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Abstract: Packet loss is a major problem for wireless networks and has significant effects on the
perceived quality of many internet services. Packet loss models are used to understand the behavior
of packet losses caused by several reasons, e.g., interferences, coexistence, fading, collisions, and
insufficient/excessive memory buffers. Among these, the Gilbert-Elliot (GE) model, based on a
two-state Markov chain, is the most used model in communication networks. However, research
has proven that the GE model is inadequate to represent the real behavior of packet losses in Wi-Fi
networks. In this last category, variables of a single network layer are used, usually the physical
one. In this article, we propose a new packet loss model for Wi-Fi that simultaneously considers the
temporal behavior of losses and the variables that describe the state of the network. In addition, the
model uses two important variables, the signal-to-noise ratio and the network occupation, which
none of the packet loss models available for Wi-Fi networks simultaneously take into account. The
proposed model uses the well-known Hidden Markov Model (HMM), which facilitates training
and forecasting. At each state of HMM, the burst-length of losses is characterized using probability
distributions. The model was evaluated by comparing computer simulation and real data samples
for validation, and using the log-log complementary distribution of burst-length. We compared the
proposed model with competing models through the analysis of mean square error (MSE) using a
validation sample collected from a real network. Results demonstrated that the proposed model
outperforms the currently available models for packet loss in Wi-Fi networks.

Keywords: Hidden Markov Model; IEEE 802.11; packet loss models; SNR; wireless communication

1. Introduction

Current reports estimate that the number of devices connected to mobile and wireless
networks are increasing considerably. The number of Wi-Fi hotspots will increase from
169 million in 2018 to 628 million in 2023 [1]. The Wi-Fi connection speeds of mobile devices
should triple by 2023, when the average connection speed of Wi-Fi networks (30.3 Mbps
in 2018) will exceed 91.6 Mbps [1]. This increase is expected due to the development of
new technologies, devices, and improvements in the communication systems currently
in operation.

Wireless local area networks (WLAN) are computer networks that link devices using
wireless communication within a limited area, such as in homes, industries, hotels, and
restaurants, among others. IEEE 802.11, known as Wireless Fidelity (Wi-Fi), is part of the
IEEE 802 set of LAN protocols. It specifies the set of media access control (MAC) and
physical layer (PHY) [2], and is currently the standard for WLAN [3].

Packet loss occurs when a packet cannot correctly reach its destination node. The loss
can have several reasons and may be classified into three types: (1) physical layer losses,
due to problems in the transmission channel; (2) MAC layer losses, due to competition for
channel access; or (3) network congestion losses, due to insufficient link rate, equipments
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with small buffers, or bufferbloat (a problem caused by large buffers) [4]. Then, the perfor-
mance and evaluation of WLAN depends on different quality factors at different layers of
the network protocol stack, such as at the PHY and MAC layers of communication [3].

The currently available packet loss models for Wi-Fi networks can be classified into
two categories: (1) use of time series observation of a sequence of packet discards in a
real network, through a mathematical relationship applied to past data, and (2) use of
relationships between the packet loss and variables that describe the state of the network,
such as the signal-to-noise ratio and the transmission rate, among others [4]. A packet
loss model is an abstraction or a simplified representation of the loss behavior of a real
system. Gilbert-Elliot (GE) [5,6] is the most used model, even though it is already quite
old. It is based on a two-state Markov chain [7], called Good (G) and Bad (B), in which the
probability of a loss is respectively given by 1− k and 1− h. The probability of transition
between states G and B is given by p and q, respectively [4]. However, the GE model
fails to represent packet loss in IEEE 802.11 networks due to the existence of heavy-tailed
run [8] and also because, in real scenarios, the losses occur in bursts [9–11]. In wireless
communication networks, packet loss models consider singly PHY layer parameters such
as SNR, or MAC layer parameters [4]. In other cases, the losses are only characterized by
analytical models based in a temporal series unrelated to the observations of the state of the
network. Hidden Markov Models (HMM) have been used as an alternative for modeling
and analyzing different behaviors in wireless networks [12–14], including techniques of
channel selection [15]. An HMM is a stochastic model formed by two structures, in which
the first is an unknown stochastic process impossible to observe directly and may only be
inferred by a second observable process [16,17].

