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Abstract: Fifth-generation (5G) wireless technology promises to be the critical enabler of use cases
far beyond smartphones and other connected devices. This next-generation 5G wireless standard
represents the changing face of connectivity by enabling elevated levels of automation through
continuous optimization of several Key Performance Indicators (KPIs) such as latency, reliability,
connection density, and energy efficiency. Mobile Network Operators (MNOs) must promote and
implement innovative technologies and solutions to reduce network energy consumption while
delivering high-speed and low-latency services to deploy energy-efficient 5G networks with a reduced
carbon footprint. This research evaluates an energy-saving method using data-driven learning
through load estimation for Beyond 5G (B5G) networks. The proposed ‘ECO6G’ model utilizes a
supervised Machine Learning (ML) approach for forecasting traffic load and uses the estimated
load to evaluate the energy efficiency and OPEX savings. The simulation results demonstrate a
comparative analysis between the traditional time-series forecasting methods and the proposed ML
model that utilizes learned parameters. Our ECO6G dataset is captured from measurements on a
real-world operational 5G base station (BS). We showcase simulations using our ECO6G model for
a given dataset and demonstrate that the proposed ECO6G model is accurate within $4.3 million
over 100,000 BSs over 5 years compared to three other models that would increase OPEX cost from
$370 million to $1.87 billion during varying network load scenarios against other data-driven and
statistical learning models.

Keywords: Beyond 5G; energy efficiency; machine learning; network load; network slicing; OPEX
savings

1. Introduction

The 5G mobile communication network serves as a communication infrastructure
that converges connectivity, intelligent edge, and the Internet of Things (IoT) from con-
sumers to industries. As such, 5G is revolutionizing businesses and society by enabling
high-speed broadband with ultra-low latency, high capacity, massive connectivity, and reli-
ability. To achieve sustainable development goals and create an environmentally conscious
infrastructure to improve people’s living standards, it is of utmost importance that the 5G
network provides high speed and reduced latency with significantly lower network energy
consumption. The 5G standard enables the MNO to optimize the Quality of Service (QoS)
and improve the Quality of Experience (QoE) for end-users with the help of KPI metrics
such as network load, battery level, and signal strength. These 5G KPIs then guarantee
both network and device efficiency, which has always been the fundamental concern for
MNOs and device manufacturers from an optimization standpoint. When combined with
ML, 5G can further help grow businesses efficiently and grant consumers access to more
information faster than ever. On the path to the future generation networks, we must
develop an AI/ML-defined network infrastructure that is energy efficient and can learn
from its dynamic environments [1].
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Overall, 5G is an inherently greener technology with more data bits per kilowatt (kW)
energy than previous generations of wireless technology. However, the exponential growth
in data traffic necessitates additional Energy Efficiency (EE) and Carbon dioxide (CO2)
reduction measures. The Global System for Mobile Communications Association (GSMA)
found that the 5G data traffic has grown exponentially since its commercialization. By 2025,
it is anticipated that the 5G data traffic will be eight times higher than fourth-generation
(4G)/Long-Term Evolution (LTE), and twelve billion devices will be connected to the 5G and
IoT. These subscribers are expected to consume 5–10 times more than 4G (LTE) subscribers.
The MNOs will need more ways to keep network energy consumption low as 5G services
mature. According to the GSMA Intelligence Report, 67% of mobile service providers
anticipate rising energy expenditures. Although 5G is more energy efficient, increasing
traffic demand and complicated use cases will increase the total energy consumption.
On the positive side, the mobile industry has collaborated to build a climate action plan to
attain net-zero greenhouse gas emissions by 2050, with over 30% of carriers making public
commitments. The MNOs plan to optimize 5G networks for EE to reduce their carbon
footprints and energy using ML models to improve traffic prediction accuracy [2,3].

Developing 5G optimization strategies for EE that address data processing capacity
and latency concerns is critical, especially for network slicing in the 5G architecture. Slicing
a network refers to the process by which a network operator divides a single physical
network into logically distinct networks. Networks are established to provide specialized
networks for diverse service providers with varying characteristics. Currently, the third-
generation partnership project (3GPP) has defined three network slices: enhanced Mobile
Broadband (eMBB), massive Machine-type Communication (mMTC), and Ultra-Reliable
Low-Latency Communication (URLLC). To efficiently deliver these tailored services with
varying KPI requirements, operators must employ more integrated and sophisticated
methods than they did in 4G. Additionally, 5G’s cloud-based architecture, which enables
greater scalability and elasticity, is a significant differentiator from its predecessor, which
enables operators to deploy new network functions (NFs) without incurring the additional
Capital Expenditure (CAPEX) to meet demand better [4].

For decades, the MNOs have prioritized throughput, coverage, and data latency for
building networks. However, due to environmental and economic concerns, network
energy efficiency has recently emerged as a significant factor for next-generation network
deployments. With the advent of high-capacity traffic services, wireless data traffic has
increased exponentially; this increase in wireless data traffic degrades the existing net-
work efficiency. To maintain QoS and per-bit cost, network operators must increase data
traffic exponentially. Focusing on high-data-rate services increases the network’s energy
consumption, posing environmental and financial concerns. Hence, in modern wireless
network operation and design, the MNOs must consider EE as one of the KPIs due to
environmental, economic, and operational concerns [5].

2. Contribution

Our primary contributions in this research work are as follows:

• We have discussed the motivation for analyzing the EE using ML approaches and the
challenges in current 5G and Beyond networks in Sections 4 and 5.

• We have evaluated our proposed ECO6G model against the traditional deep learning
neural network (DLNN) with random weights and statistical time-series modeling,
i.e., Auto-Regressive Integrated Moving Average (ARIMA) and Exponential Smooth-
ing (ETS) in Section 6.

