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Abstract: This paper merges new research topics in Industry 5.0 using the Business Process Modeling
and Notation (BPMN) approach able to integrate Artificial Intelligence (AI) in production processes.
The goal is to provide an innovative approach to model production management in industry, adopting
a new “proof of concept” of advanced Process Mining (PM) automatizing decisions and optimizing
machine setting and maintenance interventions. Advanced electronic sensing and actuation systems,
integrating supervised and unsupervised AI algorithms, are embedded in the PM model as theoretical
process workflows suggested by a Decision Support System (DSS) engine enabling an intelligent
decision-making procedure. The paper discusses, as examples, two theoretical models applied
to specific industry sectors, such as food processing and energy production. The proposed work
provides important elements of engineering management related to the digitalization of production
process matching with automated control systems setting production parameters, thus enabling the
self-adapting of product quality supervision and production efficiency in modern industrial systems.

Keywords: Process Mining; Industry 5.0; self-adaptive machine parameter setting; BPMN process
workflows; Artificial Intelligence

1. Introduction

The model of process workflows is fundamental for process mapping in industry. The
possibility of mapping “AS IS” and “TO BE” processes allows one to optimize production,
product quality and organization management. In the new Industry 5.0 scenario, process
mapping can be improved by applying Artificial Intelligence (AI) decision making algo-
rithms mainly behaving as workflow checkpoint-defining processes: AI is able to process
production data by suggesting optimized sub-processes and by defining risks related to
production and product quality. The process workflow merging AI algorithms in decisional
logics is named Process Mining (PM) [1–3]. PM constitutes a Decision Support System
(DSS) engine able to predict corrective actions including machine parameter setting ad-
justments [1,4,5], predictive maintenance actions [1,6,7], and interventions by Predictive
Process Monitoring (PPM) approaches [8]. The impact of advanced digital technologies
such as AI integrated in industrial information systems [9] plays an important role in
organization management [10]. In this direction, Change Management (CM) [11] models
could support process re-engineering [12,13], thus optimizing production and product
quality. AI is an important tool also for sensing and actuation processes, including elec-
tronic implementations supporting production and automated testing [14]. The analyzed
state of the art enhances the importance of AI in the new era of Industry 5.0 improving
self-adaptive production processes. The self-adaption concept suggests to apply PM to
intelligent monitoring and automation. The production monitoring process can be acti-
vated by means of sensors placed in strategic parts of the production layout and detecting
parameters useful for quality control. Similarly, advanced mechatronic interfaces [15]
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implementing AI control [1] behave as Human–Machine Interfaces (HMIs), “transforming”
the information of sensors into an optimized parameter setting list of production machines.
To correctly program the HMI, it is necessary to define the logic managing the monitoring
and the actuation processes. The first step to design the logic of processes is to define
how data processing phases are involved in the whole monitoring and control processes.
Sensing and actuation functions can be primarily modeled by workflows representing the
HMI functions of a specific production machine. Business Process Modeling and Notation
(BPMN) is a method suitable for process workflow implementation, as well as for predictive
maintenance [16] and information system applications [17]. According to electronic control
and actuation processes, BPMN workflows are also useful to modeling intelligent logics
based on AI [18]. The state of the art suggests we focus the attention of this study on PM
model matching in the new Industry 5.0 scenario, investigating innovative workflows to
design efficient schemes of production management. By following this main goal, the paper
is structured into the points listed below:

• We provide a new theoretical model of PM integrating a DSS based on AI-supervised
and unsupervised algorithms;

• We discuss an application field applying PM in food roasting process (application of
AI unsupervised algorithm);

• We discuss an application field applying PM in energy production (application of AI
supervised algorithm);

• We analyze different aspects concerning electronic/mechatronic implementations and
procedures;

• We discuss PM and AI aspects as regards impacts in the supply chains and in organi-
zational processes, thus providing an overview of different possible implementations
of the proposed PM model.

The topics discussed in the paper’s sections are addressed in the context of an Industry
5.0 scenario. In Table 1 are summarized some aspects matching paper topics and Industry
4.0 and Industry 5.0 scenarios.

Table 1. Main topics of the paper and relations to Industry 4.0 and Industry 5.0 scenarios.

