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Abstract: In recent years, research on human psychological stress using wearable devices has gradu-
ally attracted attention. However, the physical and psychological differences among individuals and
the high cost of data collection are the main challenges for further research on this problem. In this
work, our aim is to build a model to detect subjects’ psychological stress in different states through
electrocardiogram (ECG) signals. Therefore, we design a VR high-altitude experiment to induce
psychological stress for the subject to obtain the ECG signal dataset. In the experiment, participants
wear smart ECG T-shirts with embedded sensors to complete different tasks so as to record their
ECG signals synchronously. Considering the temporal continuity of individual psychological stress,
a deep, gated recurrent unit (GRU) neural network is developed to capture the mapping relationship
between subjects’ ECG signals and stress in different states through heart rate variability features at
different moments, so as to build a neural network model from the ECG signal to psychological stress
detection. The experimental results show that compared with all comparison methods, our method
has the best classification performance on the four stress states of resting, VR scene adaptation, VR
task and recovery, and it can be a remote stress monitoring solution for some special industries.

Keywords: psychological stress; electrocardiogram; heart rate variability; gated recurrent unit; VR
high-altitude experiment; wearable devices

1. Introduction

When one’s ability cannot match the requirements of the external environment, psy-
chological stress will appear, such as too difficult a work task or too heavy a financial
burden [1]. In fact, we all live under stress, and moderate stress can keep us competitive.
However, chronically living under high stress will increase the risk of physical and psy-
chological disease [2], including severe cardiac arrhythmias, high blood pressure, stroke,
gastric ulcers, cancer and depression [3,4]. If people could get their stress situation in
a low-cost and convenient way and manage it appropriately, it would not only reduce
people’s risk of disease but also improve people’s efficiency, creativity and security at work,
especially for special industry practitioners, such as military personnel, pilots, firefighters
and high-speed rail drivers. Therefore, it is of great value and of social significance to
develop a non-invasive stress estimation system to monitor people’s stress changes in their
daily work.

At present, the main basis for psychological stress assessment includes social media
information and physiological signals. For the former, it is easy to understand that peo-
ple’s psychological stress can be roughly estimated by multimodal fusion and analysis of
information such as texts, images, and videos posted on social media, and many methods
have been proposed in this research direction [5,6]. Further, it is easier for people to obtain
social media data than physiological signals. However, the accuracy of its stress assessment
depends on how active users are on social media, and it seems difficult to make accurate
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stress assessments for users who are less active on social media. In addition, because of
psychological defense mechanisms, people are likely to deliberately disguise their real
stress situations in their behavioral performance. Compared with social media data, phys-
iological signals can provide more objective and reliable information for psychological
stress assessment [7]. Physiological signals used for stress assessment mainly include
electroencephalogram (EEG), electrodermal activity (EDA), photoplethysmographic (PPG)
and electrocardiogram (ECG). Although EEG can provide useful information for psycholog-
ical stress analysis with high temporal resolution [8], the wearing process of its collection
equipment is cumbersome and requires the help of professionals. Moreover, the EEG signal
is easily disturbed by movements during the collection process. Therefore, EEG is not
suitable for daily monitoring of human psychological stress. Compared with EEG, the
acquisition equipment for PPG and EDA is portable, and the acquisition process is simple.
However, after being interfered with by body movements, the signal is prone to a large
degree of distortion, which will increase the difficulty of subsequent feature extraction and
analysis. ECG offers advantages over PPG in terms of stability and reliability and is by
far the most widely used cardiac monitoring method in healthcare. In recent years, with
the development of wearable devices, many wearable ECG devices with both comfort and
anti-interference have been developed, including vests, bracelets and chest belts [9–11].
The development of these non-invasive ECG devices is the basis for research on the daily
monitoring of people’s psychological stress. Wearable physiological parameter monitoring
equipment has also been widely used in the field of human action recognition, which has
some implications for our research [12–15].

Compared with psychological stress detection methods based on scales or social media
data, the use of wearable devices to collect ECG signals and detect psychological stress
obviously has more advantages in real-time and flexibility of usage scenarios. In practical
applications, we can use this solution to monitor the psychological stress state of police,
firefighters, pilots and other special industry workers during the execution of tasks in
real-time and even give real-time psychological intervention at the right time to relieve
their anxiety. This not only can improve their work efficiency but also probably play an
important role in keeping them safe. In addition, this solution can also be used in the
recruitment and selection of workers in special industries.