• We have modeled the CAPEX for an MNO according to the EE definitions defined
in ETSI (European Telecommunications Standards Institute) TR 132 972 [6,7] and
highlighted the ECO6G load prediction usefulness towards the OPEX saving for
MNOs in Section 9.
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3. Related Work

The 3GPP Release 17 [8] work item has limited use cases, requirements, and solutions
for measuring the EE of 5G networks, including Next-Generation RAN, core network,
and network slices, for optimizing the EE or managing energy savings in 5G. Energy-
efficient KPIs have been defined for network slices, including eMBB, URLLC, and IoT.
However, V2X remains unaddressed. Additionally, there is no definition for the URLLC
network slice reliability EE KPI in 3GPP definitions today. DeepSlice [9], and Secure5G [10]
studied the network slices in 5G systems by applying DNN techniques. We have demon-
strated network slice selection for all UE types, including unknown devices, load-balancing
techniques in case of slice failure, and security of these slices in case of a DDoS attack. We
have used various KPIs, such as the 5G QoS Identifier (5QI), Packet loss rate, Packet Delay
budget, UE types, Day, and time, to simulate the models. In Table 1 we have done the
comparison of ECO6G against state-of-the-art methodologies.

Table 1. Comparison of ECO6G against state-of-the-art methodologies.

Sr. No. Related Work ECO6G Work

[11] Use of the cellular traffic types (SMS, phone and
web), to train LSTM for slice resource allocation

Use of the network KPIs:RRC, RSSNI and PDU
to train a DNN for predicting total load estima-
tion

[12] 5G network slicing model using the DBN and
NN to improve accuracy

TL-based DNN model for improving 5G energy
efficiency and ensuring faster convergence

[13] DDPG slice optimization and TL based multi
agent DDPG (TMDDPG) for accelerated learn-
ing by evaluating delay, EE, and PLR for DDPG,
DQN and TMDDPG

Evaluation of ARIMA, ETS, and DL models to
investigate traffic forecasting for enhanced 5G
EE

[14] DRL based 5G RAN slicing resource allocation
and TL to accelerate the learning and tackle
slow convergence

Use of TL with DNN to estimate the network
load using slicing KPIs, to estimate the EE and
improved convergence rate

[15] TL-based A2C approach to increase network
utility at the expense of reduced adaptability of
the various network topologies.

TL approach to improve energy efficiency with
an approximate OPEX savings of seven hun-
dred eighty-six million for the MNOs in off-
peak network load scenarios

[16] RAN slicing architecture for autonomous learn-
ing in interference affected and the TL approach
to facilitate self-learning RAN slicing control.

The work in [16] targets autonomous RAN slic-
ing, whereas our work uses the data driven
model trained on the network KPIs to estimate
the EE of 5G networks

[17] Dynamic slicing resource allocation with an
hourly dataset of a live cellular network at-
tributes recorded over five days for sites in
dense urban areas fed directly to the GRU

Our dataset is captured on a real-world 5G BS
using the MNO’s proprietary software, includ-
ing data for three sectors and network KPIs
from each sector

[18] Comparative analysis of the transfer RL (TRL),
Q-value TRL and action selection TRL with
model-free Q-learning and the model-based
priority proportional fairness and time-to-live
(PPF-TTL) to solve for slow convergence and
lack of generalization of RL techniques

In contrast to [18], our work addresses the issue
of slow convergence by proposing a compara-
tive analysis of our ECO6G model with ARIMA,
ETS, and DNN with random weights

[19] Use of techniques for enabling sleep mode meth-
ods in heterogeneous mobile networks with the
aim of reducing power consumption

Our work proposes to enhance the energy effi-
ciency of the 5G network with an OPEX saving
from the perspective of MNOs

[20] EE DRL based resource allocation for RAN slic-
ing to improve computational and time com-
plexity

Data driven approach for improved OPEX sav-
ings against the conventional approaches for
MNOS in varying load

[21] DL based network slicing short-term traffic pre-
diction for 5G transport network

Supervised ML model for forecasting traffic
load and using the estimated load to evaluate
EE and improve OPEX savings by a margin
of 48.67% against other evaluated data-driven
models

Network function virtualization (NFV) enables the deployment of such network
slices on general-purpose servers. With the help of NFV, network slicing can customize
virtual network functions (VNFs) to adhere to different customer services. However, due
to the complex architecture, VNF are vulnerable to the anomaly of physical nodes (PN)
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from the shared substrate networks. The Hidden Markov model (HMM) is a practical
approach to deducing the anonymous network information (working state of the PN)
through observing VNFs measurements (observable outputs) mapped to it. The learning
time for a HMM is prolonged. To accelerate the time required to converge to the optimal
solution, the paper [22] proposes a cooperative anomaly detection scheme by employing
the TL-based hidden Markov model (TLHMM) and validates the algorithm’s efficiency
under different network configurations.

The authors in [23] address the potential challenges in adapting to the non-stationary
wireless environment and propose solutions for using AI to manage resources for the
B5G network slicing. Additionally, the work targets the impact and issues for resource
management in network slicing when a Non-Terrestrial Network is integrated into B5G
systems. Networks can support multiple services, with each service demanding a different
KPI. Hence, it is vital to efficiently assign computing and network resources, considering
all the KPIs (including availability and reliability) targeted by a service. The authors in [24]
propose a resource allocation scheme OKpi that facilitates high-quality selection of radio
points of access and VNF placement and data routing with polynomial computational
complexity. The convergence of graph theory and optimization (OKpi) yields reliable
performance in evaluating the two real-world scenarios described. Unlike [23,24], our
ECO6G framework can enable slice-level analytics and provide either statistics or forecasts
regarding the performance of network load, which can be further used to design and
orchestrate network resources.

The paper [25] investigates the problem of energy consumption and network load
imbalance in RANs, using load prediction to estimate the traffic load. It highlights two ap-
proaches: one with a linear ensemble model, a combination of seasonal ARIMA (SARIMA),
linear regression, and regressive trees that learns the traffic features from three differ-
ent perspectives: time, space, and historical pattern. The results from the SARIMA are
evaluated using Average Normalized RMSE (ANRMSE) as the evaluation index of per-
formance. In contrast, the second approach uses a ResNet that uses traffic’s spatial and
temporal dependencies to estimate the traffic load accurately. Our work follows a similar
approach of comparative analysis of the ECO6G model with ARIMA, ETS, and DNN model
with random weights to predict the load estimation and use it to analyze the network’s
overall efficiency.

