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Abstract: In this paper, we propose a novel target-aware token design for transformer-based object
detection. To tackle the target attribute diffusion challenge of transformer-based object detection,
we propose two key components in the new target-aware token design mechanism. Firstly, we
propose a target-aware sampling module, which forces the sampling patterns to converge inside the
target region and obtain its representative encoded features. More specifically, a set of four sampling
patterns are designed, including small and large patterns, which focus on the detailed and overall
characteristics of a target, respectively, as well as the vertical and horizontal patterns, which handle
the object’s directional structures. Secondly, we propose a target-aware key-value matrix. This is a
unified, learnable, feature-embedding matrix which is directly weighted on the feature map to reduce
the interference of non-target regions. With such a new design, we propose a new variant of the
transformer-based object-detection model, called Focal DETR, which achieves superior performance
over the state-of-the-art transformer-based object-detection models on the COCO object-detection
benchmark dataset. Experimental results demonstrate that our Focal DETR achieves a 44.7 AP in the
coco2017 test set, which is 2.7 AP and 0.9 AP higher than the DETR and deformable DETR using the
same training strategy and the same feature-extraction network.

Keywords: object detection; self attention; query-key similarity; vision transformer

1. Introduction

Object detection is important in computer-vision applications such as surveillance,
robot vision, automatic driving, and UAV scene analysis. Deep-neural-network-based
detection can be divided into three categories according to whether target positioning and
target detection are separated: (i) the two-stage algorithms that nominate candidate regions
first and then detect the targets; (ii) the end-to-end single-stage algorithms, and (iii) the
recently developed transformer-based algorithms.

1.1. Two-Stage Object Detection

Among the two-stage detection algorithms, nomination-box methods and location-
scoring methods are the most conventional methods. R-CNN [1] is the first CNN-based
boxing candidate method including SVM classifiers for all categories. It achieves a higher
accuracy than traditional algorithms but fails in computation and memory efficiency. Fast-
RCNN [2] algorithms normalize entire images and add a regression-results bounding
box to avoid the overlapping of feature extraction. Although its training and testing
are fast, the selective nomination boxes lead to inefficient outcomes. Faster-RCNN [3]
applies the regional nomination network RPN instead of the search window to improve
nomination efficiency and accuracy; its disadvantage lies in the independent target location.
R-FCN [4] method adds a location score map to the final full convolution layer to reflect the
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importance of a location to a target, which is, indeed, a naive attention calculation. These
two-stage detectors divide detection tasks into two small networks with simple functions,
high detection accuracy, and easy training module, while low speeds of detection and
higher computational costs are their weak points.

1.2. One-Stage Object Detection

The You Only Look Once (YOLO) series treats object-detection tasks as regression and
computes the confidence probability of target position and category. It is fast and has a low
false-detection rate, but a poor recognition-position accuracy, and a low recall rate. Single
shot multibox detector (SSD) [5] uses a multi-scale feature map to improve the detection
position accuracy in YOLOv1 [6], replaces the last FC layer, and sets an a-priori frame.
To improve the optimal scale used in YOLOv2 [7], YOLOv3 [8] uses the feature pyramid
network (FPN) and improves the hitting of multi-scale targets. YOLOv4 [9] introduces a
single-stage anchor box which divides regions through a dense detector. RetinaNet [10]
proposes focal loss, focusing on the difficult samples by suppressing the weights of the
samples, and uses a classification difficulty loss to control the proportion of positive and
negative samples.

1.3. Transformer-Based Object Detection

The transformer-based global self-attention detection model DEtection TRansformer
(DETR) [11] shares the feature key values between the encoder and the decoder as tokens
for self-attention modeling, with a randomly initialized object query and matching algo-
rithm. Its query output carries the category and bounding box information by gradually
decoding and outputs all detection results at one time in the form of set prediction. Lim-
itations of DETR are (i) high computational complexity due to the global point-to-point
calculation; the calculated cost is a quadratic function of the total sample points; and
(ii) incoherent interference: since the calculation is point traversing, irrelevant points will
interfere, and cause model divergence. Deformable DETR [12] replaces the global self-
attention with sparse sampling attention, which applies computation just on reference
points and partial sampling points in the neighborhood. The saved computational resources
could enable multi-scale attention for high-resolution feature maps without additional
FPN [13] modules. Other improvements to DETR concern the way attention is applied
and constraints optimization for object queries. For example, conditional DETR [14] de-
couples the content in cross-attention and spatially matched regions, which can solve the
dependence on high-quality embedding. Anchor DETR [15] changes the object query to
the encoding of anchor coordinates, with clear location meaning and less optimization diffi-
culty. Efficient DETR [16] uses the Top-K generated by dense prediction, scoring encoded
features as reference points and object query values, reducing the number of encoder and
decoder layers.