Topic Industry 4.0 Scenario Industry 5.0 Scenario [1]

PM

Industrial process are typically mapped by
BPMN approach: standard workflow defines a

static representation of the scenario where digital
sensors transmit data and actuation systems are

not managed by the same PM model.

Processes are mapped by considering decisional
logics integrated in the PM model: the process is

dynamic and the choice of the sub-process is a
function of the real-time automatic decisions

performed by a calculus unit (implementation of
decision-making logics depending on AI output).

DSS

The user working on a production machine can
control and manage the machine parameter

through cloud applications reading sensors and
enabling remote actuation. The main function of
the DSS is to provide alerting signals that can be

monitored online.

The DSS is a standalone system that auto-adapts the
machine parameter’s setting depending on the

self-learning approach: the historical sensor data are
used to implement DSS detecting alerts, but also to

automatically set optimal machines and tools for
self-adaptive production.

Electronic components

Electronic components are mainly used for the
realization of sensors and Human–Machine

Interfaces (HMIs) applied on
production machines.

Innovative advanced electronic systems can be
manufactured by developing electronic chips and
boards integrated in the production machine, and

having AI logics (implementation of
McCulloch–Pitts neurons by transistors and other

electronic components reproducing the AI logics by
logic ports). The Machine to Machine (M2M)

interfaces are managed by AI networks based on
feedback systems.
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2. Materials and Methods: Process Mining (PM) Model and AI Integration

The block diagram of Figure 1 explains the “proof of concept” of the proposed PM
model based on the matching between a DSS and the standard production processes. The
production input (raw materials, semi-products, elements able to produce energy, etc.) is
processed by the production machine, and the related product (output) can be characterized
by a high quality due to the automatic feedback control involving AI decision. The AI
supervised or unsupervised algorithms are able, in cases of anomalies detection, to change
in time machine parameters or to adopt interventions depending on sensor data values
(values compared with thresholds indicating possible alerting conditions).
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Figure 1. “Proof of concept” of PM.

The BPMN approach is adopted to “explode” in Figure 2 the “proof of concept” of the
PM theoretical model of Figure 1, and to apply the PM in the different application fields.
The BPMN-PM model is designed by means of the open source Draw.io tool [19]. The
BPMN notations contain some symbols, such as pools and task boxes, start and end events,
exclusive and parallel gateways, and finally exclusive event-based gateway modeling pro-
cess checkpoints supported by AI algorithms. AI supervised and unsupervised algorithms
are implemented for the specific case studies by executing Konstanz Information Miner
(KNIME) workflows [20,21] (see details in Appendices A and B about the applications
discussed in this work). The theoretical approach is constructed by means of BPMN en-
hancing the following main functions of the PM model sketched by the three BPMN pools
of Figure 2, containing the following sub-processes:

• DSS Main Process. This pool represents the main process of the PM model, and
integrates the DSS enabling supervised and unsupervised AI algorithms. The choice
of the algorithm is based on the available dataset typology. The decision to select
AI data processing is established by means of the “Exclusive Event based” gateway:
in the case of a positive check of the monitored variables the production process
continues; besides this, in the case of negative check, the AI algorithm will be able
to optimize the machine parameter setting or to decide the intervention to perform.
According to the alerting level detected by the AI algorithms, a standard parameter
setting (moderate alerting level requiring a soft variation of the machine parameters)
or a non-standard parameter setting (high alerting level requiring a strong variation of
machine parameters or further corrective interventions) will be activated. Corrective
actions include predictive maintenance, possible slowdowns in production, major
control by enforcing human resource operation, etc.;
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• AI Engine (Supervised Model). This pool concerns the application of the supervised
AI algorithm in processing data by means of the training and testing phases. The
outputs are predicted or classified data defining alerting risk maps (two alerting levels
are considered in the simplified model of Figure 2) driving parameter setting and
interventions. The supervised models are preferred when a significant production
variable to control is identified (labeled variable);