When changes in the external environment make people feel tense or anxious, it
will also cause a physiological response in the body. At this time, the parasympathetic
branch of the human autonomic nervous system (ANS) is temporarily suppressed, and
the sympathetic branch is activated, which causes a rapid increase in heart rate, cardiac
contractility, blood pressure and respiration, and promotes hormone release [16]. It puts
the body in a state of hyperactivity to cope with the upcoming challenge. The changes
in the ANS associated with psychological stress can be obtained by recording the ECG
signal of the subject. Specifically, these ANS changes can be obtained by HRV (Heart Rate
Variability) analysis [17].

In this field, previous studies have mostly used classical machine learning methods to
detect psychological stress through HRV features, namely, binary classification of stressed
and unstressed [18–24]. First of all, such a binary classification is not completely consistent
with people’s stress experience in real life, and it is more and more necessary to study the
evaluation methods of human stress in different states. Secondly, deep learning methods
have achieved good results in many fields, such as image recognition, natural language
processing and signal processing, so the powerful representation ability of deep learning
methods can achieve good results in the multi-classification of psychological stress is
a problem worth studying. Furthermore, the generation of psychological stress is not
instantaneous, and whether its temporal features can be used to improve the accuracy of
psychological stress classification is also an interesting problem.

To this end, in this paper, we introduce an ECG dataset collected under four stress
states and propose to introduce the concept of time series into psychological stress as-
sessment in order to improve the classification accuracy. Specifically, by constructing a
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continuous HRV time series, we use a multi-layer GRU network to extract multi-level
features related to psychological stress and finally obtain the results through a classification
network composed of multi-layer perceptrons. The contributions of this paper are mainly
in two aspects. The first is that we propose the concept of time series in the classification of
psychological stress states and introduce a recurrent neural network into the classification
of psychological stress to obtain the representation of psychological stress in continuous
HRV sequences to improve the classification accuracy. The second is that we conducted a
psychological stress data collection experiment with 80 participants, designed and devel-
oped a stress-induced VR high-altitude scene and collected ECG signals from the subjects
during four stress states, including resting, VR scene adaptation, VR high-altitude task
and recovery. The purpose is to construct a dataset that can be used to study the mapping
relationship between ECG signals and psychological stress in various states. After data
cleaning and elimination, this dataset finally contains the ECG data and corresponding
status labels of 63 subjects.

2. Related Works

Compared with the subjective scales used in the past, psychological stress assessment
based on physiological signals has advantages in objectivity and reliability. In the field of
psychological stress or emotion estimation based on physiological signals, many methods
have been proposed, and some scholars have put forward their insights and analysis on
the relationship between physiological signals and psychological stress.

Classical machine learning methods are widely used to classify psychological stress
or emotions. Ref. [18] uses Principal Component Analysis (PCA) to verify the HRV time
domain, frequency domain and statistical features and then classify two emotions and
five emotions by Support Vector Machines. Ref. [21] selects robust HRV features through
the mRMR method, reduces the differences in physiological parameters between individ-
uals through baseline data to improve the classification accuracy, and finally, classifies
psychological stress in relaxation and task states through a variety of machine learning
methods. In the study of driver stress detection, ref. [25] proposes the use of an enhanced
random forest classifier to monitor driver stress by combining ECG waveform features and
HRV features. Ref. [23] tries to use various machine learning algorithms, including KNN
and multi-layer perceptron (MLP), to classify the psychology stress level using the HRV
obtained from the ECG signal, and achieved good classification results through the MLP
method. Ref. [26] uses the multi-scale analysis method to evaluate the stress of pilots flying
at night by fusing the area of the heart rate curve and constructing the functional relation-
ship between the stress intensity and the training frequency, which effectively improved
the effect of high-altitude training. Some researchers use genetic algorithm, artificial bee
colony algorithm and improved particle optimization algorithm to optimize multi-kernel
support vector machine, which improves the accuracy of stress detection [22].

