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Abstract: With a large number of Local Binary Patterns (LBP) variants being currently used today,
the significant and importance of visual descriptors in computer vision applications are prominent.
This paper presents a novel visual descriptor, i.e., SIM-LBP. It employs a new matrix technique called
the Symmetric Inline Matrix generator method, which acts as a new variant of LBP. The key feature
that separates our variant from existing counterparts is that our variant is very efficient in extracting
facial expression features like eyes, eye brows, nose and mouth in a wide range of lighting conditions.
For testing our model, we applied SIM-LBP on the JAFFE dataset to convert all the images to its
corresponding SIM-LBP transformed variant. These transformed images are then used to train a
Convolution Neural Network (CNN) based deep learning model for facial expressions recognition
(FER). Several performance evaluation metrics, i.e., recognition accuracy rate, precision, recall, and
F1-score, were used to test mode efficiency in comparison with those using the traditional LBP
descriptor and other LBP variants. Our model outperformed in all four matrices with the proposed
SIM-LBP transformation on the input images against those of baseline methods. In comparison
analysis with the other state-of-the-art methods, it shows the usefulness of the proposed SIM-LBP
model. Our proposed SIM-LBP variant transformation can also be applied on facial images to identify
a person’s mental states and predict mood variations.

Keywords: local binary patterns; adaptive image transformation; coded visual descriptors; image
encoding; facial expression recognition

1. Introduction

Classifying facial features from images is a challenging computer vision task. If
we improve the reliability and efficacy of this operation, the application scope will be
widened in particular in tackling real-world challenges [1]. Initial steps in recognizing
facial expression (FE) are to extract the facial features from an image. Local descriptors
play a vital role in discriminative feature extraction [2]. This importance has gathered
research attention from scientific community in developing new methods with respect to
local descriptors. These local descriptors are the fundamental building blocks of the feature
extraction process. One of the popular descriptors is the Local Binary Patterns (LBP) [3,4].
It was one of the earliest feature descriptors. After the introduction of LBP, there were many
variants of LBP proposed by researchers, which have shaped the field of feature extraction
and pattern recognition. However, there were not that many research studies conducted
on feature descriptors that are dedicated for facial features, specific for facial expression
recognition (FER).

While we look at emotion recognition as a computer vision task, the first question
we had was what visual information is critical for an emotion recognition system. This
question pointed us to facial action units [5] and its classification with respect to emotions.
Therefore, the main motivation for our research was to accurately map facial action units
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with emotion categories. Taking this as a challenge, we realized that, if we have a dedicated
visual descriptor that can focus on the facial action units as a primary target, it will create
a system that will be more reliable and faster compared to other traditional emotion
recognition models; it is also a light weight model compared to other similar models.
We had multiple candidates in place as our visual descriptor, but LBP’s [3] had a unique
property of thresholding the neighborhood of each pixel and consider the result as a binary
number which makes the computation faster on identifying predefined patterns (in our
case, its facial action units); this was one of the main reasons why we decided to make a
variant of LBP that will act as the dedicated visual description for emotion recognition.

If we look at the application areas of emotion recognition, one of the main and emerg-
ing fields is human–computer interaction. In recent HCI projects [6], there are systems
that are created which make it possible for a two-way communication between a machine
and a human. In this kind of a setup, it is very vital that the machine understands the
appropriate emotion of the human subject it is interacting with to make the overall system
more dynamic. Thus, our proposed model plays a key role in such a system, which makes
emotion recognition more reliable and faster.

Therefore, we propose a new variant of LBP called the Symmetric Inline Multiplier
LBP (SIM-LBP), which is a dedicated feature descriptor for facial expression features. The
three main contributions of our proposed feature descriptor are as follows: Firstly, it
reduces computation in each of the feature vectors that is being considered owing to the
fact that other feature descriptors use 3-pair values, whereas we use a 2-pair value system.
In addition, the proposed model can compute more than one feature at the same time
parallelly to reduce the total computation time. Finally, it generates a normalized histogram
of every cell and provides a look-up window for the required facial feature to be extracted
from the image, which makes it a unique feature descriptor for facial features. We also show
that our model is capable of detecting features from images suffering from low lighting
problems and blurry. Our model showed better results compared to other models when
performing similar FER tasks. Extensive experiments are conducted using state-of-the-art
models to evaluate model effectiveness.