• AI Engine (Unsupervised Model). This pool represents the data clustering process
defining the risk maps based on the alerting levels [22]. The output are the data
clusters indicating the risk maps (two alerting levels are considered in the simplified
model of Figure 2). The unsupervised models are preferred when there are more
variables to control without knowing the “weight” of each variable for the specific
production process.
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Figure 2. Proposed BPMN Process Mining (PM) theoretical model structured in three pools and
integrating artificial intelligence algorithms (PM-AI): DSS main process and AI engine sub-processes
behaving as feedback systems and providing decisions about the setting of machine parameters
and about further machine corrective actions. In red are the BPMN symbols behaving as process
checkpoints (“Exclusive Event based” gateways). The model indicates two alerting levels (moderate
alert level and high alert level). The model can be made more complex by considering more alerting
levels defining risk maps with more risk levels.

The BPMN model of Figure 2 is the “translation” of the theoretical Unified Modeling
Language (UML) Activity Diagram (AD) sketched in Figure 3.
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Figure 3. UML-AD theoretical model of the proposed PM.

The UML-AD model and the BPMN provide information about the logic to implement
in the monitoring process. The logic explaining the data flow indicated in Figures 2 and 3
is described by the following pseudocode (Algorithm 1):

Algorithm 1: PM pseudocode

1. Start production process;
2. Initial setting of production machine;
3. If check of machine is positive Then continue production (and parameter checking) until

production ends;
4. Else (negative check) choose the suitable idoneous algorithm;
5. If the unsupervised algorithm is ‘True’ Then perform data clustering and
6. structure risk maps;
7. If a moderate alert is estimated then set the standard machine
8. parameter;
9. Else (high alert) introduce further corrective actions;
10. End If;
11. Else (False of the unsupervised algorithm) selection of the supervised
12. algorithm providing data prediction/classification through training and
13. testing models;
14. If a moderate alert is estimated then set the standard machine
15. parameters;
16. Else (high alert) introduce further corrective actions;
17. End If;
18. End If;
19. End If.
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The DSS of Figure 2, further explained in Figure 3, is general, and can be applied, with
appropriate modifications, in different application fields. The proposed work discusses
the following application examples considered quite significant for understanding the
PM model:

1. The roasting process of a food product passing into five ovens;
2. The energy generation process of a Combined Cycle Power Plant (CCPP).

For the first application field, data from [23] are referred to for five ovens, each with
three temperature sensors. In addition, we consider data about the height of the food (raw
food material) and its moisture content as measurements detected when raw materials
enter the machine. The application of the PM model is focused on temperatures with
a major weight if compared to the other parameters. In Figure 4 are illustrated some
temperature trends of all the temperature sensors (three temperature sensors for each oven).
The open dataset [23] is processed for the application of the unsupervised k-Means [24]
algorithm (algorithm preferred for a large number of available variables), which comprises
2,103,841 records.

For the second application, we consider another open dataset [25] with 9568 records
collected by a CCPP producing energy. The dataset refers to a time period of six years,
for a power plant working in a full load condition. The CCPP plant is composed of gas
turbines, steam turbines and heat-recovery steam generators. The dataset [25] is constituted
by the following hourly average values: ambient Temperature (T), Ambient Pressure
(AP), Relative Humidity (RH), Exhaust Vacuum (V), and electrical energy output (PE) of
the plant.
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Figure 4. Temperature trends: first 700 records (sorted in time) extracted from the open dataset [23].
The sampling time is 1 min.

An example of power energy trend is illustrated in Figure 5. The variable PE is the
most significant, and EP is considered as the labeled variable (variable having a high
“weight” as a key efficiency parameter). The AI-supervised algorithm applied for power
prediction is the Artificial Neural Network (ANN) Multilayer Perceptron (MLP) algorithm
typically used for electric energy prediction [26].
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The method applied in this work is used to show how it is possible to use AI results
following the PM model to optimize production and quality. In this direction, Section 3
provides more details about the two significant examples of PM application.

3. Results: Applications of the PM Model

The PM model is applied to two processes related to food roasting and energy pro-
duction. For each case, we apply the theoretical scheme of Figure 2, which is modified
according to the specific processes.