At the same time, there are also studies that use biochemical indicators as a reference in
the experiment and apply a variety of physiological signals to the detection of psychological
stress. Ref. [27] proves that some indicators of HRV (e.g., HF, LF) have a strong correlation
with some features of the EEG signal (e.g., LAPFpl) for stress estimation by analyzing
the linear correlation between the HRV features of the ECG signal and the EEG signal
features. Based on the above study, the authors propose that combining EEG with HRV
can improve the accuracy of psychological stress detection. Ref. [19] develops a wearable
multiphysiological parameter system to measure human stress and collect salivary cortisol
as a reference. Specifically, the MAST (Maastricht Acute Stress Test) experiment is used
to induce the generation of psychological stress, PCA and statistical methods are used
to select and reduce the dimensionality of the features extracted from the recorded ECG,
EDA and EEG signals, and finally, the SVM is used to classify psychological stress during
the experimental period and the relaxation period. In addition, the experimental results
in the paper show that salivary cortisol levels are highly correlated with HRV features.
Some researchers also propose the detection of rest and task states of the human body
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by combining HRV features and PPG waveform features. A wrapping method based on
ensemble learning is designed for feature selection, and a decision tree-based bagging
model is developed for final state classification [20]. In [28], the salivary amylase and
salivary cortisol concentrations are used to label the stress of subjects in TSST experiments
into three levels, and the fuzzy ARTMAP method and voting integration method optimized
by genetic algorithms have been used to establish a predictive model from subject HRV to
psychological stress level, and good accuracy rates have been obtained.

In recent years, the use of deep learning methods to classify psychological stress has
gradually emerged. Ref. [24] uses a one-dimensional convolutional neural network to
extract the complex features of the RR intervals, thereby building an end-to-end neural
network model to detect stress states through ECG signals. The RR interval is the time
interval between two adjacent R waves in the ECG signal; that is, the time interval between
two heartbeats. Ref. [29] proposes the use of a Gabor wavelet transform and discrete
Fourier transform to convert the ECG signal into pictures in the time-frequency domain
and frequency domain, respectively, and fuse the original signal, time-frequency domain
and frequency domain information through a convolutional neural network to classify five
levels of stress. Ref. [30] designs a deep convolutional neural network with a transformer
mechanism to detect psychological stress using the location information of R-waves in ECG
signals and achieves good performance through the fine-tuned network. Ref. [31] proposes
the concept of real-time monitoring of psychological stress, and a convolutional neural
network is used for the real-time recognition of acute cognitive stress from ECG signals with
a 10-s window, which reduces the detection error rate compared to traditional methods.
In previous studies, we used a multi-layer GRU network for the heartbeat classification
of ballistocardiogram (BCG) signals and a bidirectional LSTM method for end-to-end
heart rate estimation of BCG signals in a regression way, which achieved the best results
compared to previous algorithms [32,33]. The successful application of a recurrent neural
network in heartbeat detection also inspires and helps us in this work.

3. Materials

In this section, the wearable ECG signal collection device, VR scene, the process of the
experiment and the dataset will be introduced in detail.

3.1. Smart ECG T-Shirt

Figure 1 is the smart ECG T-shirt designed and developed in our laboratory, which
can simultaneously record various human physiological signals such as ECG, respiration
and electrodermal activity [34]. The left and right of Figure 1a show the front lining and the
front of the smart ECG T-shirt, respectively. In the experiment, it is used to record the ECG
signals of subjects under different stress states. The sensor system of the smart ECG T-shirt
is shown in the left half of Figure 1a, which consists of five flexible electrodes. The right
half of Figure 1a shows the signal processing module of the smart ECG T-shirt, which can
collect and store three lead ECG signals at a sampling rate of 250 Hz and provide power for
the entire system through the built-in lithium battery. Figure 1b shows a subject wearing
the smart ECG T-shirt. Figure 2 shows the three-lead ECG signal collected by this device.
Each prominently raised peak in Figure 2 represents a heartbeat, and the heartbeat location
is consistent across each lead. The recording of three-lead ECG signals can guarantee the
signal quality of ECG to a large extent and improve the tolerance of our ECG acquisition
equipment to motion or noise interference.
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(a)

(b)

Figure 1. The smart ECG T-shirt. (a) The main modules of the smart ECG T-shirt. (b) A subject
wearing the smart ECG T-shirt.

Figure 2. Three-lead ECG signal collected by smart ECG T-shirt.

3.2. VR Scenarios and Tasks

Figure 3 visualizes the VR experiment. The left of Figure 3a shows the experimental
scene, and the right shows the VR scene seen by the subjects (in which the curves of
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various physiological parameters will not be seen). The positions and sizes of key objects
in the experimental scene are consistent with the VR scene. During the experiment, the
subjects need to wear a VR helmet to enter the virtual high-altitude scene and complete the
following three tasks on the board in this scene, as shown in Figure 3b. These three tasks
are described in detail as follows:

Task 1 : Go to the end of the board to pick up the tennis ball from basket B and put it
in basket A. Basket A and basket B are shown in the left of Figure 3a.