In this article, we propose a new packet loss model based on HMM for IEEE 802.11b/g/n
networks considering the signal-to-noise ratio (SNR) and the channel occupation as a
sequence of observable data. For HMM training and validation, samples were collected
from the Wi-Fi network of the Engineering Department at the Federal University of Paraná,
Brazil. To identify the number of states, we used data clustering techniques. For each of the
states, the burst loss length (BLL) was fitted to probability distributions. The performance
evaluation was carried out through the comparison between computer simulations and real
traffic samples. The main competing models were also simulated. The results demonstrate
that the proposed model outperforms the currently available models.

The main contributions of this work can be summarized as follows: (I) We made and
presented many tests with different variables existing in WiFi networks that are classified
as irrelevant or redundant to model the behavior of packet losses, thus allowing a reduction
in the number of variables simplifying the parameterization and use of the model. These
tests reduce the requirement of only two variables for an accuracy packet loss model. (II) A
new packet loss model for IEEE 802.11b/g/n networks based on HMM is proposed where
the size of burst losses is classified into four states, and each state is modeled using
heavy-tailed distributions. (III) The proposed model considers two variables, SNR and
channel occupation. Current models do not consider these two variables simultaneously to
model losses. (IV) It is also demonstrated that for WiFi networks under ideal transmission
conditions in the physical layer, where the SNR is high, the losses have a great influence on
the channel occupation. In this case, considering only the SNR for loss models is flawed
because other important factors are not considered, that is, the occupation of the channel in
the link layer.

The remainder of this paper is organized as follows: Section 2 presents the main packet loss
models for Wi-Fi networks; Section 3 presents the process of collecting, identifying, and defining
observable data that were used in HMM training; the proposed model and the performance
evaluation are presented in Section 4. Finally, Section 5 presents the conclusions.

2. Related Works

The Gilbert-Elliot model is one of the most popular in packet loss modeling [18].
However, two-state Markov models fail to represent and fit long-term statistics of packet



Sensors 2022, 22, 8592 3 of 16

loss [4,8]. In order to improve the accuracy of models, the HMM has been gaining great
prominence to model the behavior and characteristics of wireless networks and also ad-
dresses several aspects and analyses of the network [13].

Cardoso and Rezende have proposed the use of HMM to model the packet loss in
Wi-Fi networks using three states with two structures: general (HMM3g, with transitions
between every pair of states) and birth-death (HMM3bd transitions only between adjacent
states) [11]. Computer simulations demonstrate that HMM3bd overperforms the Gilbert-
Elliot model in terms of autocorrelation function (ACF) and complementary cumulative
distribution function (CCDF) of traffic bursts, whereas HMM3g only presets small im-
provements. However, even with some improvements, HMM3bd is not yet sufficient to
adequately describe the loss process, and it is necessary to increase the number of states to
improve accuracy. According to the authors, the model’s only drawback is that the optimal
number of states can vary from trace to trace [11].

Another approach using HMM to model packet loss in Wi-Fi networks was conducted
by Salih et al. [19]. The proposed model is a double embedded process (DEPHMM)
that uses the number of losses as a criterion for establishing the number of states in the
model. The packet loss ratio varies according to the BLL, which consequently makes the
parametrization of the DEPHMM more complex. The performance evaluation considers
traces extracted only from simulation runs. DEPHMM is compared with the Deterministic
Process Based Generative Model (DPBGM) [20,21] and the Finite State Markov Chain
(FSMC) [22]. Results indicate that DEPHMM is capable of constructing binary packet error
sequences with burst error statistics that closely match the reference traces.

Hartwell and Fapojuwo [23] propose the use of a five-state HMM to model packet loss
in Wi-Fi networks. In this model, the state transition matrix defines the probability of the
channel proceeding to each different state for every received frame interval. This way, from
the observation of the received packets in a time interval, Viterbi’s algorithm will indicate
the most probable state. The model uses a set of sample data for parametrization and
performance evaluation. Models with 2, 3, 4, and 5 states were tested. Results demonstrate
that high-order models trained with the Baum-Welch algorithm outperform the Gilbert-
Elliot model.

Russ and Haghani [8] present a packet loss model for IEEE 802.11g based on a com-
bination of the classic Gilbert-Elliot and a long-tail model. The authors suggest that the
BLL can be expressed by two different models, considering the consecutive number of
packets lost as n (i.e., for n ≤ 3 it is better to use the Gilbert-Elliot model while for n > 3
the use of a long heavy-tailed distribution has better results). The authors also suggest a
deep investigation to determine a heavy-tailed distribution applicable to longer bursts.