D2DETR [17] uses an efficient cross-scale attention module without an encoder to
generate fused feature maps directly in the backbone to exert attention. The human visual
perception process is used in [18] to obtain approximate information about the object
position. It helps the model gradually focus on the correct object area, reducing the training
cycle. Sparse R-CNN [19] replaces hundreds of thousands of candidates from an RPN
network with a small group of suggestion boxes, and directly predicts the output, which
avoids all the work related to candidate target design and many-to-one label allocation.
DINO [20] improves upon previous DETR-like models in performance and efficiency by
using a contrastive way for denoising training, a mixed query-selection method for anchor
initialization, and a look-forward-twice scheme for box prediction.

DETR-like methods focus on attention at the macro level and constraint optimization
for query embedding. However, they ignore the analysis of inefficient attention from the
target’s perspective. There are two main challenges: (i) the sampling point of a target
falls on other targets or background regions in encoding, and its attention is focused on
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non-identical targets, causing target attribute diffusion; or (ii) object queries are linked to
too many background tokens, resulting in non-target interference in decoding.

To tackle target attribute diffusion and the non-target interference challenge of transformer-
based object detection, we propose a target-aware token design for transformer-based
object detection. The main contributions of this paper are summarized as follows.

• A target-aware sampling method is proposed to encourage the sampling patterns
to converge inside the target region and obtain its representative encoded features.
It consists of a set of multi-pattern parallel sampling strategies. More specifically,
the small sampling pattern extracts the detailed features, the large sampling pattern
obtains the larger receptive field features, and the vertical–horizontal sampling pattern
approximates the target boundary. These are further fused together to strengthen the
connection between the same targets and mitigate target attribute diffusion.

• A target-aware key-value matrix is proposed to be directly weighted on the feature
map to reduce the interference of non-target regions. For that, we propose a learnable
embedding matrix of the relationship between the target and the non-target to replace
the original key-value matrix in DETR to calculate the self-attention weights.

The rest of this paper is organized as follows. The motivation for our proposed
approach is presented in Section 2. Then, the proposed approach is described in Section 3
and evaluated in Section 4. Finally, Section 5 concludes this paper.

2. Motivation

In object detection, the attention mechanism uses a mask to describe the relationship
between the target and the background, forming a new visual attention weight map.
However, the mask convolution at the target boundary may spread the target attributes
beyond the boundary and cause the inaccurate positioning of the target. In the calculation
of self-attention weights, if the target area contains the weight of the background area,
the target attribute is diffused.

The target attribute diffusion can be explained in the following two ways. Firstly,
in self-attention, the feature vector F will generate three vectors Q, K, V through dimension
reduction mapping, where Q is the query vector; K is the key vector, representing the
matching standard of the feature vector; and V is the value vector, representing what
the feature contains. The result of the inner product of Q and K represents the degree
of similarity between the current feature and the standard matching value. The feature
weighted by the result of Q and K matching on V is defined as self-attention, which
includes the contribution of each position in the feature space to the current feature point.
Self-attention is expressed as

self-attention(K, Q, V) = So f tmax
(

Q · KT
√

dk

)
V, (1)

where So f tmax() is the activation function, dk is the normalization coefficient, and the
square root value

√
(dk) is used to reduce the sensitivity of attention to the feature dimen-

sion and make the gradient more stable.
Secondly, the sparse spatial sampling attention mechanism only calculates the weighted

summation among a small set of sampling points, indicating the similarity of the point to
the whole points set as

sparse-attention =
K

∑
k=1

AkVp+∆pmn , (2)

where K is the number of points in the sampling range, Ak is the attention weight at the
sampling point k, and ∆pmn is the two-dimensional offset relative to the reference point
p. The idea of sparse attention draws on deformable convolution, which also generates
offset and bilinear interpolation calculation features. The difference is that the feature
of deformable convolution is obtained by multiplying the convolution kernel weight by
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the feature of the sampling position, and the feature of sparse attention is obtained by
multiplying the normalized similarity coefficient of the current reference point and the
sampling point by the feature of the sampling position. Sparse attention only computes the
similarity of each point to a small set of sampled points. It also has the phenomenon of the
diffusion of target attributes.