Task 2 : Go back to the end of the board to pick up the prop snake from basket C and
put it in basket A. Basket A and basket C are shown in the left of Figure 3a.

Task 3 : Go to the end of the board and jump to the square board shown in the right of
Figure 3a.

(a)

(b)

Figure 3. VR experiment. (a) Experimental scene and VR scene. (b) A subject performing the VR task.

3.3. Experimental Procedure and Dataset

The experiment consisted of four phases: resting, VR scene adaptation, VR task and
recovery. The ECG signals were recorded synchronously in each phase of the experiment.
Each of these phases is described in detail as follows:

Phase 1—Resting (5 min) : Sit calmly in a chair. This phase lasts 5 min.
Phase 2—VR scene adaptation (2 min) : Wear VR equipment to enter the VR high-

altitude scene, and adapt to the scene. This phase lasts 2 min.
Phase 3—VR task : Complete the tennis ball and prop snake transport and jump to

the board in the VR high-altitude scene. The duration of this phase depends on how fast
the subject is performing the task.
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Phase 4—Recovery (5 min) : After the VR task, stay calm and sit back in the chair.
This phase lasts 5 min.

The above four experimental phases correspond to the four stress states of the subjects.
This experiment collects the ECG signals of 63 healthy male subjects with an average age of
17.89 ± 0.45. Considering the adaptability of the subjects and the possible duration of each
stress state, we select the subjects’ ECG data in the first 70 s in the VR scene adaptation and
recovery states and the subjects’ data in the last 70 s in the resting and VR task states as the
stress state classification dataset. Different stress states are the stress classification labels of
the corresponding ECG signals so that we can obtain a stress state classification dataset
consisting of the ECG data of 63 subjects and four labels. By summarizing the intuitive
feelings of each subject in the experiment, we found that the stress level during resting is
the lowest, the stress during the VR task is the highest, and the stress during recovery is
greater than that in the VR scene adaptation.

4. Proposed Method

The purpose of our proposed deep GRU network is to perform the classification of
four stress states through ECG signals collected by smart ECG T-shirts. In the HRV fea-
ture extraction stage, first, the R waves are detected, and the RR intervals are extracted
from the ECG signal, and then the RR interval data under each stress state is divided into
fixed-length data segments and arranged in time series. Finally, multiple HRV features,
including time domain, frequency domain and entropy information, are extracted from the
RR interval data of each segment. In the data preprocessing stage, considering the different
physical meanings and numerical dimensions of each HRV feature, the time series relation-
ship between the same HRV feature and the requirements of the input and optimization of
the recurrent neural network, we standardize each feature of a single sample at each time
by calculating the maximum and minimum values of each HRV feature of all samples at
each moment. In the stage of deep feature extraction and stress classification, we design
a deep feature extraction model composed of a multi-layer GRU network and a classifier
composed of a multi-layer, fully connected network for time series feature extraction and
classification of four stress states. The overall process of the proposed deep classifica-
tion method is shown in Figure 4, and each of these processes is elaborated as follows.
Figure 5 is a flow chart of the proposed method, which can make the process of each stage
in Figure 4 easier to understand.

Figure 4. The overall process of the deep classification method based on the GRU network proposed
in this paper.
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Figure 5. The flow chart of the proposed method.

4.1. HRV Feature Extraction

In this section, we first use a fourth-order Butterworth bandpass filter with a cutoff
frequency of 10–35 Hz to filter out high-frequency noise and low-frequency perturbations
generated by limb movements in each subject’s ECG signal. Then, the locations of the R
waves in the ECG signal are detected, and the RR intervals are calculated for each subject
in each stress state. Finally, after the analysis and comparison of previous studies on the
classification of psychological stress [18–21], we select seven HRV features to represent
the information of ECG signals, namely, mRR and SDNN containing their time domain
information, HFn, LFn and LF/HF containing RR intervals frequency domain information,
ApEn containing their entropy information and their nonlinear feature SD1/SD2. The
description of each feature is shown in Table 1.

Table 1. HRV features and their descriptions in the paper.

Feature Description

mRR The mean value of the RR interval (time between adjacent heartbeats) sequence.
SDNN The standard deviation of RR intervals (time series of adjacent heartbeat intervals).
HFn Normalized spectral energy of heart rate variability from 0.15 to 0.4 Hz.
LFn Normalized spectral energy of heart rate variability from 0.04 to 0.15 Hz.

LF/HF The ratio of low-frequency to high-frequency power for heart rate variability.

ApEn The approximate entropy of the RR interval sequence, which is used to measure the complexity of
the sequence.