In this article, we propose the use of HMM in a different way from the ones that
previously used it in the literature. We will determine which observable variables are
relevant in the loss of packets and, through these variables, determine the most likely state
the system is in. In addition, we will conduct a deeper study on the ideal number of states
to be used.

Table 1 presents a comparison of related works available in the literature and the
proposed new packet loss model. Moreover, this table demonstrates the contribution of
proposed model that uses simultaneously two variables with HMM training. The other
related works uses only one parameter, and any one case suggests using SNR or occupation
network in order to train a HMM system.
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Table 1. Parameters of related works and proposed model.

Characteristics [24] [10] [11] [19] [25] [26] [23] [27] [8] Proposed
Model

IEEE 802.11 X X X - X X X - X X
SNR X - - - X - - - - X

Channel
Occupation

(%)
- - - - - - - - - X

HMM - - X X - - X - - X
Heavy-tail

distribution - - - - X - - - X X

3. Packet Loss Modeling with Cross Layer Information

The methodology used to develop the new packet loss model can be divided into three
parts, as shown in Figure 1: (1) data sample collection and definition of relevant/redundant
variables, (2) definition of the number of states, HMM training, and characterization of
BLL, and (3) performance evaluation of the proposed model and comparison with related
works. Each digital number 1 to 9 is explicated in the rest of the paper.

MethodologyMethodology
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Figure 1. Methodology of this article.

3.1. Measurement Setup and Data Collection

The measurement setup consisted of an indoor 802.11 network in the Department of
Electrical Engineering at the Federal University of Paraná. The building quarters research
laboratories, classrooms, teachers’ offices, and attendance offices. The Wi-Fi users consist
of around 1300 people, including graduate and undergraduate students, teachers, research,
technicians, and visitors. The Wi-Fi network uses 15 IEEE 802.11n access points spread
throughout the building to provide wireless coverage, with overlapping channels in most
of its locations.

The measurement setup consisted of an Access Point (AP) connected to a laptop that
repeatedly sent out constant size, constant rate packets using the UDP protocol, acting as the
source IP address. A computer connected to the AP using an uncongested Ethernet network
was the destination IP address and responsible for recording the packets’ arrival time. Aside
from the time of sent and received packets, additional information was collected, i.e., signal
strength (dBm), transmission rate (Mbps), and channel quality. We estimated the delay
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and jitter of each packet received and used a Fluke AirCheck™Wi-Fi Tester to record other
variables of interest, such as SNR, channel occupation, number of users in the channel,
among others. The AP configuration setup is shown in Table 2.

Several samples were collected in different days and hours in order to capture a
range of situations. Moreover, in order to increase data diversity, the laptop was moved
to different points in the building during capture. The network was in constant use and
presented a varied number of users connected to the AP or other adjacent APs that share
the channel. According to Abraham et al. [28], it is very difficult to avoid the partial
overlapping of Wi-Fi channels due to the limited number of orthogonal channels in IEEE
802.11 standards.

The sample consisted of 24,600 min (or 410 h) of traffic in different situations of
network occupation, SNR, number of active users, and distance from the AP.

Table 2. Access Point configuration.

AP Information Description

AP characteristics 300 Mbps Wireless N ADSL2+ Modem Router
Internet Service Provider Bridge mode

Channel number Fixed for each collection (1, 6, or 11)
Transmitter power Maximum

Wi-Fi standard IEEE 802.11 b + g + n (auto)
Channel Bandwidth 11b/g – 20 MHz or 11n – 20/40 MHz (auto)

3.2. Variables of Interest

A model can use numerous variables to correlate and predict the behavior of a
system [29]. In our case, there are at least 10 candidate variables to be used, but this
number is too large to be considered in a statistical model. We used statistical correlation
techniques to determine which variables are relevant, irrelevant, and which variables are
dependent on each other.

The correlation model was used to identify the relevant parameters, using correlation
tests based on Pearson coefficient. Pearson’s method uses a correlation coefficient (ρ)
that can take values ranging from −1 to +1, where ρ = +1 indicates a perfect positive
correlation between the two variables, ρ = −1 represents a perfect negative correlation, and
ρ = 0 indicates that the two variables do not depend on each other. The ρ coefficient is
given by

ρ =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2 ·
√

∑n
i=1(yi − ȳ)2

(1)

where xi and yi are values of two paired variables, x̄ e ȳ are the variables’ average, and n is
the sample size.

Variables with high correlation to each other are considered redundant, thus the
number of input parameters can be reduced. Where variables present low correlation with
the observed packet loss, they are considered irrelevant and can also be discarded.