We have applied the proposed SIM-LBP to transform a well-known Japanese female
facial expression dataset (JAFFE) [7]. This dataset has 10 Japanese female subjects with
different facial expressions annotated and consists of 213 total images [8]. After the transfor-
mation was done on all the images in the above stated dataset, we trained a Convolutional
Neural Network (CNN) [9,10] model to predict the facial expression of the subject. The
input images to the CNN model were first transformed using our proposed SIM-LBP
feature descriptor. We also feed the SIM-LBP transformed image dataset in the training
phase. The results from our experiments are showcased in the evaluation section. We
also conducted a relative study to showcase the importance of using our SIM-LBP image
transformation in FER.

Our model achieved reliable and efficient performance in comparison with images
that do not use the proposed SIM-LBP transformation. We have evaluated our model’s
expression recognition accuracy rate, precision, recall, and F1-score metrics with other
similar models. In all four metrics, our model achieves better overall performance. The
proposed feature descriptor also performed better in comparison with other five state-of-
the-art feature descriptions, i.e., LBP, 6 × 6 Multiscale block LBP (MB-LBP) [11], Histogram
of Oriented Gradients (HOG) [12,13], Median Binary Patterns (MBP) [14] and Orthogonal
difference-LBP (OD-LBP) [15].

This paper is structured as follows: In Section 1, an explanation on the need for facial
emotion recognition and its importance is explained. Then, an explanation on the proposed
model and its background is provided. Explanation with respect to the facial expression
datasets is also provided. The literature review is provided in Section 2. Section 3 describes
the proposed SIM-LBP method, and Section 4 reports the evaluation conducted and detailed
results in comparison with several existing studies. Section 5 concludes this study and
identifies future directions.
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2. Related Work

LBP is oriented based on the concept of finding the difference between the neighboring
and the central pixels, as well as generating a weight regarding this difference. This was
the concept that was used in the traditional LBP. This led to many problems while finding
the patterns on images with irregular shapes and structures. In addition, the traditional
LBP operators are comparatively slow when tackling large-scale images as they produce
long histograms. Moreover, the binary data generated by conventional LBP operation are
more vulnerable to noise.

Due to these problems, there are many LBP variants proposed to address all these
issues and make LBP more resilient and efficient. In [16], a proposal was made that focuses
on extraction and reduction in multiple features. They have carried out a discrete wavelet
transformation on RGB channels initially, so approximation and correct coefficients are
applied on a channel invariant LBP. This is very useful when we want the result to be
rotationally invariant. For every local neighbor 3 × 3 window, a rotation invariant function
is generated by estimating the descriptors relative value to a reference value. Their work
provides full structural information from the LBP; additionally, it also has the information
based on the magnitude of the visual descriptor. Their proposed LBP descriptor is very
ideal for texture image classification as texts in an image can be at any given angle.

Most of the existing LBP’s are used for feature extraction in general, but if we look
at the FER as a challenge, we have some LBP’s [17] that are intended to extract eyes,
eye brows, nose and mouth, bur our model has a better overall detection accurate with
less computational resources. Our main objective was to enhance the emotion detection
accuracy. Thus, by using our proposed system on an Emotion detection system, the overall
detection speed will improve, as the system focuses on the key facial landmark regions of
the subject for emotion detection.

In [18], modified HOG and LBP are used to detect facial emotion of a subject. They
used LBP to extract the required features from eyes, nose and mouth regions which were
already extracted from the images using HOG. The intention here was to filter out unwanted
regions of the selected features using LBP in combination with HOG.

A blind forensics detection approach that uses a uniform local binary pattern (ULBP)
is proposed by [19]. ULBP histogram features were extracted and sent to two different sets
of classifiers, which checked whether the image was resized or reshaped. A nonparametric
descriptor was used in ULBP to get the binary vector code for both uniform and non-
uniform patterns that were assigned to a single bin.

In [20], a hybrid LBP was proposed, which uses a wavelet-based approach for detecting
epilepsy by classifying EEG signal. EEG signal, which is analog in nature, is used to do an
LBP calculation. After processing LBP calculation on the entire set data, a sampling is done
to reduce the resolution of the initial binary codes; after that, the feature extraction from
the signal was complete.