SD1/SD2
In the point cloud data of the poincare plots drawn with the RR intervals, the variance of the

distribution along the longer axis is SD2, and the variance of the distribution along the shorter
axis is SD1. SD1/SD2 is the ratio of SD1 and SD2.
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4.2. Data Preprocessing

In this section, sample construction and feature standardization processing of ECG
signals are elaborated. The complete process is shown in Figure 6. The left of Figure 6
shows the sample construction process, and the right shows the sample standardization
method. In the process of sample construction, we first intercept N RR interval segments
of length L from the RR interval sequence with sliding step d according to the time series
and calculate the HRV features corresponding to each segment. Finally, the HRV features
of the RR interval segments are arranged in the sample matrix shown in Figure 6, where
tn represents the moment corresponding to the n-th segment of the RR interval sequence.
In this paper, we take L as 30 s, sliding step d as 2 s and N as 20. It should be noted that
the physical meanings of the HRV features in the constructed samples are different, and
there is a temporal relationship between the HRV feature sequences. Therefore, we use
the min-max standardization method to standardize each feature at each moment in each
sample based on the time series characteristics. The specific process is shown on the right
of Figure 6. f1 and f2 represent different HRV features, and M represents the total number
of samples. The final standardized samples can be obtained by processing the feature
sequence composed of each feature at each moment in all samples. The calculation formula
of the minimum and maximum standardization is shown in Equation (1):

f̂i,j =
fi,j −min(Fi,j)

max(Fi,j)−min(Fi,j)
, (1)

where fi,j is the HRV feature of the i-th row and the j-th column in the sample (its physical
meaning is the j-th feature in the HRV feature sequence at the i-th moment), i = 1, 2, . . . , N,
and j = 1, 2, . . . , 7; max(Fi,j) and min(Fi,j) are the maximum and minimum values of HRV
features in row i and column j in training samples; f̂i,j is the standardized HRV feature.

Figure 6. Sample construction and standardization.

4.3. GRU Model

GRU is a kind of recurrent neural network (RNN). GRU and Long Short-Term Memory
(LSTM) are both proposed to solve the problem of gradient disappearance in the long-term
dependence of learning time series in traditional RNN [35,36]. The performance of GRU
and LSTM on many deep learning tasks is similar [37], but GRU has fewer parameters
and less computation, so it has advantages in reducing the consumption of computing
resources and the risk of overfitting. The structure of the GRU model is shown in Figure 7.
Where the circles and ellipses with a blue background represent operators, the boxes with
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a green background represent functions and the boxes with a gray background represent
inputs. There are two important gate functions in the GRU model: the update gate and
reset gate. The function of the reset gate is to determine how much of the hidden state
information of the previous moment will be added to the candidate state according to
the current input and the hidden state of the previous moment, thereby generating the
candidate state of the current moment. The function of the update gate is to determine
which historical information in the hidden state at the previous moment can be forgotten
and which information in the candidate state at the current moment can be added to the
new hidden state, thereby generating the hidden state at the current moment. Equations
(2) and (3) are the calculation formulas for the weights of the reset gate and the update
gate, and the update formulas of the candidate state and the hidden state are shown in
Equations (4) and (5) [37].

Figure 7. The GRU model structure.

rn = σ(Wirxn + Whrhn−1), (2)

zn = σ(Wizxn + Whzhn−1), (3)

cn = tanh(Wicxn + Whc(rn � hn−1)), (4)

hn = on = (1− zn)�cn + zn�hn−1, (5)

where xn is the input at the n-th moment, and hn−1 is the hidden state at the n− 1-th
moment, Wir and Whr are the weight matrices of the reset gate input layer and the hidden
state layer, Wiz and Whz are the weight matrices of the update gate input layer and the
hidden state layer, Wic and Whc are the input layer weight matrices and the hidden state
layer weight matrices in the candidate state calculation, the bias matrices are all included
by the weight matrices. cn is the candidate state at the n-th moment, and hn and on are the
hidden state and output at the n-th moment. Operator � is an element-wise multiplication.
σ and tanh are activation functions, and their calculation formulas are σ(x) = 1

1+e−x and

tanh(x) = ex−e−x

ex+e−x , respectively. They can improve the nonlinear capabilities of the model.