3.1. AI Engine (Unsupervised Model): The Roasting Process

The first example of the application of PM is described in Figure 6a, illustrating the
roasting process involving the passage of a food product into five ovens connected in series.
The scheme simplifies the roasting process flux by means of a block diagram indicating
the roasting process input, the passage of the product through each oven, and finally
the packaging phase. Each oven is controlled by different sensors. The key parameter
controlling the roasting process is the temperature. The food product passes initially into the
input of the first oven, and successively into the other ovens, thus completing the roasting
process. The roasted product is packaged in the final production step. Typically, the quality
in the roasting process is checked by controlling temperatures [27] or by adopting advanced
technologies such as Near-Infrared Spectroscopy (NIRS) [28]. A basic approach to check
quality is the verification of the heat homogeneity in each oven by reading temperature
values; for this, the clustering approach is indicated to check the heat stability data clusters
with values confined in a limited region. Figure 6b shows the theoretical PM model applied
to the roasting process as a modification of the theoretical model of Figure 2. Five “Exclusive
Event based” gateways allocated in series are able to check the temperature stability in
each oven. In the case of a positive check of temperature values, the oven setting remains
the same, while in the case of a negative check, we perform a clustering k-Means (AI
unsupervised algorithm) analysis providing a risk map with two alerting levels. The risk
map can provide a moderate alert enabling the standard parameter setting of the oven, or a
high level of alert requiring a stronger setting (no standard parameter setting) or a specific
maintenance intervention.
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Figure 6. (a) Basic scheme of the roasting production process concerning the passage of the product
into five ovens, where each oven is monitored by three temperature sensors providing parameters
T1, T2 and T3. (b) The BPMN PM model representing the automatic setting of oven temperatures by
means of an AI unsupervised engine (application of k-Means algorithm).

The k-Means algorithm is able to provide a risk map by which it is possible to dis-
tinguish different regions. By considering for example of three clusters (k = 3), the region
named cluster 2 of Figure 7a characterizes a stable condition (variation of temperature in a
limited range defining the heat stability), while the other two clusters (cluster 1 and cluster
3 of Figure 7a) can be representative of an unstable condition (temperature with too high or
too low values). The choice of k = 3 is a good compromise between the simplicity of analysis
(few boundary regions are defined) and the performance of the clustering algorithm. In
the theoretical risk map of Figure 7a, the moderate alerting level is associated with the
boundary regions of cluster 3 and cluster 2 close to the stable cluster 2. A risk map is
designed for the analyzed dataset of each oven (see Appendix A). In Figure 7b is illustrated
an example of a risk map obtained by the k-Means clustering analysis mapping the T1
and T2 values of the first oven. Each clustering analysis is performed for each oven (for
example, for oven 1, the algorithm provides clustering between T1 and T2, between T1
and T3, and between T2 and T3, and so on for the other ovens), thus achieving similar risk
maps highlighting stable regions (see Appendix A).
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3.2. AI Engine (Supervised Model): Energy Production

The second example of the BPMN PM model is illustrated in Figure 8: the BPMN
workflow indicates the energy production process of a CCPP plant. The AI data processing
(training and testing phase) facilitates the prediction of energy in the short and medium pe-
riods. In this specific case, we executed an ANN-MLP algorithm estimating the forecasting
of the energy production of the plant. The prediction results, together with the analysis of
historical data, are useful to check possible power plant breakdown conditions. The PM
model is able to identify three alerting level conditions: a moderate alert level (requiring a
standard parameter setting of the energy production plant), a high alert level (activating
further corrective actions), and a very high alerting condition (indicating urgent corrective
actions to take).
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Figure 9a shows the theoretical trend of energy, distinguishing historical data (green
plot) from those predicted (red plot).