For the DETR-like structure, the calculation process from the feature-map token to the
target can be expressed as

T =
(H,W)

∑
(i,j)

Bij

(H,W)

∑
(m,n)

Amn · tmn, (3)

where T represents the target query that can obtain the category and border information of
the object through linear mapping, (m, n) and (i, j) are the traversal points in the encoding
and decoding stages (they will represent sampling points in sampling attention), Amn and
Bij are the corresponding attention weights, and tmn is the feature map token. From the
perspective of target awareness, the token-target process above can be written as

T = ∑
(i,j)∈BG

Bij

(H,W)

∑
(m,n)

Amn · tmn + ∑
(i,j)∈FG

Bij

 ∑
(m,n)∈T

Amn · tmn + ∑
(m,n)/∈T

Amn · tmn

, (4)

where BG is the background region, FG is the foreground region, and T is the region
corresponding to the target T. For object detection, ∑(i,j)∈BG Bij ∑

(H,W)
(m,n) Amn · tmn represents

the background interference, ∑(m,n)/∈T Amn · tmn represents the target attribute diffusion,
and only ∑(i,j)∈FG Bij ∑(m,n)∈T Amn · tmn is the efficient information for object detection.

To illustrate these two phenomena, Figure 1a presents a test image containing multiple
targets (such as camera lenses, mobile phones, etc.). Different targets are framed by dotted
lines. We make the following observations concerning the feature map calculated from this
test image.

• Firstly, before attention encoding, each point on the feature map is the feature extracted
by the convolution kernel in a specific region of the original image, regardless of points
outside the region. Each dotted box represents a specific object, all feature blocks
are not related, and there is no target attribute diffusion phenomenon or background
interference.

• Secondly, the feature map should have clear object information, as shown in Figure 1b;
the feature block containing the target area should only be associated with other areas
of the same object (each target has a different color, red means mobile phone, brown
means camera lens). When decoding the object query, the position and bounding box
of the object can be obtained according to the associated feature block. The feature
blocks of the background area are not associated with the target area, carry no ob-
ject information, and will not cause the diffusion of target attributes or background
interference.

• Thirdly, due to the mechanism of attention weighting calculation, some sampling
points of a certain target will fall in the region that does not belong to this target,
this part of the sampling weight in (4) is expressed as ∑(m,n)/∈T Amn. As shown in
Figure 1c, the red region representing a mobile phone’s attribute diffuse to the blue
region representing a book; the book’s attribute also diffuse to the lens region (brown)
and the razor region (green). This is the phenomenon of target attribute diffusion
(tokens highlighted with slashes in the figure). If the encoded feature token contains
more attributes that do not belong to the same target, the target-aware ability will be
reduced. It is difficult for object queries to establish effective associations with such
weakly target-aware tokens, ultimately leading to false or missed detections.

• Fourthly, the background region also contains target information; this part of attention
weight is expressed as ∑(i,j)∈BG Bij. As shown in Figure 1d, the gray blocks are the
background tokens, but some of them present different colors due to the doping target
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information (tokens highlighted with dotted lines in the figure). In the decoding
process, object query will also confuse such tokens with target tokens, which affects
the accuracy of detected object boundaries. This is the phenomenon of background
interference.

Figure 1. A conceptual overview of target attribute diffusion in attention-based object detection. (a) is
the original image, (b) is the ideal attention-encoding feature map, (c) is the actual attention-encoding
feature map with target attribute diffusion, (d) is the actual attention-encoding feature map with
target attribute diffusion and background interference.

The aforementioned observations of the target attribute diffusion challenge of transformer-
based object detection motivate us to develop a new target-aware token design in the
following section. Since Amn and Bij are the attention weights of each token, which satisfy
the constraints of ∑ Amn = 1 and ∑ Bij = 1, we use A and B instead of ∑(m,n)∈T Amn and
∑(i,j)∈BG Bij; (4) can be rewritten as

T = (1− B)

A ∑
(m,n)∈T

tmn + (1− A) ∑
(m,n)/∈T

tmn

+ B
(H,W)

∑
(m,n)

tmn, (5)

where ∑(m,n)∈T tmn is the feature token with high object perception; the higher the content
of this part, the more accurate the detection result. We can improve the target-aware ability
of the token by increasing the attention weight A and decreasing the attention weight B.

3. Method

The overall structure of our proposed focal DETR is depicted in Figure 2. Our de-
sign consists of two key components: (i) a target-aware sampling module, which forces
the sampling to converge inside the target region and obtain its representative encoded
features and (ii) a target-aware key-value matrix, which is a unified learnable embed-
ding matrix which is directly weighted on the feature map to reduce the interference of
non-target regions.
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Figure 2. The overview of the proposed focal DETR with the target-aware token design. It consists of
two key components: (i) a target-aware sampling module and (ii) a target-aware key-value matrix.

