. In a
future study, we will improve the model by removing the lower facial landmark represen-
tations. Further improvements will be made with the collaboration of researchers [53–56]
in detecting face color and iris change impact on emotion detection.
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6. Conclusions

Overall, the Haar–Cascade classifier implemented on a CNN enables the detection
of faces and emotion recognition, and we used this classifier in the development of an
FER model using non-masked faces. Next, transfer learning was implemented to transfer
the pre-trained FER model, and we applied the media-pipe face mesh model to adjust
the landmarks based on the trained model. Finally, when we ran the developed CNN
model, it automatically classified facial emotions even when masks covered the faces.
After comparing with the models in recent years, our proposed approach has achieved
good emotion detection results in image-based experiments. A model comparison shows
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a 90% overall accuracy compared to the R-CNN, FRR-CNN, and CNN-edge detection
algorithms. Although our model has achieved relatively high results in image-based
emotion identification, real-time emotion detection showed lower accuracy results because
of the biases and noises in the facial expressions. In our further research, we will focus on
achieving high emotion detection on masked faces in real life by overcoming biases and
noises, such as the image being too dark, blurred or other external factors.

Future tasks include solving blurry problems under dark conditions and increasing
the accuracy of the approach. We plan to develop a small real-time model with a reliable
landmark-based emotion recognition performance using 3D CNN, 3D U-Net and YOLOv
environments [57–63].
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