Packet delay is the amount of time that a packet takes to reach the receiving end point,
and jitter is the variation in the delay of received packets. In IEEE 802.11, the transmission
rate relies on many factors such as channel bandwidth, number of spatial streams, guard
interval, encoding rate, and type of modulation scheme. For SNR lower than 25 dB, we
verified that delay and jitter were strongly correlated to SNR, with the correlation coefficient
given by ρ = −0.9442 and ρ = −0.9026, respectively. For the same interval, the SNR and
packet loss rate (PLR) presented a correlation of ρ = −0.6436. For SNR higher than 25 dB,
packet losses showed a correlation of ρ = 0.8222 and ρ = 0.7953 in relation to the observed
delay and jitter, respectively. Thus, there is a strong influence of the SNR in both the delay
and the jitter on Wi-Fi networks. Since published papers have also demonstrate that both
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delay and jitter parameters are related to SNR [30–33], delay and jitter were considered
redundant due to correlation with SNR.

The correlation between channel occupation and the number of users in the AP were tested
in different intervals of the sample. We observed that a high occupancy channel is not related to
the number of users connected, because connected users are not necessarily transmitting at any
given time. Furthermore, a channel can have high occupancy with only one active user. When
analyzing the correlation between channel occupation, the number of users, and the packet loss
rate, it was possible to observe that the higher loss rates were predominant in high occupation
levels. Correlation between the number of users and the loss rate was given by ρ = −0.0779
(not correlated); the channel occupation and the loss rate presented ρ = 0.8162 (correlated).
Thus, channel occupation was defined as a parameter for the model, while the number of users
was not, since it was considered irrelevant.

4. Proposed Model

In a Markov chain, each state corresponds to an observable event [16]. The HMM is a
class of probabilistic graphical model with state (hidden) variables, which are estimated
through a sequence of output (observable) events or variables [34]. In hidden Markov
models, the current state of the system is not directly observable. These models have wide
application in speech recognition, DNA sequence, and video streaming client behavior,
among others.

Figure 2 exemplifies a three-state HMM, where Ek, with k = {0, 1, 2}, represents the
hidden states; pkj, with j = {0, 1, 2} being the value for the transition probabilities from

state Ek to Ej, and vector wk,∗ =
[
wk0, wk1, . . . , wk(M−1)

]
represents the probabilities of ob-

servation, also called emission probabilities, of the observable events m ∈ {0, 1, . . . , M− 1}
in a given state Ek. The number of hidden states is given by K (also called HMM order). In
our model, the observable event was defined by the tuple {SNR, channel occupation}.

E1

E2E0

p01 p12

p12

p20

p02

p10

p11

p22p00

W1,*

W0,* W2,*

Figure 2. A three-state Hidden Markov Model.

Unsupervised HMM training was performed using the Baum-Welch algorithm. This
process requires a sequence of observable events and, during training, the algorithm adjusts the
state transition probabilities pkj and the emission probabilities wk,∗. The meaning of the states
can only be carried out after training, analyzing the characteristics of the formed groups.

After training, the transition and emission probabilities are used to determine the most
likely state using only observable events as input. In this work, the Viterbi algorithm was
used to evaluate the most likely state. If the network training has been carried out in a
channel occupation and SNR representative way, the parameters obtained can be applied
in other network scenarios without the need for new training.

Another advantage of our approach is that it makes the system less dependent on the
number of states because the observable events are configured by combinations between
the SNR and the channel occupation. This contrasts with the related works, which use
only the loss sequence as an observable event. When using the number of losses, the
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system tends to perform better as the number of states increases, which can be observed in
practically all models that followed this approach.

4.1. Order Selection

According to Pohle et al. [35], conceptually, the order selection appears to be a simple
model selection task, but in practice it remains a notoriously difficult challenge. Although
the number of states can be empirically estimated, this approach reduces the accuracy
of the model. Instead of the empirical approach, we used clustering techniques to select
the HMM order. Clustering algorithms are usually applied to solve problems related
to data mining [36]. Clustering is a technique used for grouping data, categorized into
unsupervised and semi-supervised [37], with the main goal of classifying a set of data
objects into several groups named clusters. The objects of a cluster must have high similarity
to each other and must be dissimilar to the objects of other clusters [38]. Most well-known
similarity measures, such as Euclidean, Minkowski, Hamming, and Jaccard distances, are
only concerned with a single data point. However, we are interested in finding a distance
measure between the collection of SNR and channel occupation points all correlated with
each other in a very interesting way. Each cluster was created based on the best similarity
of these nearby distances. There are, unsurprisingly, a myriad of methods for doing this,
each applicable to a certain subset of problems, but it will be promoted to one in order to
be using with HMM.