The paper [26] analyzes energy consumption management, which is fundamental to
the deployment of network slicing in 5G networks. Unlike other literature surveys, the pa-
per presents an economical solution for NFV, SDN, and green energy attributes of network
slicing that can potentially contribute to reducing OPEX and environmental impact, thereby
improving service provisioning. Our approach to reducing energy consumption (increasing
energy efficiency) and increasing the OPEX savings of the MNO is employing a DNN model
with TL to accelerate learning and achieve convergence. The heterogeneous deployment of
BSs and APs in 5G slice networks facilitates meeting the QoS requirements for different
network use cases. However, the unplanned deployment may increase the total energy
consumption. The paper [27] proposes an energy-efficient resource allocation algorithm
for network slicing (EERAN), which offers low complexity and faster convergence over
extensive Monte Carlo numerical simulations.

With the exponential evolution in wireless mobile communications and related tech-
nological advances, the MNOs are required to invest in network infrastructures such that
the CAPEX and OPEX are balanced to provide network services with acceptable QoE.
The software-defined networks (SDNs) and the cloud radio access network (C-RAN) can be
the enabling technologies for this challenge. The paper [28] proposes a C-RAN framework
based on SDN that can be efficiently operated by the MNOs. The authors propose an
ANN-based load balancing and mapping algorithm, BBU-RRH (baseband units- remote
radio head). Wireless sensor networks (WSNs) are considered an integral part of the
design of IoTs. Therefore, even Industry 4.0 encompasses the interconnectivity of such
sensor nodes, IIoT (Industrial IoT), and intelligent manufacturing. However, the main
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challenge in designing the WSNs is network slicing and data aggregation. The paper [29]
proposes an energy-efficient DL-based network slicing with a data aggregation (EENS-DA)
approach that efficiently allocates physical resources in resource-constrained networks.
The paper [30] proposes a DL-based load forecasting for smart grids. The load forecast-
ing performance of CNN (Convolutional Neural Network) was compared against ANN,
SVM (Support Vector Machine), LSTM, LSTM-S2S, and Factored Conditional Restricted
Boltzmann Machines (FCBRM) in terms of RMSE as the evaluation metric of performance.

The paper [31] proposes a computationally efficient, scalable, priority-based algorithm
for WSNs referred to as the most energy-efficient resource first (MEERF). The MEERF
is compared against the benchmark policies Maximal Transmission Rate (MTR) and the
Minimal Power Consumption Policy (MPC), and the MEERF outperforms the other policies
regarding energy efficiency. The paper [32] addresses the OPEX limited resource provi-
sioning for network slicing in 5G cellular systems. Network slicing increases statistical
multiplexing (sharing the same physical resources as slices for different applications). It is
essential to ensure a flexible and dynamic resource allocation, and in this context, Deep
Neural Networks, DNNs can be used for end-to-end resource provisioning. The problem
is formulated by optimizing the network slicing OPEX with resource allocation. The pa-
per [33] uses ML to facilitate energy-efficient future 5G networks towards a complete
self-organized network (SON). The ML approach is implemented to analyze the real-time
network-generated data (cell-level traces of an LTE network) to predict the future state
of the network promptly. Since network slicing is an enabler of different services in 5G
networks, ref. [21] proposes a DL based network slicing short-term traffic prediction and
proactive adjustment framework. The network slice traffic is accurately predicted us-
ing gated recurrent units, following which the network slices are dynamically adjusted.
The framework demonstrates an improvement in the network utilization efficiency of the
5G transport network.

The paper [34] addresses the problem of decision making for network management
and reducing slicing failures by putting forth a hybrid DL model. The CNN in combination
with LSTM achieves an overall accuracy of 95.17%, where the CNN is responsible for
resource allocation and slice selection and LSTM manages the load balancing of the network
slices. The need for efficient network slicing in 5G is important from the perspective of
reducing the network operator’s cost energy consumption while providing quality of
service. The paper [35] addresses this problem by modeling a joint optimization problem
of energy consumption and cost, alongside a prediction-assisted dynamic network slice
algorithm for adaptive network slice allocation in accordance with the service requirements.
The paper [36] proposes a 5G micro-service-based prototype which facilitates allocation of
resources for network slices. This allocation is powered by ML decisions based on the KPIs
from real-time data. Even though the data-driven approach increases the throughput of the
network, it increases the resource utilization.

The authors [37] propose a ML-based network sub slicing architecture for IoT appli-
cations to optimize the network load balancing problem, at the same time maintaining
latency, heterogeneity and power efficiency using SVM and K-means for feature selection.
The authors [38] investigate and propose a framework for the network slicing technology as
an enabler of different use cases in 5G. The paper also highlights the challenges associated
with Network as a Service (NaaS) and future research opportunities. The paper [39] targets
the use case of emergency services and communications for 5G network slicing by propos-
ing a RESPOND-A platform that provides first responders with network-enabled tools
above 5G on-scene planning specifically targeted at emergency-related communications.
The work [40] puts forth a DL and block chain based security framework that ensures
scalability, reliability, performance, security, and privacy of a 5G enabled IoT environment.
The authors [41] investigate the role of wearable computing for defense automation sys-
tem and thereby propose a prototype design to a covert and efficient communication in
5G. The work in [42] puts together a comprehensive survey of emerging 5G technologies,
such as the Block chain, D2D communication, SDN, AI and mobile edge computing, as
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well as the issues and solutions associated with 5G security. The paper also highlights
various applications and use cases of 5G security, such as automotive driving, IoT services,
drones, etc.

4. Motivation for Energy Efficiency Using Data-Driven Learning

Energy consumption comprises a considerable portion of network OPEX, and BSs are
the radio access network’s primary energy-consuming equipment. To achieve Radio Access
Network (RAN) EE, turning off cells during off-peak hours is one way to reduce network
energy usage; it would be ideal if the MNO could estimate the future load efficiently
and configure resources accordingly. Predicting a network function overload or outage
enables operators to take preventative measures (for example, to avoid selecting a heavily
loaded node for a latency-sensitive/resource-intensive service) to ensure smooth network
operation and improve the 5G customer QoE. Other techniques for improving EE include
adjusting a BS’s coverage area based on its load level, favoring lightly loaded BSs to
sleep, and load balancing by handing over the User Equipment (UE) to the micro or pico
base station.