Sensors 2022, 22, 8664 11 of 19

4.4. Psychological Stress Classification Model

The proposed psychological stress classification model consists of two sub-models,
deep feature extraction and psychological stress classification, and its overall structure is
shown in Figure 8. The deep feature extraction model is composed of two cascaded GRU
blocks, and the output of each moment of the first block is input to the second block in the
same order. The content in the green dotted box in Figure 8 shows the structure diagram
of each GRU block expanded by time steps. Each GRU block is composed of K layers of
the GRU network, and each layer of the GRU network contains N time step inputs, where
xn and on represent the input and output of the n-th moment, and the structure of each
GRU model is shown in Figure 7. Considering that the output of the GRU network at the
last moment contains the information of the entire sequence, the multi-level deep features
composed of the outputs of the last moment of the two GRU blocks are used as the input of
the psychological stress classification model. The psychological stress classification model
consists of a multi-layer, fully connected network and a SoftMax classifier. As shown in the
blue dotted box in Figure 8, there is a batch normalization layer between each layer of fully
connected networks to standardize the distribution of neural network output, and ReLU is
used as the activation function. The numbers in the FC block in Figure 8 are the number of
neurons in each layer of the neural network.

Figure 8. Psychological stress classification model.

The loss function used in the proposed method is shown in Equation (6), which
consists of cross entropy loss and L2 regular loss. Cross entropy loss is used to measure
the classification error of the model, and L2 loss is used to measure the complexity of the
model to reduce the risk of overfitting. In training, the deep network model is optimized
by minimizing the loss function.

loss(y, ŷ) = − 1
M

(
M

∑
i=1

K

∑
k=1

y(k)i logŷk
i ) + γ‖W‖2, (6)

where M is the number of each batch sample in the training process, K is the total num-
ber of categories and y and ŷ are the real labels and prediction probabilities of samples,
respectively. γ is the hyperparameter of L2 loss, which controls the participation of L2 loss.

4.5. Evaluation Indicators

Since the number of samples under the four classes (psychological stress states) in
this dataset is equal, the accuracy rate is used as an evaluation index to measure the
performance of the methods. The accuracy of classification is the ratio of the number of
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correctly classified samples to the total number of samples, and its calculation formula
is shown in Equation (7). When the number of samples in each category is balanced,
the accuracy rate can objectively and intuitively show the classification accuracy of the
algorithms. The higher the accuracy rate, the higher the classification performance of
the algorithm.

Accuracy =
T1 + T2 + T3 + T4

M
, (7)

where M is the total number of samples, and T1∼T4 are the number of correctly predicted
samples of category 1∼4, respectively.

5. Experiments and Results
5.1. Experimental Setting and Parameters

The proposed method is built and evaluated on the dataset mentioned in Section 3.3.
In order to be more consistent with the actual applications, the cross-subject test method
is used to verify the estimated performance of the method. In this paper, the training
set consists of ECG data on 47 subjects, in which 8 subjects’ ECG data are randomly
selected as the validation set, and the remaining 16 subjects’ ECG data are the test set.
In data processing, each subject’s ECG signal under each stress state is broken into 20
ECG signal segments with a length of 30 s, and the interception interval is 2 s. These
20 signal segments correspond to the time steps of the GRU network inputs.

In the deep feature extraction model, each GRU block is formed by stacking 5 layers
of the GRU network, each layer of the GRU network has 256 neurons, and the length of
the input sequence is 20 time steps. The classification model is composed of three layers of
fully connected networks stacked, and the number of neurons from the bottom layer to the
top layer is 64, 32 and 4. During the training process, the L2 regularization coefficient γ
is 0.002, the learning rate is 0.0002, the batch size is 52, the model is optimized by Adam
and the number of epochs is about 80. The training ends when the accuracy of the training
set and the validation set is high, and the accuracy of the validation set is stable. During
validation and testing, the validation and test sets are standardized using the parameters in
the training set. In order to evaluate the performance of the model more objectively, we
conduct five independent repeated experiments and take the average of its accuracy as the
final evaluation index.

5.2. Experimental Platform

The hardware configuration of the workstation for this experiment is Intel i7-11700F
CPU with 16GB RAM, and NVIDIA 1060Ti GPU. The software platform is Python 3.7.11,
Pytorch 1.10.0 and CUDA 11.3.