In this article, we used the Euclidean distance method, and the results are presented in
a dendrogram to illustrate the arrangement of clusters, visually representing the hierarchical
relationship between objects [39]. Euclidean distance generally seeks to compare time series
directly, so that time series with similar shapes are assigned lower distances. The Euclidean
distance is d(A, B) =

√
(x2 − x1)2 + (y2 − y1)2, where points A and B are A(x1, y1) and

B(x2, y2), respectively. Figure 3 presents the resulting dendrogram using the SNR and the
channel occupation as objects. The level of similarity is measured along the vertical axis,
in which long vertical lines (height) indicate higher similarity among each cluster’s data.
Visually, it is possible to verify the existence of 3, 4, or 5 groups. HMM training also acts
as a data classifier, and the quality of the classification can be assessed after training. The
training of HMM with four states presented better results when compared with three or
five states. Therefore, four states were used in the proposed model.

Figure 3. Dendrogram of SNR and channel occupation.

Figure 4 illustrates the classification performed by the HMM training algorithm.
Table 3 shows the classification of each state and their average PLR with the respective
standard deviations. We classified the states as follows: good (G), bad (B), intermediate 1
(I1), and intermediate 2 (I2).
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Figure 4. Identification states based on the HMM4.

State B presents the highest average PLR (60.97%). Figure 4 shows that this state occurs
in situations of high channel occupation and low SNR. State G is the best state, since it has
the lowest average PLR (0.55%), the highest levels of SNR and lowest values of channel
occupation. States I1 and I2 are considered intermediaries. State I1 was classified with
low SNR and low channel occupation, with an average PLR of 2.02%. State I2 presents
an average PLR of 12.78%, with high SNR and low channel occupation—the losses in this
state are driven by the channel occupation, a characteristic which is not captured by the
competing models.

Table 3. Packet loss rate in each state.

State PLR Standard Deviation Classification

1 60.97% 24.93% B
2 0.55% 4.09% G
3 2.02% 8.36% I1
4 12.78% 21.76% I2

HMM4 training process resulted in the probability transition matrix given by

P =


B G I1 I2

B 0.955 0.014 0.017 0.014
G 0.002 0.959 0.013 0.027
I1 0.051 0.017 0.932 0.000
I2 0.014 0.061 0.000 0.925


The transition probability matrix indicates that the most likely event is to remain in

the state. From state B, it is possible to reach all states with a similar probability. State G
transitions with the probabilities of 0.2% to state B, 1.3% to state I1, and 2.7% to state I2.
The probability of transition from state I1 to B is 5.1%, and 1.7% to G. It is important to note
that state I1 does not reach state I2 directly, and state I2, which has the second highest PLR,
does not directly reach state I1. The probability of transition from state I2 to state B is 1.4%
and 6.1% to state G.

The matrix shows that the probability of staying in the same state is greater than 95%
for either bad or good states, although there is the possibility of transitioning to all other
states. As for states I1 and I2, the probability of remaining in the same state is greater than
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92%, however, the possibility of transition between these two states is the lowest, as they
only transition to bad and good states. The dynamics of state transition allows us to capture
the temporal changes related to changes in the SNR and channel occupation, which will
translate into a better adherence of the model to the empirical data.

The BLL, which is given by the number of losses until the next packet is received, was
recorded for each state. Heavy-tailed distributions are used to model the BLL in wireless
networks [8,25]. A random variable X has a heavy-tailed distribution if

P(X > x) ∼ c.x−α (2)

as x ← ∞, where α is the shape parameter and c is a positive constant.
The empirical probability distribution of BLL in each state was fitted and compared

with several probability distributions, i.e., Pareto type II, Weibull, Log-Normal, Cauchy, and
Log-Cauchy. The parameterization of each probability distribution was performed using
estimators available in several libraries available in the R software. Among the parameter
estimators used in this process, one can mention the Maximum Likelihood (MLE), Moment
Matching (MLE), Quantile Matching (QME ) and Maximizing Goodness-of-fit Estimation
(MGE). When verifying the cumulative distribution function (CDF) of the length of the loss
bursts from the distributions used in the adherence verification process, it was observed
that the Pareto Type II distribution presented better adherence in relation to the others that
do not fitted very well. The use of the Pareto Type II distribution is already suggested in
other works in the modeling of packet loss bursts [40–42].