In contrast, network operators continue to deploy 5G and employ novel New Radio
(NR) features such as beam forming, dynamic spectrum sharing, multiple-input multiple-
output (MIMO), and network slicing, introducing complex system design and optimization
challenges. The MNOs struggle with traditional hard-coded algorithms, which require
human–machine interaction, which is error prone, slow, costly, and cumbersome. Artificial
intelligence (AI), including ML algorithms, can help operators improve network manage-
ment and user experience by analyzing and processing network KPIs and metrics. AI
in 5G networks has captivated academia and industry to explore optimization methods
for UE trajectory prediction, traffic steering, load balancing, energy saving, and massive
MIMO configuration optimization [43]. AI and ML are enabling operators to gain new
capabilities and efficiency gains. They enable network equipment to sense, reason, infer,
and bring novel solutions to technological issues. A holistic and end-to-end approach to AI
and ML can provide a pervasive system-level approach to energy efficiency improvements
spanning hardware, software, and algorithms. Energy management is a data-intensive
operation; without AI, operators cannot efficiently process information and make real-
time choices at scale. To implement adaptive energy management in the network slicing,
the MNOs can assign different priority levels to differentiate services between slices, such
as emergency services or service characteristics (e.g., number of end-users, location, average
consumption) [26].

Energy consumption is a significant issue, both environmentally (carbon footprint)
and economically. The energy consumption of the 5G BSs is so high that electricity bills
have become one of the most significant expenses for 5G providers. Costs to the MNOs are
expected to increase significantly over the next five years. Studies suggest that, on average,
MNOs spend 25 billion dollars annually on energy. Telco industry reports suggest EE and
optimization are crucial for network transformation and climate action agendas. Energy is
the only significant operational expense predicted to rise soon [4]. The 5G BS energy savings
involve hardware and software, multiple power-saving features, small cell deployments,
and new 5G architecture and protocols that can be combined to improve wireless network
energy efficiency. Optimizing hardware architecture, production process, and integration of
crucial core chips such as base-band processing, digital intermediate frequency, and radio-
frequency modules reduces hardware energy consumption on AAU (Active Antenna Unit)
and RRU (Remote Radio Unit).

Low-traffic areas account for 70% of network sites in most cases, but carry only 25%
of the total traffic. Only 30% of network sites are in medium to high traffic areas, yet
they carry 75% of all traffic. Historically, the industry has prioritized high-traffic sites and
neglected low-traffic networks. This provides a massive opportunity for MNOs to use
predicted load as one element to design network and energy optimization strategies [2],
where BS resources must be scheduled according to service load to conserve energy. In [44],
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the authors have compared the load forecast for a single cell using several prediction
techniques. The simulation results of load prediction are based on the consumption of fifty
physical resource blocks (PRBs). Compared to each standalone sub-model, the ensemble
learning model has significantly enhanced the accuracy of its predictions. The developed
ensemble learning method reduces the average Mean Absolute Error (MAE) by 0.008.
The load prediction models include Arima, Prophet, Random Forest (RF), Long Short-Term
Memory (LSTM), and Ensemble learning. The models use historical and current loads to
predict future loads, so historical traffic loads are considered when building and training
the ML model.

Because ML models can swiftly analyze substantial amounts of data from many
sources, they improve the potential for network-wide energy savings. AI algorithms can be
optimized to assess real-time demand, traffic patterns, and network resource availability,
and translate these data into actionable insights. In that case, more efficient resource
management and network planning can be achieved, which is the primary motivation for
this study.

5. Current Energy and Power Challenges in Beyond 5G Networks

Power saving has been a challenge since the second generation (2G) of wireless com-
munication. The massive MIMO and high output power needs of 5G have worsened
this issue. Massive MIMO and high output power requirements to service the increasing
number of connections and data traffic will further raise energy demands. Running redun-
dant network resources ensures excellent network availability, even if other resources fail,
but wastes a great deal of energy. Network traffic varies by time and place, so different
elements of the RAN infrastructure in each area can be put to sleep for predetermined
periods. The more components of that BS that are turned off, the more energy is saved.
There is an opportunity to develop more profound and extended sleep periods when no or
fewer data transmissions occur, lowering the overall network energy consumption.

Currently, industries are experimenting with AI-powered solutions for simple oper-
ations such as shutdown and sleep cycles for cells serving users based on the modeled
estimated traffic patterns modeled. These models are built on historical patterns, weather,
local events, and other variables that can save energy by turning off power amplifiers,
transceivers, and antennas. Such solutions can also help with load balancing, intelligent
beam forming, interference reduction, and better spectrum utilization, among other things.
In cellular networks, BSs consume the most power; studies show that BSs consume between
60 and 80% of all cellular network power, even when not serving any users. The increasing
traffic demand and complicated new 5G use cases mean that 5G consumes more energy
than earlier wireless technologies. Thus, putting a BS to sleep or turning it off entirely when
there is little user traffic can help reduce cellular network power consumption. Additionally,
BS experiments are application layer friendly and do not necessitate network changes and
standardization, making them less costly and easier to evaluate and implement [45].

As studied in [46], most network expenses are attributable to energy consumption
(fuel and electricity). BS sites are the primary energy consumers in a mobile network,
requiring around 73% of a typical operator’s total energy in 2021, according to a GSMA
analysis of thirty-one MNOs. RAN energy consumption comprises the eNodeB (4G BS),
gNodeB (5G BS), as well as the energy consumption of associated equipment, such as
air conditioning (AC), inverters, and rectifiers. The core network energy consumption
comes from the network operations centers, value-added service platforms, and any energy
consumption connected with backhaul transport. Furthermore, the energy spent by data
centers includes the physical locations that host the infrastructure of operators, including
Operational Support Systems (OSS) and Business Support Systems (BSS). It is important to
note that the AC is still running and consuming the same amount of power, even when the
network has low and medium load scenarios and other associated equipment.

The current NR design supports basic energy-saving measures, such as a gNB that can
turn capacity cells on/off to save energy. The gNB autonomously makes decisions without
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knowing the impact on neighboring nodes or the overall network energy consumption.
When neighboring nodes make conflicting decisions, the situation worsens. Additionally,
the current energy-saving tools are limited to cell deactivation. With NR beam forming
and multi-layered radio transmission structure, reducing the load in a coverage area or
modifying the configuration of RAN nodes for coverage and capacity can reduce energy
consumption. The optimal EE decision is conditional on many variables, such as node
load, RAN node capabilities, KPI/QoS requirements, active UEs and mobility, and cell
utilization; hence, optimizing EE at the RAN level using pre-defined and hard-coded rules
is difficult.