3.1. Proposed Target-Aware Sampling

We propose a composite-pattern sampling method to improve the attention ratio
among sampling points by explicitly constraining the range of sampling points within the
target region. It includes a small pattern, a large pattern, and two rectangular orientation
patterns. The sampling position is defined as initialized position + offset, where the initial
position is absolute location according to the sampling patterns, while the offset is learned
by the FC layer. The following four sampling patterns are defined as shown in Figure 3.

• Large sampling pattern. The sampling side length is 2L0, which is consistent with
the initial sampling layer. This is used to obtain larger receptive-field features and
maintain the network’s grasp and perception of the integrity of the target.

• Small sampling pattern. The sampling side length is L0
2 . Compared with the large

pattern with 2L0 as the sampling side length, using a smaller sampling side length
means less misallocated attention. Focusing on features near the reference point makes
it easier to converge inside the object, suppressing the attention weights imposed
outside the target.

• Vertical and horizontal sampling patterns. This consists of two sampling layers,
the length of the sampling frame is L0 × 2L0 and 2L0 × L0, respectively, the region is
R|| and R=, which can adapt the contour of objects to arbitrary shapes. Our sampling
strategy takes the scales and directions into account; for a person, the vertical mode is
more relevant and for a vehicle frame, the horizontal mode is dominant.

The large sampling pattern is the sampling pattern of Deformable DETR. The side
length of the sampling frame is 2L. R represents the sampling area, Ro represents the
target area, and Rout represents the sampling area outside the target, as shown in Figure 4.
Suppose the reference point Ps(x, y) is located at the target boundary, the sampling point
set is S = |R|, and Sout = |R− Ro| is the sampling point outside the target area. The misal-
located attention is defined as the target-unrelated information quantity Iu = (L− h)(2L +
1) + (L− w)(2L + 1)− (L− h)(L− w) = 3L2 + (2− h− w)L− h− w− hw, where w and
h, respectively, represent the horizontal and vertical distances from the point Ps(x, y) to
the target boundary, which is independent of the value of L and is smaller than L. Since
L = (L+L)

2 > h+w
2 > h+w−2

6 (L is always in the monotonically increasing interval), when
L decreases, Iu also decreases, but excessively decreasing the value of L will make the
network focus on the details, and ignore the overall grasp and perception of the object.
If the value of L is too large, the misallocated attention will increase, and the target attribute
diffusion will be aggravated.
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Figure 3. Proposed target-aware sampling patterns including a large sampling pattern, a small
sampling pattern, and two rectangular orientation patterns.

Figure 4. The sampling-pattern comparison. R represents the sampling area, Ro represents the target
area, w and h, respectively, represent the horizontal and vertical distances from the point Ps(x, y) to
the target boundary.

The sampling range of the composite pattern remains unchanged, the sampling point
set is S = {s ∈ R + Rs + R= + R||}, and the amount of target-independent information

introduced by the small pattern sampling branch is 1
4 L0(

3L0
4 − h−w+ 2)− h−w− hw. The

vertical–horizontal box pattern is L0(3L0− 5
2 h− 5

2 w+ 3)− 2h− 2w− 2hw and the increment
in irrelevant information is smaller than the increment in the number of sampling points.
That is to say, the proportion of target-aware attention in the feature token is increased,
the increment is recorded as At and (4) can be rewritten as

T = (1− B)

(A + At) ∑
(m,n)∈T

tmn + (1− A− At) ∑
(m,n)/∈T

tmn

+ B
(H,W)

∑
(m,n)

tmn. (6)

By constraining the location of the sampling points, the attention weight proportion of
the same target is increased, and the target-aware ability of feature token is enhanced.

To verify the proposed target-aware sampling, a test is conducted in Figure 5, which
shows the location of sampling points after six-layer encoding. In this test image, the target
is a cabinet, the white points are the reference points, and the red points are the sampling
points. As seen in Figure 5, we make the following observations. Firstly, for boundary
points, when the initial sampling side length is set to 2L0, after 6 layers of large-pattern
encoding, some sampling points still fall outside the cabinet region. By adding the small
mode, most of the sampling points are constrained in the cabinet area, and the attention
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weight outside the area is suppressed. By adding the vertical–horizontal box pattern in
both directions, the sampling points converge to the vertical and horizontal boundaries of
the cabinet. Secondly, for interior points, most of the sampling points are concentrated in
the target, which is used to grasp the integrity of the object.

Figure 5. Visualization of sampling point locations after encoding. (a) is the large pattern, (b) is the
small pattern, and (c,d) are the horizontal and vertical patterns, respectively. The white points are the
reference points, and the red points are the sampling points.