Another method was proposed by [21] that uses ECG signals for emotion detection,
and the key technique used in their proposed approach is a combination of automated
CNNLSTM with ResNet-152 algorithm. This method provided a higher accuracy score due
to the hybrid deep learning approach that is incorporated.

A circular regional mean completed local binary pattern (CRMCLBP) was proposed
by [22]. It used a circular mean operator region to alter the properties of a conventional
completed local binary pattern (CLBP). It has also two encoded schemes to enhance the
feature extraction properties. Their LBP variant performed very well with rotation invari-
ance images, with significant feature representation capability and higher resistance to
image noise.

Three Orthogonal Planes based LBP called Local Binary Pattern from Three Orthogo-
nal Planes (LBP-TOP) [23] showed superior performance for micro expression detection.
However, it only extracts the dynamic features in horizontal and vertical directions from an
image; thus, to overcome these limitations, Ref. [24] proposed a new variant of LBP called
the Five Intersecting Planes LBP (LBP-FIP). This LBP is very efficient in analyzing the facial
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muscles movements and variations, making it an ideal candidate for micro expression
detection from video inputs. Specifically, it used a combination of Eight Vertices LBP
(EVLBP) and LBP-TOP that was extracted from three planes. By using this approach, more
dynamic features are extracted from the images directly. As it was using all eight-pixel
values of a 3 × 3 window, the overall recognition time was impacted. However, the model
performed very well with features in the oblique directions.

In [17], to enhance the discriminative nature of LBP, a horizontal and vertical neigh-
borhood pixel comparison LBP (hvnLBP) was proposed. It was used in combination with
Gabor filter for improved performance. This algorithm has four main steps to implement
feature selection, starting with an illumination correction and noise filtering in the first
step, followed by face detection for getting region of interest (ROI). In the third phase, it
used a Gabor filter technique on the facial image. After these three pre-processing steps,
the proposed hvnLBP was applied. The proposed hvnLBP showcased competitive ability
in expressing discriminative contrast data in the image. This made the proposed method
perform efficiently when extracting corners and edges in an image.

In [25], an enhanced deep clustering network is proposed that is developed in
four different stages. In stage one, a feature extractor is used to obtain the most prominent
key features from the input; then, a conditional generator is used to create a condition
according to the parameters set; this is then passed to a discriminator network that con-
stantly iterates till the model does a real joint distribution from the latent representations for
features extracted from the previous stage to further enhance it. Finally, when the condition
is met, the Siamese network detects the embedding space, so a better affinity similarity
matrix is generated.

A new method is used to reformulate the recently developed fractional programing
by reducing the feature redundancy in [26]. The key advantage of this method is that it
used bilevel and bilinear programing which helps in avoiding the use of fractional function
that is very computation regressive. This method is a neurodynamic approach that yields a
higher classification performance on six benchmark datasets.

If we look at some of the recent surveys in facial expression recognition, it is very
evident that emotion recognition is still a challenging computer vision task that has many
different challenges. While most of the traditional emotion recognition system can only
detect the expression from an image that has front facial angles, in recent surveys [27–29],
it is very clear that many new models are proposed that can even detect emotions from
images with different face angles. In addition, it is very clear from the above stated
surveys that publication in emotion recognition is rapidly increasing if we look at the last
10-year pattern.

3. The Proposed LBP Variant

Most of the local descriptors used today are based on the relationship between the
neighborhoods pixels and the central pixel by utilizing the 3 × 3 pixel window. Moving one
step forward from the previous methodologies used, we introduce the novel descriptor for
facial expression and illumination variations called Symmetric Inline Matrix LBP (SIM-LBP).
The detailed description of the proposed descriptor is given below (Table 1).

Table 1. SIM-LBP work flow description.

Step 1 Take a 3 × 3 pixel window from the input image (Figure 1a).

Step 2 From the 3 × 3 pixel window, select the center vertical pixels and center
horizontal pixels.

Step 3
Create a new pair of values from the vertical and horizontal selections; for this, find the
difference between the center value with respect to left and right pixel values (shown in
Figure 1e,f).

Step 4 Find the variance for all vertical and horizontal pairs.
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Table 1. Cont.

Step 5 Find the feature coefficient value using Formula (1) for all pairs in both horizontal and
vertical selections (Figure 1g).