ML can maximize the EE of a network by collecting pertinent data and taking the
appropriate action. Utilizing a solution at the RAN level can reduce network energy
consumption while maintaining coverage, capacity, and QoS. The ML model could use
internal node information, neighboring RAN node information, and UE assistance infor-
mation to make an EE determination (such as offloading UEs, deactivating/activating
capacity cells, and adjusting node configuration) and communicate it to neighboring nodes.
Neighboring nodes can provide feedback on the EE of a decision, and UE may also indi-
cate if performance requirements are not met, indicating that the network should modify
EE. The potential for an ML-assisted solution can be enhanced by exchanging RAN-level
metrics for energy savings/consumption. MNOs can introduce an energy status that can
be communicated between RAN nodes. Such indicators can assist neighboring nodes
in understanding a node’s energy efficiency preferences, which can be considered when
deciding on EE actions that may affect network energy consumption.

When a BS is powered on, its power consumption is proportional to the traffic volume.
Research [44] demonstrates that around 60% of a BSs radio power usage scales with
traffic load. When the predicted traffic volume is below the threshold, the cells can be
turned off, and the UEs can be moved to the new target cell. ML algorithms can train the
relevant model and predict the next period’s state, especially traffic load. In Rel-16, a new
mechanism for exchanging the current load status of RAN nodes was added, which is
used as input for Mobility Load Balancing (MLB)/Energy-saving algorithms. Additionally,
based on our study and analysis, we believe that considering the predicted load status is
beneficial, particularly for cells whose load status varies rapidly and follows a consistent
pattern each day, especially in the case of network slicing, where logical networks can be
managed independently.

Network Equipment Manufacturer reports [47] that compared to 4G, the power con-
sumption per unit of traffic (Watt/bit) is drastically reduced, whereas 5G’s power con-
sumption increases. The percentage of sites with more than five frequency bands will rise
from 3% in 2016 to approximately 43% in 2023. Report shows that the maximum power
consumption of a 5G site will be greater than 10 kW and will be doubled if more than
ten frequency bands are used. A typical 5G site consumes more than 11.5 kilowatts of
power, around 70% more than a BS that uses a mix of 2G, 3G, and 4G radios. The Network
Equipment manufacturer forecasts that Massive MIMO alone can raise cell energy usage
from 5–7 kW per 4G site per month to more than 20 kW per 5G site. China’s 5G energy
usage is projected to increase by 488% by 2035, reaching 297 billion kWh [48].

6. Proposed ECO6G Framework

The 5G NR standard was developed with an understanding of typical radio network
traffic and the requirement for radio network equipment to support sleep states. The BS
can be put to sleep when no traffic is present in order to conserve energy. Even in heav-
ily loaded networks, BS resources are often unused. Most base transceiver station (BTS)
hardware components remain active to transmit 4G or 5G mandatory idle mode signals
such as synchronization, reference, and system information [42]. The MNOs expect B5G
deployment solutions to be low cost and capable of fast deployment, with low energy,
and simple operations and maintenance to improve carrier investment efficiency. To miti-
gate these challenges, we propose an energy optimization method using the learning from
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the predicted load, which we have simulated using DNN, Transfer Learning (TL), ARIMA,
and ETS models. The proposed ECO6G model is based on TL concepts, which utilizes a
pre-trained model M_DNN, trained on a larger traditional DNN model.

The performance of any ML or DL model depends on size, quality, and relevance of
the training dataset. Real-world datasets are disorganized and unstructured. Finding a
balanced dataset or working with an imbalanced dataset is difficult, especially with the
lack of field data for network slicing, which is not yet deployed in the production network.
We believe that the field data is necessary for the ML model to function in real-world
environments and for training, validation, and testing to ensure the validity and robustness
of the model. Our ECO6G dataset is developed from a real-world 5G BS’s measurements
using MNOs proprietary software, which includes data from one BS with three sectors and
KPIs such as RRC, number of PDU sessions, and the total network load [49]. The dataset
was collected over 52 weeks, of which 47 weeks were used for training, and the remaining
5 weeks were used for testing and validation. As network operators have yet to deploy
network slices, we do not have the availability of actual slicing data. We have used the
3GPP specification TS 28.554 [50] definitions to augment the data for network slicing KPIs
such as RSSNI and PDU session counts.

Traditional statistical methods use linear processing, whereas ML methods use non-
linear algorithms to achieve minimization objectives. This paper employs four primary
approaches to achieve time-series forecasting methods and comparisons: ARIMA, ETS, DL
model using random weights, and a DL model using learned weights. The most challeng-
ing aspect of time series problems is that they predict an uncertain future. Predictions are
never accurate and are always subject to variance, and it is challenging to discover and
learn underlying patterns in time series data. Typically, patterns are categorized as trends,
seasonality, and cycles. In most time-series data, these patterns are strongly interconnected,
and it is difficult to distinguish and locate them due to short data length, noise and out-
liers. In the past, univariate time-series analysis and prediction problems were primarily
addressed; however, multiple time-series data have gained prominence in recent years. We
have performed a comparative study between ML and statistical modeling to rule out any
issues with model superiority.

ECO6G utilizes TL, where weights are learned from a traditional DNN model MDNN
trained on a larger dataset comprising the three KPIs from each slices and the total network
load from one BS. The knowledge transfer in the case of TL eliminates the need to train
an ECO6G model from scratch, resulting in faster convergence using a smaller training
sample size. Finding sufficient and high-quality training data is one of the most challenging
tasks for conventional ML techniques. By leveraging the trained knowledge from similar
domains with high-quality data, TL can circumvent this issue. Instead of learning from
scratch, as with conventional ML approaches, the training process for ECO6G can be
significantly accelerated by incorporating knowledge from an MDNN model. Instead of
maximizing the QoS, we argued that better EE could be achieved by targeting satisfactory
QoS levels. Furthermore, accurate prediction of estimated network load based using recent
(more real-time) data, which is also smaller in size, can be used for predictive analytics.