3.2. Proposed Target-Aware Key-Value Matrix

We propose a key-value degenerate target-aware embedding module. It uses a learn-
able embedding matrix to replace the key matrix generated from self-attention computation,
reducing the interference effect of background tokens on decoding. The embedding matrix
is randomly initialized and eventually mapped by the network.

In DETR, the Q-K inner product reflects the strength of the correlation among tokens.
In theory, the accumulated sum of each token’s query to all tokens’ key in feature map can
be regarded as the evaluation value of the target information. Generally, the background
evaluation value is much smaller than that of the foreground. Taking it as the distribu-
tion map of the target information can reduce the interference of the background tokens.
However, the implementation of this method will face the following two problems.

Firstly, the Q-K inner product sum is based on traversal self-attention, so the compu-
tational complexity and the number of tokens are in a square relationship. High-resolution
feature maps are not suitable for self-attention (the number of inner products for a 200× 200
feature map is 1,600,000,000, a general GPU cannot afford such a large calculation).

Secondly, the target information reflected by the Q-K inner product is not absolute
and uniform; the distribution of the target information is more accurate only when the
image object is sufficiently significant and the background is sufficiently monotonous.
As shown in the upper picture in Figure 6, the boundary between the object and the
background is clear, the self-attention of the foreground token is concentrated in the object
region, and the distribution of the background token is scattered. The lower picture in
Figure 6 shows a situation where the distribution is more complicated: the targets and the
background are mixed together, and the distribution of the self-attention of the foreground
and the background is similar. At this time, the interference caused by the background
token cannot be eliminated. On the other hand, if a target consists of multiple structures
with different textures (such as a person’s shirt and pants), the inner product sum of the
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target region will decrease. This relative relationship will affect the accuracy of object
information distribution.

Figure 6. Distribution of Q–K inner product values of different pictures, The upper picture is a
simple case: the object and the background have clear boundaries, the lower picture is a more
complex situation: the object and the background are mixed together.

In view of this, we propose to use a unified, learnable embedding matrix W to replace
the original query matrix Q. The matrix provides a set of standard queries, and the charac-
teristic token key only needs to calculate the inner product with standard query (Figure 7).
The sum of inner product can reflect the closeness of the current token and standard matrix.
The calculation of the relative relationship between the reference points is converted into
the absolute relationship between the reference point and the standard matrix, which pro-
vides a unified standard for the distribution of object information, and this information is
obtained in a non-traversal way. The degenerated key-value matrix replacement can reduce
the proportion of the weighted value of the background region in the overall reference
point and achieve background suppression. The target information reflected by the Q–K
inner product of a token in self-attention is

Aij = f

(
N

∑
c

qc · kij
c

)
, (7)

A =
(H,W)

∑
(i,j)

Aij, (8)

where f represents division by the normalization coefficient and activation operation, N
is the dimension of the token, and (H, W) is the length and width of the feature map. It
can be seen that the target information is merged through the order of dimension to space.
Our proposed target-aware matrix learns the target information carrying amount I through
space-to-dimensional fusion

Ic = f

(
R

∑
i

qi · kc
i

)
, (9)

I = pool(Ic), (10)



Sensors 2022, 22, 8686 10 of 18

where R is a fixed number of standard reference points and pool represents the arithmetic
mean of average pooling and max pooling. By using a key-value degenerate target-aware
matrix, the relative attention between tokens and tokens is converted into standard attention
between tokens and reference points.

Figure 7. (a) is the accumulation of attention among reference points and (b) is between reference
points and the matrix. (b) has less computation, rich details and sharp boundaries.

This replacement method has two advantages. Firstly, the importance of the reference
point itself is emphasized. Comparing the calculation of the relativity of the Q–K inner
product, the degenerate embedding matrix W is used to fuse the object information of
each dimension of the reference point, which can better reflect the distribution of object
information in the image. All reference points are pooled and fused after the common
matrix’s W mapping. Each reference point can be linked through W to measure the content
of the target information. It is more effective to reduce the interference of background
regions. Secondly, since there is no need to explicitly construct pairwise relationships for
all reference points, the saved computing resources can use higher resolution feature maps,
which are simpler and more accurate than self-attention calculations.