By observing the historical data, the alerting status is identified when the energy is
under a threshold value during a sufficient observation period (see horizontal dashed
line of Figure 9a representing the threshold delimiting the risk region of low produced
power). The observation of an alerting condition in the analyzed power trend enables the
automatic prediction calculus to estimate the future alerting risk level; when the predicted
results highlight a lower energy power value (compared with the threshold value) for
a different period and in a continuous way, it defines a high or a very high risk level.
In Figure 9b,c are illustrated the energy power trends and the power forecasting of the
analyzed dataset [24] in the short and in the medium period, respectively. Each predicted
sample refers to a period of about 5 h (average time estimated by considering the average
time gap between two time-sorted records). The upper limit of the threshold is not defined
in the analyzed case because no strange peaks are observed (for example, due to an energy
overload condition), and because a high amplitude of power represents a good parameter
of merit. In Appendix B are reported more details about the ANN-MLP algorithm used to
predict power.
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Figure 9. (a) Theoretical trend of energy distinguishing historical data (green plot) from predicted
ones (red plot): the values under the threshold indicates an alerting condition (risk condition).
(b) Historical data (green plot) [25] and ANN-MLP results (red plot) in the short period. (c) Historical
data (green plot) [25] and ANN-MLP results (red plot) in the medium period. According to the
indicated threshold, it is observed for the analyzed case a no accentuated risk condition (no alerting
about production of energy power).
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4. Discussion

A possible evolution of the PM model is its implementation in automated production
systems. Specifically, AI tools can be interfaced, by means of Human–Machine Interfaces
(HMIs), with production machines, providing an automated actuation control driven by
the AI alerting output (through a translation via Programmable Logic Controller (PLC)
protocols of the output into an executable command driving machine). In Figure 10
is illustrated the scheme of a possible matching between AI and HMI, thus controlling
the error; the feedback control system is defined by G(s) transfer function forwarding
gain, while H(s) is the feedback transfer function, and E(s) is the error signal equal to the
difference between the input signal X(s) and the feedback signal H(s)Y(s).

E(s) = X(s) − H(s) · Y(s) (1)

The output signal Y(s) is provided by the equation:

Y(s) = G(s) · E(s) (2)

The error signal may be a gap measured between the desired value of the monitored
parameter and the real measured one. The whole feedback system of Figure 9 is the
“translation” of the PM model in terms of electronic signals, and describes a self-adaptive
approach using AI as for Industry 5.0 facilities [1].
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Figure 10. AI self-adaptive model: DSS and automatic machine parameter setting by means of AI
matching with electronic feedback control and actuation systems.

AI circuits based on feedback control are suitable for different industry 5.0 applications
and functions, such as [1]:

• tool speed regulation integrating AI intelligent control (DC motor controlled by a
voltage signal as output of the AI engine);

• tool speed regulation integrating AI controlling an electrical current traveling in series
resistors;

• tool speed regulation integrating AI controlling values of series of resistors;
• tool speed regulation integrating AI controlling the value of a single resistance;
• collaborative exoskeletons with auto-adaptive solutions controlling motion trajectory

and torque;
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• AI controller for current-source inverter circuits (control of the switching conditions)
as for three-phase Current-Source Inverters (CSIs);

• intelligent converter control;
• wave rectifier control;
• control of voltage-source inverters;
• control of current-source inverters;
• robotic PID controller based on AI learning;
• AI controller adjusting tool trajectory;
• AI-based image processing selecting inline objects (unsupervised algorithms);
• soft robotics for intelligent collaborative robotics reading disturbance measurements;
• additive manufacturing control (pulsed signal techniques);
• AI image vision circuits implementing AND logic ports.

The discussed examples will help readers to understand how the PM model can be
applied in different production scenarios: as the theoretical model is flexible, it is applicable
in different cases also involving substantial changes in production approaches and in
organizational models. The AI analysis affects the organizational model of industries,
because it activates a series of corrective interventions depending on the detected machine
parameters. In this scenario, the application of CM models [11,29] is essential to achieving
the best production efficiency for industries working in different sectors.

In Table 2 are identified some aspects that are consequence of applying AI in PM
models, correlated with organizational influences for different management classifications.

Table 2. Classes of management types and related PM-AI aspects in the supply chains and their
organizational impacts.

Management Class
in Industries

Supply Chain Aspects Generated
by PM Models Organizational Impact Description AI

References

Production of products

Mechatronic and electronic
components interfaced via the AI

algorithm providing the
self-adaption of the machine

parameter setting.

An accurate human resource training approach
focusing on advanced electronic and

mechatronic technologies is necessary for the
best production efficiency. The accurate reading

of AI-predicted results optimizes a possible
predictive maintenance procedure or the
corrective action plans avoiding defects.