7. Process Flow for ECO6G Framework

In this section, we detail the working of the proposed ECO6G, as shown in Figure 1:

Step I The ECO6G framework initializes by training the traditional neural model MDNN
using observed RRC, number of PDU sessions, and the total network load from all
Slices—A (eMBB), B (mIoT), and C (URLLC), i.e., DTOTAL. Network operators can
deploy many slices; we are considering three standard slices for our evaluation
per standardized 3GPP SST values. We have employed five-layer DNN: Input
(features), three Hidden Layers, and Output (prediction). We have tuned the
model hyper-parameters by changing the number of hidden layers, learning rate,
activation function, and the number of epochs for the MDNN model in MATLAB
using Deep Learning Toolbox and Alteryx Analytics Automation tool running
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on Intel hardware and Windows 11 operating system. Our goal is to validate the
model performance between random weights and learned weights, so we kept
the DNN modeling the same for both MDNN and MECO6G. The algorithm uses
randomness to find a good set of weights for the specific input–output mapping
function of the data, such that each time the training algorithm is run, a different
network with a different model is fitted. The shuffling of the training dataset
before each epoch also uses randomness, resulting in differences in the gradient
estimate for each batch.

Step II First, we train the MDNN multi-layer model using a feed-forward backpropagation
network with initialized random weights (stochastic gradient descent). A forward
pass through the network is accomplished by iteratively computing each neuron
in the subsequent layer until the output is achieved. We evaluate the output
quality based on a cost function C and the desired result in the output layer. Mean
squared error (MSE) is used as a loss function for evaluation.

Step III A backward pass is then used to optimize the cost function C after the first result
has been obtained by readjusting the weights and biases. We aim to optimize the
output by adjusting the entire neural network. Based on this, we can calculate the
total loss and determine the model’s suitability (good or bad), and here, weights
are adjusted to achieve a minimum loss. After backpropagation, we capture each
layer’s computed weights (learned weights) for TL parameters and define these
trained weights as MECO6G.

Step IV Now, training the MECO6G with ‘random weights’, we initialize MECO6G using
learned weights and re-train for smaller datasets DeMBB, DmIoT , DURLLC from
individual slices, which are subsets of DTOTAL to predict total network load.

Figure 1. ECO6G Framework.

In ECO6G, we are capturing weights on the final layer (i.e., the output layer); how-
ever, we can capture weights in the initial layer and middle layer, as referenced in [51].
The model’s performance depends on the neural network architecture, the change in
neurons, and the hidden layer, which influences the model performance and energy con-
sumption. The more time the model takes to converge, the more energy it consumes.
The complexity of a NN-based algorithm primarily depends on the number of nodes in
each NN layer, total training examples, M and number of epochs, N. The time complexity
T of the ECO6G algorithm can therefore be approximated as:

T = O(M ∗N ∗ #nodesinlayer(i) ∗ #nodesinlayer(i− 1)) (1)

ECO6G model pseudo-code can be written as Algorithm 1:
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Algorithm 1 ECO6G Training and Validation
1: Set parameters
2: θ ∈ (0, 1): weights/parameters
3: b ∈ (0, 1): bias
4: α ∈ (0, 1): learning rate to control change in θ and b
5: σ ∈ (0, 1): sigmoid activation function
6: ∑ = xiθi where xi is the input, Dtrain consisting of RRC, RSSNSI and PDU of each of the
three slices from the network and devices
7: Weighted sum value z = xiθi + b
8: Dtrain ← Training data for the network load of size 7729 X 9
9: Dval ← Training data for the network load of size 169 X 9
10: Initialization of the multi-layer model, MDNN consisting of parameters θ in [0, 1]
11: Training of MDNN with Dtrain
12: Predicting the network load with error function MSEi =

1
n ∑n

i=1(yactual − ypredictedi
)2

MAPEi =
1
n ∑n

i=1

∣∣∣ yactual−ypredictedi
yactual

∣∣∣
13: Optimization of cost function J(θ) through back propagation and gradient descent with
J(θ) in step 12 until convergence
14: Selection of the learned parameters (θ(1), θ(2), θ(N)) representing the pre-trained model
as Mpretrained
15: Using the Mpretrained parameters for validating Dval where Dval ∈ DTotal

8. ECO6G Framework Evaluation

With TL, most data are trained by other source domains before transferring the trained
models to the target domain, reducing the computing requirements for target domain
training. This is useful for wireless devices with hardware constraints, such as smart-
phones, IoT, and edge devices. Additionally, only knowledge, such as model weights and
biases, must be transferred, reducing communication overhead [52]. Consequently, this
can significantly improve the learning rate, which is especially important for developing
applications with ultra-low latency for future wireless networks. Conventional ML training
is computationally intensive. ECO6G uses all the layers of a pre-trained MDNN model for
initialization; this strategy is anticipated to be advantageous because the initial layers cap-
ture more typical characteristics, and training only the final layers is more computationally
efficient. ML and conventional statistical methods aim to enhance prediction accuracy by
minimizing a loss function, such as the mean of squared errors. A high loss indicates that
the model performed poorly, and a low loss indicates a good-fit model. Cross-validation is
used in the modeling process to determine which model performs best while remaining
robust to data not encountered during training. By sampling multiple pairs of training and
test data from a limited data set, one can ensure that the performance goals are met and
that the extent of training has been adequate while preventing over-fitting. There is no
one-size-fits-all indicator for forecast accuracy. We have used Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) metrics
for evaluation purposes across all four models to evaluate the goodness of predictions.

MSE is computed by squaring differences between the predicted and actual values
and averaging the result. The range of MSE is between 0 and ∞; the lower the MSE value,
the more accurate the prediction model. MSE is the loss function of linear regression by
default in ML. The MSE for our models can be expressed as:

MSEM_DNN =
1
n

n

∑
i=1

(yactual − ypredictedM_DNN )
2 (2)

MSEECO6G =
1
n

n

∑
i=1

(yactual − ypredictedECO6G )
2 (3)
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MSEARIMA =
1
n

n

∑
i=1

(yactual − ypredictedARIMA)
2 (4)

MSEETS =
1
n

n

∑
i=1

(yactual − ypredictedETS)
2 (5)

MAPE is more robust than MSE to outliers in the dataset, and it expresses accuracy as a
percentage of the error and measures the forecast error concerning actual values. The lower
the MAPE value, the more accurately the ML model predicts values. MAPE less than a
value of 10 percent indicates highly accurate forecasting. The MAPE for our models can be
expressed as:

MAPEM_DNN =
1
n

n

∑
i=1

∣∣∣yactual − ypredictedM_DNN

yactual

∣∣∣ ∗ 100 (6)