The target-aware embedding module adds a target attention weight Bt (or bn) to each
token before decoding to reduce the interference of the background

T = Bt · (1− B)

(A + At) ∑
(m,n)∈T

tmn + (1− A− At) ∑
(m,n)/∈T

tmn

+ B · Bn

(H,W)

∑
(m,n)

tmn. (11)

Figure 8 illustrates the results obtained by the original self-attention layer after accu-
mulating global attention at each point, and the visualization results of the weight branch.
The higher the brightness, the greater the attention weight, that is, the more target in-
formation content. The attention is concentrated on the target areas such as people and
buildings, which shows that the network does not need to explicitly construct the pairwise
relationship for all points. Compared with the accumulation method of global attention
in the middle column, the method on the right can provide a more detailed attention
distribution map, the object offset is smaller, and the boundary position is sharper, which
is more suitable for object-detection tasks. It is only necessary to learn object information
according to the characteristics of each region itself, so as to judge the amount of target
information carried in the region and apply appropriate attention weights. In this way,
the proportion of ∑

p∈BG
p V in the overall reference point is suppressed, thereby reducing

the interference of the background region.
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Figure 8. Visualization results of the test images (a,d,g) and their original self-attention layer (b,e,h)
and the modified attention with our target-aware key-value matrix (c,f,i). The higher the brightness,
the greater the attention weight.

3.3. Proposed Focal DETR Structure

The overall structure of our focal DETR model follows the design of DETR. The CNN
backbone is responsible for feature extraction. The extracted features are directly used as the
input tokens of the encoder after being linearly mapped in equal dimensions. The encoder–
decoder structure is responsible for establishing feature–feature and feature–object connec-
tions, and the final prediction module is responsible for outputting the final category and
bounding box.

Backbone. We choose ResNet50 [21] to extract features of different levels. The feature
maps of all levels are unified to 256 dimensions through a 1× 1 convolution, respectively,
and finally connected.

Position embedding. The position embedding [22,23] is divided into two parts.
The first part uses trigonometric functions to encode the parity dimension of each po-
sition for the spatial position on the feature map. The absolute position is first en-
coded by row and column, and, then, sine and cosine encoding are applied to obtain

PE(pos, 2i) = sin
(

pos

10000
2i
d

)
and PE(pos, 2i + 1) = cos

(
pos

10000
2i
d

)
, where pos is the actual po-

sition of the feature, and d is half the number of feature’s dimension. Finally, the encodings
of rows and columns are concatenated together.

Focal DETR encoder. We use a composite-pattern sampling module to replace the
sampling attention module in deformable DETR [12]. Based on the original sampling
layer, we add three parallel sampling layers. The original sampling layer is a large pattern,
the number of sampling points is N, the number of newly added small-pattern sampling
points is N/4, and the number of vertical and horizontal box-pattern sampling points
is N/2. Each pattern contains a sampling offset branch and a sampling weight branch.
In addition, a feature fusion module is added to summarize the features of the four patterns.
We will present experimental results to justify the choice of the fusion strategy.

Focal DETR decoder. We insert a learnable embedding matrix to linearly map the
feature map before the cross-attention layer of the deformable DETR [12], and fuse the
information across all dimensions through the pooling layer to obtain the target attention
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weight of every point in the feature map. The feature map weighted by the target attention
is used to calculate cross attention with object query. The self-attention layer in the decoder
is the same as that used in both DETR [11] and deformable DETR [12].

In the self-attention decoding process, the object query needs to traverse all the feature
tokens to find the stuff or thing category information contained in them. The stuff type
is widely distributed and has a greater association with other objects, while the thing
type is concentrated and has a greater association within the same object. Due to the
characteristics of traversal, with self-attention decoding it is hard to extract the information
in the distribution concentration of the thing type, causing a large amount of irrelevant
information interference and affecting the detection effect. In addition, due to the use of
multi-scale feature maps, self-attention will bring excessive computational burden.

The sampling attention selects some sample points for attention calculation based on
reference points and learned biases. In this way, it is difficult to extract objects of the stuff
type. First, the relevant information of the reference point is learned from the network.
For an item such as a car, the reference point can be set at its center, which has a clear
physical meaning. However, for the amorphous area, it is difficult to find a reference point
with a clear meaning to replace this area, so the learning difficulty of the reference point
is higher. Second, since the background area generally overlaps with multiple objects,
and its own features are not obvious, using a small-scale sampling attention, the object
query will be attracted by the foreground targets with more obvious features. As a result,
the important information of the stuff class is ignored, resulting in missed detection.

In view of this, we deal with the stuff and thing classes separately. We use global
self-attention decoding to collect scattered and smooth stuff-class information, and use
sampling attention to detect the more concentrated thing-class information (see Figure 9).

Figure 9. The stuff and thing query; self-attention is used to extract the centralized things, sampling
attention is used to collect the scattered stuff.