[1]

Logistics

Intralogistics and logistics
improvements suggested by

AI-DSS (load prediction, priorities
of transport activities, fuel

consumption optimization, etc.).

We require a formulation of Key Performance
Indicators (KPIs) oriented towards the

optimization of logistics using the available
resources and layouts (human resources,

vehicles, etc.). CM models, together with AI
results (for example, regarding load prediction),

could support all the logistics activities.

[30,31]

Energy

The whole supply chain must be
“energetically efficient” to reduce
the high costs due to the energy
consumption rate. The energy
monitoring and the AI energy

forecasting are important tools to
reduce costs.

Energy consumption monitoring, especially for
energy-intensive industries, suggests new

production layouts and a possible
re-organization of the whole production process

deciding priorities according to the product
request in the market (very high impact).

[32]

Services and
micro-services

Companies working in services
require AI tools to optimize

marketing actions and customer
care (as for recommender systems).
The parameters to assess are KPI

associated with the implementation
of services.

We require new knowledge based on
information about customer profiles and

customer behavior, together with a strategic
provisional analysis of marketing.

[33]
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Table 2. Cont.

Management Class
in Industries

Supply Chain Aspects Generated
by PM Models Organizational Impact Description AI

References

Rapid Prototyping (RP)
PM-AI models are applied for a
specific phase of the production

of prototypes.

PM is important to defining the best way to
perform rapid prototyping (RP) in short times,
thus helping the manager to decide “in time”
and to continue onto the next development

phase of the pre-series production. RP requires a
structured team with different skills.

[34]

Human Resource (HR) Selection processes of HR improved
by executing PM-AI models.

Human capital in industries is very important
for the organization and for production

efficiency. CM models are matched with PM
ones, thus structuring in the best way all the
supply chain activities and the most suitable

teams to execute specific processes.

[35–37]

Reverse Engineering
(RE)

RE can be modeled by a PM model.
This new concept of RE could
optimize company strategies

regarding quality
process optimization.

The RE processes require advanced technologies
(3D scanners, feelers, etc.) and well-defined

procedures to detect object shapes with a specific
tolerance depending on the accuracy of the

adopted tool. Workers should be continuously
trained on the updating of technologies and

procedures. This requires an investment plan for
the company in the training of its personnel.

[38]

Quality check All quality processes concerning
product quality checks by AI.

The quality processes drastically influence
production and marketing strategies. A new
concept of quality checking by means of the

execution of PM models reliably optimizes the
checkpoint definition (according to ISO

9001:2015 standard). The implementation of new
quality processes involving AI technologies

requires a revision of the organizational model
related to quality control. In this area can be

applied CM models closely related to quality.

[39–42]

Project Management
(PM)

PM can be applied also for the
management of projects regarding

different sectors of the supply chain
or global projects (new production

line, new product, etc.).

AI plays an important role in decision-making
and risk management in project management

activities. The PM and the CM models are able to
enact the whole range of activities (task) that
should be developed by ensuring the good

execution of the project.

[43]

In Table 3 are listed some advantages and disadvantages of the BPMN-PM models
integrating AI unsupervised and supervised algorithms.

The proposed BPMN-PM approach is mainly characterized by its limited ability
to automatically define the alerting thresholds for specific cases; this requires an initial
accurate analysis of historical data with the continuous checking of product quality to
choose the best set of machine parameters. The challenge of future works is to implement a
totally automatic system able to auto-calibrate the thresholds as a function of the quality
parameters using the feedback control of Figure 10.
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Table 3. Advantages and disadvantages of the BPMN-PM unsupervised and supervised algorithms.

BPMN Approach Advantages Disadvantages

Integrating Unsupervised
Algorithm

• Useful for a large number of attributes
(unknown “weight” of each attribute to
be analyzed);

• Possibility of the integration of different data
sources including an open dataset;

• Facilitates the implementation of complex
PM models;

• Construction of risk maps;
• Does not require significant data-

pre-processing (data filtering or data cleaning).

• Can be adopted only for data clustering
and not for forecasting;

• It is not easy to decide the best number
of clusters to analyze (a low number of
clusters facilitates the reading of the
results but does not provide details
about risk levels and
risks classifications).