5.3. Results and Analysis

In this section, the psychological stress state estimation performance of the proposed
method is presented and discussed from different perspectives. First, different numbers
of HRV features are tried to train deep models to observe the contribution of different
features to the estimation performance of the proposed method, and the results are shown
in Table 2. When only mRR and ApEn features are used, the classification accuracy of
the model is only 0.51. As more HRV features are added to the training of the model, its
classification accuracy keeps rising and eventually reaching 0.73 when all HRV features
are used. In addition, it can be seen that compared with the HRV features, for except
mRR and ApEn, SDNN has a higher contribution to stress state classification performance.
Then, Figure 9 shows the training set accuracy and validation set accuracy curves of the
proposed algorithm during training. It can be seen that as the number of epochs increases,
the estimated accuracy of the model in both the training set and the validation set keeps
rising steadily. It should be noted that the gap between the accuracy of the training set
and the accuracy of the validation set continues to increase as the training progresses,
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and the risk of overfitting the model will increase if the training continues. Therefore, the
model with the iteration number of 80 epochs is selected for performance evaluation on the
test set.

Table 2. Classification accuracy of the proposed method in stress state with different HRV features.
In this sub-experiment, 28 subjects are randomly selected from the training set described in Section
5.1 to train the model, and 15 subjects are randomly selected from the remaining data for validation.
The accuracy in the table is the average accuracy of three independent repeated experiments on the
validation set. The number in bold represents the best result.

Features Accuracy

mRR, ApEn 0.51

mRR, ApEn, SD1/SD2 0.56

mRR, ApEn, SD1/SD2, SDNN 0.68

mRR, ApEn, SD1/SD2, SDNN, HFn 0.67

mRR, ApEn, SD1/SD2, SDNN, HFn, LFn 0.71

mRR, ApEn, SD1/SD2, SDNN, HFn, LFn,
LF/HF 0.73

Figure 9. Accuracy curves of training set and validation set during training.

The classification performance of the proposed method and the comparison algorithms
are presented in Table 3; the number in bold is the best result. Among them, comparison
algorithms include the traditional machine learning algorithm KNN, ensemble learning
method XGBoost [38], deep learning method MLP [23] and one-dimensional CNN (CNN-
1D) network. KNN has been widely used in the study of psychological stress classification.
XGBoost, as a state of art ensemble learning method, has been applied in many machine
learning fields. In [23], a good psychological stress classification result is obtained by
using the MLP method. At present, a one-dimensional CNN network is also widely
used in the field of physiological signal processing and has achieved good results [39,40].
GRU-b1, GRU-b2 and GRU-b3 in Table 3 are the methods proposed in this paper, which
represent the deep time series feature extraction model composed of one GRU block, two
GRU blocks and three GRU blocks, respectively. It can be seen that the classification
accuracy of psychological stress obtained by our methods is better than all comparison
algorithms. When using two GRU blocks to extract deep features, the classification accuracy
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of psychological stress is the highest among all methods, reaching 0.78. We believe that
this is because the long-short-term memory network may be able to capture longer-term
dependencies between time series than other machine learning methods, thereby obtaining
more global and robust characteristics of psychological stress. In addition, with the increase
in GRU blocks, the classification performance of the model tends to increase first and then
maintain or slightly decrease. This is because when there are fewer model parameters, the
risk of model underfitting is high. When there are too many model parameters, it is easy
for the model to fall into overfitting, which will reduce the classification performance of
the model on the test set.

Table 3. Psychological stress state classification accuracy of the proposed algorithm and comparison
algorithms on the test set. The number in bold represents the best result.

Algorithms KNN XGBoost MLP [23] CNN-1D GRU-b1 GRU-b2 GRU-b3

Accuracy 0.65 0.69 0.71 0.7 0.73 0.78 0.77

We also perform some exploration on the impact of other model hyperparameters
on model performance; Tables 4 and 5 show the estimated performance of the proposed
algorithm under different model parameters. Table 4 shows the impact of GRU networks
with different numbers of neurons on the model estimation performance, and Table 5
shows the impact of different numbers of GRU network layers on the model estimation
performance. It can be seen that with the increasing number of neurons and network layers
in the network, the classification accuracy of the model shows a trend of rising first and
then declining under the influence of the risk of underfitting and overfitting. When the
number of neurons is 256 and the number of network layers is 5, the classification accuracy
of the model is the highest. Furthermore, it can be seen that the depth of the GRU network
significantly affects the classification accuracy of the model. This is because, compared
with the shallow network, the deep network can extract more essential features from HRV
data. These features represent the common characteristics of physiological data of different
subjects under the same stress state, and they can affect the generalization performance of
the model.

Table 4. The classification accuracy of the psychological stress of the GRU network of the proposed
method under different numbers of neural units. The number in bold represents the best result.

The number of
GRU units 64 128 256 512

Accuracy 0.75 0.75 0.78 0.73

Table 5. The classification accuracy of the psychological stress of the GRU block of the proposed method
under different numbers of neural network layers. The number in bold represents the best result.