MAPEECO6G =
1
n

n

∑
i=1

∣∣∣yactual − ypredictedECO6G

yactual

∣∣∣ ∗ 100 (7)

MAPEARIMA =
1
n

n

∑
i=1

∣∣∣yactual − ypredictedARIMA

yactual

∣∣∣ ∗ 100 (8)

MAPEETS =
1
n

n

∑
i=1

∣∣∣yactual − ypredictedETS

yactual

∣∣∣ ∗ 100 (9)

ARIMA is a time series analysis model that is fitted to time series data to better forecast
future time series points. ARIMA uses trends, as well as cyclic, seasonal, and irregular
changes, to characterize time features and sequences in patterns. Forecasting techniques
based on ETS use a weighted sum of past observations, but the weights decrease exponen-
tially. We have simulated network load for 168 h (about one week) using all models as a
comparative study. Figure 2 shows the performance of all models in terms of MSE, RMSE,
and MAPE metrics. Our proposed ECO6G algorithm performs better than the other three
algorithms in error and accuracy metrics for the given dataset. In addition, our proposed
algorithm has steady performance and converges faster because of pre-trained weights.
Compared to the traditional neural network model (MDNN), ECO6G yields 21% less error
and 8.5 percent more accuracy for the given dataset.
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Figure 2. Model Evaluation and Metrics.

Figure 3 demonstrates the simulated forecasted network load results from all models.
The load change period is seven days and reflects the peak and off-hours variation through
the day for a week, reflecting the real-world scenario. The figure also depicts the two
prominent characteristics of mobile traffic and forecasting. First, the cell load is typically
characterized by a strong periodicity, with periods of low load occurring from night to early
morning. Second, the forecasting mechanism may produce non-negligible errors, meaning



Sensors 2022, 22, 8614 13 of 19

that deactivating cells at the incorrect time may significantly affect system performance.
ECO6G closely follows the actual traffic load, which shows the model is reasonably accurate
and provides reasonable confidence to use it against real-world network resource modeling.
The difference between the average of all ECO6G estimates and the average of all actual
values is only 1.10%, i.e., ECO6G is over-predicting by a small margin, which can be
compensated against any spike in unusual traffic load to accommodate network resources
during network planning.
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Figure 3. Simulation results of Network Load Prediction using Neural Network and Statistical
Modeling.

Table 2 shows the simulated average and peak load values across all models. Daily
average traffic over 24 h is modeled through three traffic loads (low, medium, and high)
per ETSI ES 202 706-1 definition. For a weak validation, the ECO6G, MDNN , and ETS
models have predicted a positive delta (meaning the network would over-provision) in
the case of average load against actual load for all three load scenarios. At the same time,
ARIMA estimated a negative delta (under-provisioned). For a mobile network operator,
it is moderately fair to over-provision to accommodate any spike in traffic but not by a
large sum.

Table 2. Simulation results of average and peak load across all models.

Average Load % Low Load (6/24) Medium Load (10/24) High Load (8/24)

Actual 42.53 74.36 88.23
MDNN 43.1 75.65 89.04
ECO6G 43.03 75.21 88.96
ARIMA 42.01 73.92 87.63

ETS 43.6 75.4 88.84

Peak Load % Low Load (6/24) Medium LOAD (10/24) High LOAD (8/24)

Actual 73.86 94.50 99.60
MDNN 74.44 95.32 99.59
ECO6G 74.48 95.23 99.78
ARIMA 75.39 92.96 96.86

ETS 75.15 94.21 99.61

9. Experimentation Results of Cost–Benefit Analysis

Load-aware metrics are crucial for the next generation of green communication net-
works. One of the primary objectives of 5G networks for enhancing EE is to match system
capacity and power consumption with network load. The total system EE for different load
scenarios is defined in ETSI ES 202 706 and 3GPP TR 32.972 version 16.1.0 [6] using the
following equations.

EEglobal = ∑
low load

blow load ∗ EElow load (10)
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EEglobal = ∑
med load

bmed load ∗ EEmed load (11)

EEglobal = ∑
high load

bhigh load ∗ EEhigh load (12)

EE (bits/joules) can be defined as the amount of traffic served per second by a BS
(bits/s) divided by the power utilized by a BS to provide service (Watt = Joule/s) multiplied
by a weighting factor ‘b’ based on the number of hours per day in each load condition.
The ETSI TR [41] load levels are 10%, 30%, and 50% for low, medium, and high loads,
respectively. This weighting factor ‘b’ takes on the value 6/24 for low load conditions in
the last 6 h of a typical day: low load, 10/24 medium load, and 8/24 high load. With the
EE equations defined in (10)–(12), the network EE can now be defined as the ability to
minimize energy consumption relative to the provided traffic capacity. RAN EE is the
measure of the capability of RAN elements to sustain a much better mobile broadband data
rate while minimizing the BS energy consumption. The definition of RAN EE specified by
the 3GPP is as follows:

RANEE(bits/joules) =
DataVolume

Energy consumption
(13)

where the unit of EE is bits/Joule, the unit for the data volume is bits/s/km2 and the unit
of energy consumption is Joules/km2.

The typical and peak electrical power requirement for radio BSs (macro cell, micro cell,
and pico or femtocell) related to aggregated RF power as defined in the ETSI ES 203 700
V1.1.1 [7] is used for the energy consumption calculation. In the case of a complex macro
BS, the peak power consumption is Pmax = 24 kW, which includes multiple frequencies
across 2G/3G/4G/5G radios and MIMO configuration, and the typical consumption is 8
kW. The bits per watt can be calculated for all three loads as follows:

Bits per watts =
Peak loadlow

Pmax ∗ Plow load level
∗ 106 (14)

Bits per watts =
Peak loadmedium

Pmax ∗ Pmedium load level
∗ 106 (15)

Bits per watts =
Peak loadhigh

Pmax ∗ Phigh load level
∗ 106 (16)

Therefore, with respect to the power consumption vs. load (from [44]), the power
consumption values are Plowloadlevel = 0.46, Pmediumloadlevel = 0.58, and Phighloadlevel = 0.7,
respectively. Using Table 3, power consumption using the average load for a typical day
across all load scenarios is calculated as shown in Table 4:

Table 3. Peak bits per watts calculation.