4. Experimental Results

In this section, we conduct four experiments to evaluate the performance of the
proposed approach. Firstly, we compare the proposed approach with classical detection
algorithms and variants of DETR [11]. Secondly, to study the effects of various sampling-
point initialization patterns on the object-detection results, we compare the detection
performance of the four sampling patterns. Thirdly, we compare the fusion effects of the



Sensors 2022, 22, 8686 13 of 18

sampling branches, including adding directly, feature splicing, and pooling, then select the
optimal solution. Fourthly, an ablation study is carried out to analyze the improvement in
the detection effect brought about by the target-aware sampling and target-aware key-value
matrix, respectively.

4.1. Datasets and Metrics

Experiments were performed on the challenging MS COCO [24,25] benchmark dataset.
The model was trained on COCO train2017 (11.8k) and evaluated on val2017 (5k). The eval-
uation indices include different intersection and union ratio (IOU) values and average precision
(AP) under large, medium, small objects, respectively.

4.2. Implementation Details

We used ResNet-50 pre-trained on ImageNet as the feature-extraction network. The
number of heads of each multi-head attention layer was set to 8; the sampling branch was 4;
and the total sampling points of each branch were 128, 64, 64, 32, respectively; the number
of layers for both encoder and decoder was 6, and the number of object queries was 300.
We trained the model using the AdamW optimizer [26] with an initial learning rate of 10−4

(in particular, the feature-extraction network backbone has an initial learning rate of 10−5).
The rest of the hyperparameters used the default values (i.e., β1 = 0.9, β2 = 0.999, weight
delay = 10−4), the learning rate decays to 10% of the original every 40 epochs, and the
batch size = 1 for each batch of training. The proposed approach was implemented using
PyTorch and developed using Nvidia GTX 2080Ti GPU.

4.3. Comparison with Other Object-Detection Methods

The comparison results with the classical object-detection algorithms and some vari-
ants of DETR are shown in Table 1. As seen in this table, our approach outperforms the
DETR model, where the average AP is increased by 2.7, and the small-object detection is im-
proved by 6.5. In addition, our approach outperforms the deformable-DETR by increasing
the average AP by 0.9.

Table 1. The object-detection performance comparison on COCO val2017. The best performance is
highlighted in bold format.

Model AP AP50 AP75 APS APM APL

Faster-RCNN [3] 42.0 62.1 45.5 26.6 45.4 53.4
RetinaNet [10] 40.8 61.1 44.1 24.1 44.2 51.2
FCOS [27] 41.0 59.8 44.1 26.2 44.6 52.2
TSP-FCOS [28] 43.1 62.3 47.0 26.6 46.8 55.9
TSP-RCNN [28] 43.8 63.3 48.3 28.6 46.9 55.7
DETR [11] 42.0 62.4 44.2 20.5 45.8 61.1
UP-DETR [29] 42.8 63.0 45.3 20.8 47.1 61.7
Anchor-DETR [15] 42.1 63.1 44.9 22.3 46.2 60.0
Conditional-DETR [14] 43.0 64.0 45.7 22.7 46.7 61.5
Deformable-DETR [12] 43.8 62.6 47.7 26.4 47.1 58.0
Ours 44.7 63.9 48.5 27.0 47.5 59.1

4.4. Evaluation of Various Sampling Patterns

To study the positions of sampling points in each pattern, we recorded the offset
coordinates of all sampling points belonging to the target tokens on the feature map,
and calculated the final sampling positions. The number of sampling positions in the target
region and background region were counted separately, and divided by the total number
of corresponding tokens on the feature map as their sampling preference. The results of the
four sampling branches on the coco test set are shown in Figure 10. The abscissa represents
the preference of each image for the sampling region (red is the target preference, blue is
the background preference), and the ordinate represents the number of images. All patterns
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are more inclined to samples in the target region, among which the small pattern is more
obvious than the large pattern, and the vertical and horizontal patterns are similar.

Figure 10. Statistical results of four sampling patterns. The abscissa represents the average sampling
preference (red is the target preference, blue is the background preference), and the ordinate represents
the number of pictures.

In addition, we conducted a visualization experiment of sampling points, and counted
the ratio of internal sampling points to external sampling points of all objects in each
picture. The results are shown in Figure 11. The blue represents the Deformable DETR
sampling strategy, and the red represents our strategy. The proportion of sampling points
using the parallel sampling strategy falling on the object is higher than that of unused ones.

To investigate the effect of multiple-sampling-point initialization modes on the object-
detection results, four patterns were compared and their performances are shown in
Table 2. In a single pattern, the detection result decreases by 1 average AP compared with
that of multi-patterns, which proves that multi-patterns can improve the detection effect.
In addition, the larger range pattern performs better than the smaller ones; the average AP
of small targets in 3× 3 mode is 0.6 lower than that of 9× 9 mode, and the average AP of
large targets is 1.9 lower. This also proves that if the sampling range is too small, that will
make the network focus on the details, ignoring the grasp and perception of the wholeness
of the object, and, consequently, reducing the detection quality.