The number of
layers of GRU

block
1 3 5 7

Accuracy 0.67 0.7 0.78 0.76

In addition, we also explore the classification performance of the model in each class.
Labels and classes 1, 2, 3 and 4 in Table 6 and Figure 10 represent four stress states, namely,
resting, VR task, recovery and VR scene adaptation. Table 6 is the confusion matrix for
the classification of the proposed method on the test set, and the data in the table is the
proportion of the number of samples predicted to be in this class among all the samples
in this class. It can be seen that the model has the lowest classification accuracy for class 1
(resting state), 38% of the samples are wrongly classified into class 4 (the state of adapting
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to the VR scene), and 13% of the samples in class 4 are also wrongly classified into class 1.
This is because, in the process of adapting to the VR scene, the subjects only need to keep
standing to observe and become familiar with the VR high-altitude scene, which induces
less psychological stress so that the physiological parameters of the subjects at this time are
very close to those at rest. This results in a lower classification accuracy of the model in class
1 compared to other classes. As shown in Figure 10, we also use the t-distributed Stochastic
Neighbor-Embedding (T-SNE) [41] method to reduce the dimensionality and visualize
the deep feature output by the CNN-1D and proposed method, respectively, where the
dots with different colors represent the class to which the feature belongs. The position
of each dot represents the distribution characteristics of the deep features extracted from
a sample in the two-dimensional feature space. It can be seen from Figure 10a that the
classification boundaries between the features of each class extracted by the CNN-1D model
are relatively blurred, and the feature distribution of each category of samples is loose. The
extracted features using the proposed deep model are shown in Figure 10b. It can be seen
that compared with the CNN-1D model, the classification boundaries between the various
categories of features extracted by our method are more obvious, and the distribution
of sample features of each category is also more concentrated. Furthermore, we can see
that the method proposed by us can also improve the separability between class 1 and
class 4 samples to a certain extent, which indicates that our method extracts more essential
psychological stress features from HRV data. Although our method has some improvement
in feature extraction compared to the CNN-1D method, the classification boundaries of
deep features of class 1 and class 4 are still blurred, which is consistent with the results in
the confusion matrix. The identification of this weak-intensity stress is a difficult problem
in the current research field of psychological stress estimation, and it will be also the focus
of our future research.

(a)

Figure 10. Cont.
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(a)

Figure 10. Feature extraction results of CNN-1D and the proposed method on subject HRV data.
(a) The distribution of the features output by the CNN-1D model after T-SNE dimensionality re-
duction. (b) The distribution of the features output by the proposed method after dimensionality
reduction by T-SNE.

Table 6. The classification confusion matrix of the proposed method for psychological stress states.
The data in the table is the proportion of the number of samples predicted to be this label in all
samples of this label.

True Labels

Proportion Predict Labels

1 2 3 4

1 0.56 0.06 0 0.38

2 0 0.88 0.06 0.06

3 0.06 0 0.94 0

4 0.13 0.06 0 0.81

6. Conclusions

This paper proposes a deep psychological stress classification method based on ECG
signals. First, HRV feature samples containing the timing information of ECG signals are
constructed. Deep GRU networks are then used to extract deep features from HRV feature
samples that have more essential and general connections to psychological stress states.
Finally, a multi-layer, fully connected network is used to fuse the deep and shallow features
of the GRU network to predict the psychological stress state. The experimental results
show that the proposed method is a robust psychological stress estimation scheme, and its
estimation accuracy in this dataset is 0.78 better than other mainstream methods.

However, we noticed that the classification accuracy is not very high. In future work,
we will try to further improve the accuracy of psychological stress classification from the
following aspects. The first is that the amount of information input to the classification
model can be increased by introducing other physiological signals besides ECG, such as
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EEG and EDA, or extracting more valuable features from ECG signals, thereby improving
the performance of stress classification. Secondly, we can also consider reducing the differ-
ences in physiological signals between individuals to improve the classification accuracy
of psychological stress. Specifically, domain adaptation methods in transfer learning have
achieved good results in many image datasets with large distribution differences, and
in recent years, this method has achieved high performance in EEG-based cross-subject
emotion recognition accuracy [42,43]. Therefore, we will consider introducing a transfer
learning method to further improve the classification accuracy of psychological stress
states. Furthermore, high-level feature design and feature space applicable reduction to
multidimensional wearable sensors, such as referable approaches for wearable-based HAR,
are also worthy of further experimentation [14,44].
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