Peak Bits/Watts Low Load (6/24) Medium Load (10/24) High Load (8/24) Total

Actual 6690.22 6788.79 5928.57 6477.41
MDNN 6742.75 6847.70 5927.98 6514.89
ECO6G 6746.38 6841.24 5939.29 6516.87
ARIMA 6828.80 6678.16 5765.48 6411.59

ETS 6807.07 6767.96 5929.17 6498.14

Table 4. Energy consumption for a typical day.

Power Consumption (in kW) Low Load (6/24) Medium Load (10/24) High Load (8/24) Total

Actual 6.36 10.95 14.88 11.11
MDNN 6.39 11.05 15.02 11.21
ECO6G 6.38 10.99 14.98 11.17
ARIMA 6.15 11.07 15.20 11.22

ETS 6.41 11.14 14.98 11.24
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In most cases, as traffic volume and the number of utilized resources decreases,
the energy consumed decreases linearly. Figure 4 depicts an analysis of typical energy
consumption over a day by the BS based on the traffic pattern. The data analysis reveals that
the difference between the minimum and maximum BS energy consumption is 4.15 kWh
and 16.67 kWh for ECO6G model. The graph establishes the superiority of our ECO6G
model, as it can achieve an improvement of 1.03% over the actual daily power consumption
load for the given dataset.

Figure 4. Base station’s typical daily energy usage.

Additionally, the average retail price per kilowatt-hour (kWh) in the US is USD 0.1177
for commercial uses, as of drafting this paper [53], so the OPEX cost to operate one BS for a
day and for 5 years can be calculated as in Table 5. Note how close the ECO6G calculation
is to Actual (within $4.31, only a 0.007% error).

Table 5. OPEX Cost (in $) for MNO to operate ‘a’ BS for 5 years.

OPEX Cost per BS ($) Low Load (6/24) Medium Load
(10/24)

High Load
(8/24) Weighted Avg for 24 h

Actual 34,297.91 56,244.90 77,801.83 57,943.80
MDNN 34,561.10 56,764.43 78,064.91 58,313.76
ECO6G 34,234.89 56,167.78 77,932.57 57,939.49
ARIMA 36,089.28 57,722.90 78,865.72 59,632.10

ETS 36,729.73 58,272.96 79,048.24 59,812.24

10. Plausible ECO6G Use Cases in B5G Implementation

A developed country such as the United States of America has four major network
operators. Suppose each operator deploys one hundred thousand 5G sites. In that case,
the OPEX savings opportunity using the ECO6G load prediction model for weighted av-
erage load is close to 1.2 billion dollars over five years against other data-driven model
predictions for each MNO. These savings will be in multiple if we consider global de-
ployment from more than 750 MNOs deploying 5G, where 469 telecom operators from
140 countries/regions have already invested in 5G, while 182 telecoms from 73 coun-
tries/regions have started their own commercial 5G services [1].

We conducted five different experiments using test data and conclude that the ECO6G
model predicted 100.57% better OPEX savings for low-load, medium-load, and high-load
scenarios for the given dataset against other data-driven models and accurately predicting
the network load. Thus, utilizing ECO6G, we can improve the OPEX saving for different
load levels. As shown in Table 6, an approximate saving of 374 million dollars against
MDNN , 1422 million dollars against ARIMA, and approximately 1872 million dollars against
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ETS can be achieved by using ECO6G in all load scenarios considering 100,000 BSs over a
five-year period.

Table 6. OPEX Cost Change (in Million $) for MNO to operate ‘100,000’ BS for 5 year.

OPEX Cost Change
across Models

Low Load
(6/24)

Medium Load
(10/24)

High Load
(8/24)

Weighted Avg for 24 h
(Also Compared with ECO6G)

MDNN 263.19 519.53 263.09 369.96 (+374.27)
ECO6G −63.02 −77.12 130.74 −4.31
ARIMA 1791.37 1478.00 1063.89 1418.30 (+1422.61)

ETS 2431.82 2028.06 1246.41 1868.45 (+1872.76)

With 5G rapidly expanding globally and more sophisticated 5G-Advanced features
planned in 3GPP Release-18, industry, standards bodies, and research organizations are
setting the groundwork for the next generation’s global sixth-generation (6G) communi-
cation standard. AI has the potential to become the foundation for the 6G air interface
and network, making data, computing, and energy the new resources that can be used to
achieve higher performance. As a result, 6G will have to deliver significantly more data
at faster rates than current networks while also meeting extremely stringent EE goals to
achieve a sustainable 6G system. This necessitates a significant reduction in the amount of
energy needed to transmit a bit and the need for solutions that can be leveraged to attain
energy-efficient next-generation networks.

The ECO6G model can be applied in multiple scenarios, such as enabling a 3GPP-
compliant analytics service delivered in the form of statistics or predictions, intelligence
operational in real time for Network Functions, Application functions (AFs), and operations,
administration, and maintenance (OAM) services. The serving BS, for example, receives
assistance data from RAN, such as load status, active UEs, QoS needs and energy consump-
tion status [50]. The serving node executes an ML algorithm on the collected data to choose
an energy-saving action that maximizes network efficiency while maintaining service qual-
ity. The node may announce its intention to offload traffic to neighboring nodes to conserve
energy. Additionally, a single analytics source in an environment with multiple vendors,
especially with Open-RAN (O-RAN) concepts, could be beneficial. We are currently inves-
tigating ECO6G use cases in the core and the edge locations with application-aware output
for User plane function (UPF) load, especially with Multi-Access Edge Computing (MEC).

11. Conclusions

In this paper, we investigate traffic forecasting models to enable network management
to enhance the 5G OPEX savings. The paper highlights the use of ML algorithms to predict
the network load using network slicing KPIs and then uses the simulated predicted load to
compute the OPEX savings per industry standards definition. We presented a comparative
time-series study between neural network and statistical models and highlighted the
proposed ECO6G superior metrics over other models. We are investigating the feasibility
of ECO6G to supplement the 3GPP specified Network Data Analytics Function (NWDAF),
introduced as part of Rel-16, which is intended to streamline how core network data is
consumed to develop insights and take actions to improve the end-user experience. We
firmly believe the ECO6G model can enable slice-level analytics and provide either statistics
or forecasts of the performance of network load when used in conjunction with RAN
systems, can be further used to design and orchestrate energy-efficient network planning.
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