Integrating Supervised
Algorithm

• Facilitates the addressing of the analysis to a
specific key variable;

• Can be adopted for data classification and
for forecasting;

• Construction of risk maps;
• Can set more hyperparameters optimizing the

analysis to be performed;
• Can be used for augmented data to improve the

model when using a dataset with few records.

• Requires a big dataset to optimize the
AI training model;

• Requires data pre-processing;
• Wrong data in the training dataset

could drastically increase the
error probability;

• More suitable for a low number
of variables;

• Could add redundancy in the analysis,
thus increasing the estimation error.

5. Conclusions

The proposed work provides a new concept of process mapping based on AI integration
into automated decision-making processes. In particular, we discuss a new concept of the
PM model activating AI unsupervised and supervised algorithms and improving production
processes. In order to facilitate the compression of the proposed model, we have used the
BPMN approach. Our paper shows two production cases to show how it is possible to apply
the theoretical model to a specific case of production. The discussed PM approach highlights
other correlated aspects, including the organizational impacts, the formulation of risk maps
based on the prediction of production parameters, the self-adapting processes setting machine
parameters, and the possible integrations of PM with HMI. The PM model represents the first
step for the implementation of advanced Industry 5.0 processes in production systems. The
PM approach can be adopted to design all the advanced electronic and mechatronic systems
characterized by checkpoint logics and automated parameter setting.
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versity “Giuseppe Degennaro”.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Roasting Production Process and DSS Implementing an AI
Unsupervised Model

The KNIME workflow of Figure A1a is implemented to perform the k-Means clustering
analysis (k = 3) defining the risk maps illustrated in Figure A1b–f. For each oven, we have
identified a stable cluster (no risk region), indicated by the black dashed line. Data pre-
processing is executed to clean the dataset of anomalous temperature values (only values
<500 ◦F and >100 ◦F are considered for the k-Means data processing); the cleaning process
is performed by means of a structured logic condition (AND logic applied simultaneously
for all five ovens). The increase in the cluster number k could help to quantitatively define
the boundary conditions for the moderate alerting levels.
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cleaned dataset. The method estimates the expression: 
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where distance1 is the mean intra-cluster distance and distance2 the mean inter-cluster 
distance to the closest cluster. The algorithm calculates the mean overall individual and 
total Silhouette Coefficients with a score ranging from −1.0 (very low score) to 1.0 (very 
high score). According to the analyzed case, the choice of k = 3 is a good compromise 
between the simplicity of analysis and the performance of the clustering algorithm (the 
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The metric adopted for the estimation of clustering performance is the Silhouette
Coefficient [44]. Figure A2 shows the KNIME workflow implementing the “Silhouette
Coefficient” and the calculated mean Silhouette Coefficient (SC) for a specific oven and a
cleaned dataset. The method estimates the expression:

SC = (distance2 − distance1)/max(distance1,distance2) (A1)

where distance1 is the mean intra-cluster distance and distance2 the mean inter-cluster
distance to the closest cluster. The algorithm calculates the mean overall individual and
total Silhouette Coefficients with a score ranging from −1.0 (very low score) to 1.0 (very
high score). According to the analyzed case, the choice of k = 3 is a good compromise
between the simplicity of analysis and the performance of the clustering algorithm (the
total overall coefficient of 0.458 is an average–high value).
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Appendix B. AI Supervised Algorithm Predicting Energy Power

The energy power prediction is performed by the KNIME workflow of Figure A3.
The input data [25] are preprocessed to be used by the ANN-MLP algorithm (see RProp
MLP Learner and MultiLayerPerceptron blocks). The data pre-processing is performed
by defining the time variable and by selecting the other variables to process (PE as label
variable, and T, AP, RH and V as further variables to process). Good algorithm performance
is achieved (a Means Absolute Error (MAE) of 0.045 is observed). The ANN-MLP network
is characterized by the following hyperparameters: maximum number of iterations equal
to 1000, one hidden layer having 10 neurons, a training model constructed from 70% of
the dataset, and a testing model constructed from the remaining 30% of the dataset (last
records sorted in time).
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