Step 6 Then, by applying Formula (2) to the resultant value pairs from step 5, generate vertical
and horizontal binary pairs.

Step 7 Merge both horizontal and vertical binary pairs in a clockwise pattern of a 3 × 3 pixel
window generate an 8-bit binary code using Formula (3) (Figure 1o).

Step 8 Update the weighted pixel value from step 7 with the old value in the input image.

Step 9 Repeat Step 1 to Step 8 for all pixels in the image.

In SIM-LBP, two gray level differences are computed for each of three center vertical
and horizontal positions of a 3 × 3 pixel window, by subtracting the two closest left and
right neighborhood pixel values from the center one. The diagram explaining this process
in shown in Figure 1. Let us consider Figure 1a below that denotes the pixel position
notations. SL1 is the top leftmost pixel, SL2 is the one below SL1 and SL3 is the left bottom
pixel. Similarly, SC1, SC2 and SC3 are the corresponding pixel positions for the three
center pixels. SR1, SR2 and SR3 are the three vertical right most pixels. To explain the
working of our proposed algorithm, we have used a sample 3 × 3 pixel window as shown
in Figure 1b. In the first iteration, a 3 × 1 vertical window is selected from the center of the
3 × 3 window as shown in Figure 1c. Then, we subtract the center value from the left and
right pixel values to obtain a pair of values for each of the center 3 × 1 pixels. After this
task is completed on all three center vertical locations, we obtain a resultant set of values
as shown in Figure 1e. Similarly, we do the same process for the 1 × 3 center horizontal
pixels (SL2, SC2, SR2). Value in SL2 is subtracted from SL1 first and then value in SL2 is
subtracted from SL3 to obtain the first pair horizontal values. The same task in performed
on SC2 and SR2. The resultant values are shown in Figure 1f. This 2-value pair is called a
vertical and horizontal comparison pair. Once these two sets of values are obtained, we
used the formula stated in Equation (1) below to generate a feature coefficient value for
each of the six horizontal and vertical pixels (three vertical and three horizontal positions).
The calculations for obtaining feature coefficients values for SC1, SC2, SC3, SL2, SC2 and
SR2 are shown in Figure 1g. Then, by deploying the formula stated in Equation (2) that
finds the difference between vertical value pair and the corresponding feature coefficient
value, we obtain three sets of vertical binary pairs as shown in Figure 1h. The same task is
performed on the horizontal value pair to obtain the horizontal binary pair as illustrated
in Figure 1(i). The complete vertical and horizontal binary pairs are shown in Figure 1j,k,
respectively. The next step is to perform a symmetric binary split. This process separates
the binary pair to the left and right cells of the 3 × 3 matrix for the vertical binary pair and
top and bottom cell for the horizontal binary pair. The vertical binary split is shown in
Figure 1l, and the horizontal binary split is shown in Figure 1m. In the final stage, an OR
operation is carried out on these two binary split matrices, resulting in a merged binary
matrix as shown in Figure 1h. In this OR operation, each of the cells in 3 × 3 vertical matrix
is evaluated with the corresponding cell in the 3 × 3 horizontal matrix. Then, to obtain
the binary pattern from the resultant matrix, each of the binary elements are taken in a
clockwise direction starting from the top left most cell. Figure 1o shows the final binary
patter attained. The last step is to obtain the weighted pixel value of the generated binary
pattern. This is conducted by converting the 8-bit binary pattern code to its corresponding
decimal value by using Equation (3). In the example showcased in Figure 1, the weighted
pixel value is 106 aka feature size of the SIM-LBP.

f cvk =
∑n

k=1(xk, yk)

σ2(xk, yk)
; where n = 6 and σ2 is the variance calculator (1)
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Figure 1. Proposed SIM-LBP approach. (a) Pixel position notations of a 3 × 3 pixel window, (b) Sam-
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deep blue), (d) Horizontal selection pixel values from the 3 × 3 window(highlighted in light blue),
(e) Vertical comparison pair, (f) Horizontal comparison pair, (g) Variance and feature coefficient
matrix with calculations, (h) Vertical binary conversion, (i) Horizontal binary conversion, (j) Vertical
binary pair, (k) Horizontal binary pair, (l) Vertical binary split, (m) Horizontal binary split, (n) Merged
binary matrix, (o) Flattened binary array, (p) Weighted pixel value.
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