Table 2. The comparison of our focal DETR with various sampling-pattern methods on COCO
val2017.

Pattern AP AP50 AP75 APS APM APL

Small 42.9 62.4 46.9 25.7 46.5 55.8
Rectangle-L 43.6 63.1 47.7 26.2 46.7 57.4
Rectangle-W 43.4 63.1 47.2 26.0 46.8 57.3
Large 43.8 63.3 47.5 26.3 47.1 57.7
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Figure 11. The visualization experiment of sampling points. The blue represents the Deformable
DETR sampling strategy, and the red represents our strategy.

4.5. Evaluation of Various Fusion Methods

There are three ways to fuse the four branch features from four samplings, including
adding directly, feature splicing, and pooling. Table 3 compares the results using these three
fusion strategies. Feature splicing splices the features F ∈ R1×256 from the four branches
into F

′ ∈ R1×1024 by channel, and then reduces the dimension to F
′′ ∈ R1×256. The pooling

is spliced into F
′ ∈ R4×256 by pattern and then passes through the maximum pooling layer

to obtain F
′′ ∈ R1×256. Compared with direct addition, feature splicing and pooling reduce

the average AP by 2.5 and 1.5, respectively. This is due to the fact that the features of the
four branches are all sampled on the same value matrix. These two methods will map the
features to a new space, breaking this consistency and increasing the difficulty of learning.

Table 3. The comparison of our focal DETR with different fusion strategies on COCO val2017.

Fusion Method AP AP50 AP75 APS APM APL

Adding 44.7 63.9 48.5 27.0 47.5 59.1
Splicing 42.2 62.0 46.0 25.8 45.7 55.5
Pooling 43.2 62.7 47.1 25.8 46.2 57.3

4.6. Evaluation of Target-Aware Matrix

To study the effect of the target-aware embedding matrix, we extracted all the tokens
from the coco test set image through the third stage of the backbone, and divided them into
foreground and background according to the position of the label. The embedding module
calculates the attention weights of all tokens separately, and obtains the average-attention-
weight distribution map (Figure 12) of the foreground and background tokens of each
picture. The red part is the attention weight of the target tokens, and the blue part is the
attention weight of the background tokens. The abscissa represents the average attention
weight, and the ordinate represents the number of pictures. Overall, the attention weight
of the target token is about 0.05 higher than that of the background part, which means that
the target information carried by the feature token can be obtained using linear mapping
and pooling fusion, and no explicit loss function constraints are required. This proves that
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adding a learnable embedding matrix and increasing the attention weight of the target part
can effectively alleviate the interference of the background region.

Figure 12. Attention weight of target-aware matrix; red is the target tokens, blue is the background
tokens. The abscissa represents the average attention weight, and the ordinate represents the number
of pictures.

4.7. Ablation Study

The ablation study was carried out to analyze the improvement in object detection
by gradually adding our proposed two components. As seen in Table 4, after adding
the target-aware sampling and the target-aware key-value matrix, the results improve by
1.0 AP and 0.9 AP, respectively. The constrained sampling in a compound pattern has
obvious improvement in the detection effect of small and large targets (0.7 AP and 1.4 AP,
respectively). Medium-sized targets show insignificant improvements (∼0.8%). The reason
for this is that the introduced small-pattern sampling branch pays more attention to details,
the encoding effect of small targets is more ideal, and the compound pattern makes it easier
to constrain the sampling points inside the target when the target is large. In addition,
with the help of the target-aware key-value matrix, it is easier for the network to capture
small-sized objects that may be mixed in the background. Therefore, the detection effect of
small targets is significantly improved compared to other-size targets (the improvement is
4.5% for small objects, and 1.8% and 1.3% for others).

Table 4. Ablation study.

Target-Aware Target-Aware AP AP50 AP75 APS APM APLSampling Key-Value Matrix

- - 43.4 62.6 47.5 26.3 46.9 57.9√
- 43.7 63.2 47.3 25.8 46.6 58.3

-
√

43.8 63.3 47.5 26.3 47.1 57.7√ √
44.7 63.9 48.5 27.0 47.5 59.1

5. Conclusions

A focal DETR was proposed in this paper with the development of a new target-aware
token design. It effectively utilizes the target-aware sampling and a target-aware key-value
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matrix to effectively achieve higher object-detection performance, as verified on the MS
COCO benchmark dataset.
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