Vbp1 =

(
(Vx1 − SC1) ≥ 0 ; 1(
Vy1 − SC1

)
< 0 ; 0

)
, Hbp1 =

(
(Hx1 − SL2) ≥ 0 ; 1(
Hy1 − SL2

)
< 0 ; 0

)
Vbp2 =

(
(Vx2 − SC2) ≥ 0 ; 1(
Vy2 − SC2

)
< 0 ; 0

)
, Hbp2 =

(
(Hx2 − SC2) ≥ 0 ; 1(
Hy2 − SC2

)
< 0 ; 0

)
Vbp3 =

(
(Vx3 − SC3) ≥ 0 ; 1(
Vy3 − SC3

)
< 0 ; 0

)
, Hbp3 =

(
(Hx3 − SR2) ≥ 0 ; 1(
Hy3 − SR2

)
< 0 ; 0

)


(2)

WPV( weighted pixel value) =
7

∑
i=0

2i × f bp(i, (i + 1)) (3)

Then, the above stated SIM-LBP pixel transformation is carried out on all pixels of
the images to generate an output image as shown in Figure 2a (output from SIM-LBP).
As seen in the output image (Figure 2a), the SIM-LBP transformed images have more
enhanced facial landmark boundaries in contrast with the original LBP output images that
are shown on the right-hand side (Figure 2b). In addition, for facial emotion detection, it
is very important to understand the variations in the pixel positions of eyebrows, eyes,
and mouth from a set reference point. It is with this variation that the model will predict
the correct facial emotion. By using our proposed SIM-LBP, the facial landmark and its
neighboring pixels become more enhanced with respect to its contrast as seen in Figure 2a.
Thus, this makes our model have more facial emotion information rich data compared to
other traditional methods.
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4. Model Evaluation

In the second phase of our project, we transformed images in the respective testing
datasets to its corresponding SIM-LBP transformed images. The two datasets that we used
in our experiments are JAFFE [30] and CK+ [31]. After the transformation is completed on
all the images in the respective dataset, we train a Multibranch Cross-Connection CNN
proposed by [32] to predict the facial emotion. This model was an ideal candidate for
testing our SIM-LBP as it uses residual connection, Network in Network, and tree structure
approaches together to enhance the prediction and make the model dynamic in nature. All
the results obtained are provided in this section of the paper. The overall model showcased
improved recognition rates in comparison with other state-of-the-art models. This was
mainly achieved by enhancing facial expression landmarks by using the proposed SIM-LBP.

The details of the adopted dataset are provided in Table 2 below. The main two datasets
that were used for testing were JAFFE and CK+ as stated earlier. In JAFFE, we had 10 classes
with each class having 21 subjects, and the image resolution was 256 × 256 pixels. In addi-
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tion, for CK+ dataset, we had eight classes in total, with each class consisting of 25 images.
Image resolution was 640 × 490, and these images were taken from video sequences.

Table 2. Details of the dataset used.

Dataset No. of Classes Image/Class Image Resolution Channels Total Images

JAFFE 10 21 256 × 256 Single 210
CK+ 8 25 640 × 490 Single 200

To evaluate the classification performance of our model, we have used two confusion
matrices that are shown in Figure 3a,b below, i.e., one of the confusion matrixes shows the
classification results using the JAFFE dataset while the other using the CK+ dataset. It is
clear from these figures that, while using the JAFFE dataset, subjects showing the Happy
emotion had achieved the highest score of 93%, followed by Sad (91%), Surprise (90%),
Neutral (88%), Disgust (81%), Fear (79%) and Angry (78%). If we take a look at the results
from CK+ dataset, the scores have improved slightly for most of the emotions. The accuracy
rate of 97% for the Neutral emotion was at the top of the table. The scores for emotions such
as Fear, Happy and Sad fall under the 88–89% bucket. The accuracy rate for Surprise was
79% followed by Disgust (77%) and Angry (76%). While comparing the overall emotion
classification accuracy while using JAFFE dataset and CK+ dataset, JAFFE dataset gave an
overall emotion classification score of 85.71% and, for CK+ dataset, it was 84.86%. Therefore,
when we compare both of the results, there is not much difference between using JAFFE
and CK+ datasets. This shows the homogenous nature of the proposed algorithm.
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We also performed classification performance analysis by measuring precision, recall,
F1-score and accuracy. The results from these tests are shown in Figure 4a–d below. While
analyzing the precision score in Figure 4a, when using the JAFFE dataset, the results
are: Anger (97%), Disgust (92%), Fear (91%), Happy (97%), Sad (95%), Surprise (91%)
and Neutral (97%). The precision score was slightly in the lower bracket while using
CK+ dataset, starting with Anger (95%), Disgust (88%), Fear (91%), Happy (91%), Sad
(91%), Surprise (89%) and Neutral (90%). Equation (4) defines the formula with respect to
precision calculation:

pr =
True Positive

True Positive + False Positive
; where pr is the precision score (4)
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Recall scores can be seen in Figure 4b below. While using JAFFE, we obtained 91% for
Anger, 97% for Disgust, 95% for Fear, 97% for Happy, 95% for Sad, 91% for Surprise and
97% for Neutral. Similarly, while using CK+ dataset, we achieved 91% for Anger, Disgust
and Happy emotions, 89% for Fear, sad and Surprise emotions, while 90% for Neutral. The
formula used to calculate the Recall rate is provided in Equation (5):

rc =
True Positive

True Positive + False Negative
; where rc is the recall rate (5)

Figure 4c shows the F1 score achieved while using JAFFE and CK+ datasets of the
proposed algorithm. When comparing the F1 scores with respect to both datasets, JAFFE
has an average score of 92.57% while CK+ has an average score of 93.86%. While analyzing
the individual emotion classes from JAFFE, we achieve 91% for Anger, 89% for Disgust and
Fear, 90% for Happy, 97% for Sad and Neutral and 95% for Surprise. In addition, for CK+
dataset, we obtained 91% for Anger, Happy and Surprise, 97% for Disgust and Neutral,
95% for Fear and Sad emotions. To calculate the F1 Score, we use Equation (6) stated below:

f =
2 × pr × rc

2 × (True Positive + False Positive + False Negative)
; f is F1 Score (6)

Accuracy was measured for all emotion classes, to understand the dynamic nature
of the proposed algorithm. The accuracy test was performed on both the JAFFE and CK+
datasets. The results are shown in Figure 4d below. Looking at the results attained while
using JAFFE dataset, Anger, Fear and Happy expressions had the lowest score of 89%.
Disgust and Sad expressions were classified with an accuracy rate of 91%, and 95% for
Neutral. The highest score was for the Surprise emotion class with an accuracy score of
97%. If we look at the results from CK+ dataset, we obtained 91% for Fear, 95% for Disgust
and Sad and Neutral with the highest score of 97% for Anger, Happy and Surprise emotion
classes. Equation (7) below shows the formula used for accuracy calculation:

A =
True Positive + True Negative

True Positive + False Positive + False Negative + True Negative
(7)
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We also conducted a very comprehensive evaluation with respect to the Accuracy
score of other similar facial expression algorithms. The results from this test are tabulated
in Tables 3 and 4. Table 3 shows the accuracy score while using JAFFE dataset, and Table 4
shows the result while using CK+ dataset. For the evaluation of the JAFFE dataset, Ref. [33]
used GoogleNet where the emotion detection accuracy rate was 65.79%, followed by [34],
which employed VGG-Face and achieved the accuracy rate of 69.76%. In [35], a DenseNet
model was used, and the accuracy was 71.02%. An accuracy rate of 71.52% was obtained
by MBCC-CNN.WMCNN-LSTM [36] achieved the best result among the baseline methods
with an accuracy score of 95.12%. However, our model outperformed it with an accuracy
score of 96.82%.

Table 3. Accuracy score comparison using JAFFE dataset.

Method Accuracy

GoogLeNet [33] 65.79%
VGG-Face [34] 69.76%
DenseNet [35] 71.02%

MBCC-CNN [32] 71.52%
WMCNN-LSTM [36] 95.12%

SIM-LBP(Proposed Model) 96.82%

Table 4. Accuracy score comparison using CK+ Dataset.

Method Accuracy

DenseNet [35] 70.02%
GoogLeNet [33] 72.69%
VGG-Face [34] 88.12%

WMCNN-LSTM [36] 97.50%
MBCC-CNN [32] 98.48%

SIM-LBP(Proposed Model) 98.72%

While considering the CK+ dataset, the lowest score of 70.02% was obtained by a
model proposed by [35]. Then, 72.69% was the score that was achieved from the model
by [33]. VGG-Face proposed by [34] scored 88.12%. In addition, the model purposed by [36]
achieved a score of 97.50%, while using CK+ dataset MBCC-CNN [32] obtained the best
result of 98.48% in comparison with those of other baseline methods. With an accuracy
score of 98.72%, the proposed SIM-LBP model topped the table on accuracy score.

Table 5 below shows the different hypermeters used on the models used for evaluation,
while comparing the accuracy scores of the models CK+ dataset shows better performance
on most of the models.

Table 5. Hypermeters used on models.

Models Hyperparameters Used Accuracy on JAFFE Accuracy on CK+

GoogLeNet [25]

layers 3

65.79 70.02Neurons 512

Learning rate 0.1

VGG-Face [26]

layers 8

69.76 72.69Neurons 256

Learning rate 0.01

DenseNet [27]

layers 5

71.02 88.12Neurons 256

Learning rate 0.01
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Table 5. Cont.

Models Hyperparameters Used Accuracy on JAFFE Accuracy on CK+

MBCC-CNN
[24]

layers 8

71.52 97.5Neurons 256

Learning rate 0.1

WMCNN-LSTM
[28]

layers 4

95.12 98.48Neurons 256

Learning rate 0.01

SIM-LBP
(Proposed

Model)

layers 5

96.82 98.72Neurons 256

Learning rate 0.01

While observing the overall evaluation statistics, we can see that our proposed SIM-LBP
model outperformed many state-of-the-art models with respect to multiple parameters.
This shows the models dynamic nature. While looking at the output generated from our
model, we can observe that the model is capable of highlighting the facial landmark region,
which is vital in obtaining the emotion readout accurate. This was one of the main reasons
that our model was performing well when using the Multibranch Cross-Connection CNN.

We have also provided the ROC graphs for six emotion classes in Figure 5 below.
Happy, fear, surprise and disgust have shown better classification performance, whereas
sad and angry have slight variation in some of the images that are being classified; this is
mainly due to the fact that sad and anger have many common facial action units. This can
be addressed with a slight variation in the optimization parameters.
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The output from the SIM-LBP is shown in Figure 6 below. Figure 6a shows the seven
emotion outputs generated using JAFFE dataset. It is very clear from this output image
that the facial landmark and the surrounding regions are more distinct with respect to the
original image. Figure 6b shows the seven emotion classes obtained from CK+ dataset.
Even though the CK+ dataset uses images extracted from video sequences, the outputs
generated are showing the same feature of providing a more segregating nature of facial
landmark and its surrounding regions. Therefore, we can conclude that our proposed
SIM-LBP model performs sufficiently well on both still images and video data.
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5. Conclusions

In this research, we have proved that, by using our proposed Symmetric Inline Matrix
LBP on the CK+ and JAFFE datasets, we have been able to precisely and resourcefully carry
out feature extraction from facial images to aid subsequent facial expression recognition.
Our model reduced the need for performing system preprocessing steps like contrast
enhancing, gradient operators or dimensionality reduction, to obtain more reliable and
efficient facial expression recognition results. The proposed model has shown improved
recognition accuracy scores as compared with those of many other similar models. Our
comparison study shows that our technique generates better test scores compared to the
similar models proposed in the last 6 years. With further enhancements to our model,
SIM-LBP can be used for generating more realistic facial emotions for characters in games
and animated movies.

However, our model has limitations while performing the SIM-LBP operations on very
low-resolution images and videos as well as on very high-resolution images and videos.
This is due to fact that extracting the appropriate facial landmark boundary from low
resolution images is still a challenge. We are planning to further investigate this challenge,
so the noise sensitivity of the model can be improved, which will help the model’s ability
to capture more discriminative features even from high and low-resolution images.

Currently, more complex and expensive hardware are required to generate realistic
facial expressions on these characters. In particular, Real-time Facial Motion Capture
framework uses videos recorded from a small, helmet-mounted camera to record the
actor’s facial performance in real time. Thus, to overcome this barrier, we can train a
generative model with the results obtained from our proposed SIM-LBP model to generate
more realistic synthesized facial emotion images for animated characters.
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