A QQ-Plot is a scatterplot created by plotting two sets of quantiles against one other.
If both sets come from the same distribution, a 45 degree line will be formed. Thus, we
used the QQ-Plot to graphically compare the empirical BLL and theoretical distributions
for all four hidden states.

The Pareto type II probability density function (PDF), in turn, is a heavy-tailed distri-
bution given by

Pr(X = x) =
λα

(1− λx)α+1 , α > 0, λ > 0, x > 0 (3)

where λ is the scale parameter and α is the shape parameter. Figure 5 shows the QQ-Plot
comparing the BLL of states I1 and I2 with the Pareto type II probability distribution.

The continuous line in Figure 5 represents the perfect goodness of fit between the two
variables. The dotted lines represent the limits for 95% confidence and the quantiles are
plotted as circles. The observed packet BLL fitted very well to the Pareto type II.

Figure 5. QQ-Plot for states I1 and I2.

However, due to the presence of spikes in the BLL of states G and B, the Pareto type II
distribution was unable to fully characterize the empirical data. In both states, the Pareto
type II distribution fitted correctly for BLL up to 40 and 400, respectively. In order to solve
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this problem, we used a combination of an exponential distribution and the Pareto type II
distribution. The PDF of exponential distribution is given by:

Pr(X = x) =
1
µ

e−x/µ, x > 0, (4)

where µ is the expected value.
The Pareto type II distribution models the body of the distribution while the expo-

nential distribution models the tail of states G and B. It is important to note that less than
1% of situations need to be modeled with the exponential distribution. Figures 6 and 7
present the QQ-Plot for states G and B, respectively. The BLL fitted well using the afore-
mentioned thresholds with the Pareto type II distribution and the exponential distribution
for each state.

Figure 6. QQ-Plot for state G.

Figure 7. QQ-Plot for state B.

Table 4 presents the estimated values of Pareto type II and exponential distribution
parameters for all states.

Table 4. Estimated parameters for BLL.

State Distribution Estimated Parameters

B Pareto type II
+Exponencial

α = 3.21 e λ = 12.32
µ = 1682.61

G Pareto type II
+Exponencial

α = 3.19 e λ = 6.33
µ = 44.36

I1 Pareto type II α = 3.42 e λ = 7.23
I2 Pareto type II α = 2.07 e λ = 4.94

4.2. Performance Evaluation

The proposed model was evaluated using a validation data set not previously used
in HMM training or goodness of fit tests. Each sample of validation data set has SNR,
channel occupation, and the sequence of lost or received packets. The most probable
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state was estimated using the Viterbi algorithm [43], available in the statistical software
R (R version 3.6.1) [44]. The proposed model was then used to simulate the packet loss
using the previously obtained state transition probability matrix and the BLL probability
distributions in each state. As the losses of the validation set are known, it is possible to
compare the model with the empirical data.

The results of this comparison are presented in Table 5, where the average BLL of the
simulation and validation data set are similar. Additionally, we plotted the QQ-plot of
empirical and simulated BLL, as shown in Figure 8. This figure shows that simulations
data can accurately represent the empirical BLL. Simulated traces of states B, G, I1, and I2
fitted very well to the BLL when compared to empirical data.

Table 5. BLL of validation set and model simulation.

State Validation Data Set Model Simulation

Average Std. Dev. Average Std. Dev.

B 5.67 34.44 5.80 28.64
G 3.00 5.75 2.99 6.01
I1 3.03 4.70 2.97 4.48
I2 4.66 11.04 4.56 11.89

Figure 8. QQ-Plot of burst length of HMM 4 states and simulation results.

Figure 9 presents QQ-Plot of the validation data set and the computer simulation of
the proposed model, considering all burst loss sequences. The result indicates that the
model represents the real system’s behavior very well.
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Figure 9. QQ-Plot of BLL of validation data set and simulation.

4.3. Competing Models Comparison

First, we compared the BLL observed in the validation set with the BLL generated by
the GE model. The parametrization of the GE model was conducted using the same data
from the validation set. In the GE model, the probability of transition between the bad and
good states are p = 0.0393 and q = 0.1862, respectively for p = P(B|G) and q = P(G|B).
Figure 10 plots the log–log complementary distribution (LLCD, 1− P(X ≤ x) in a log scale)
for the BLL of the validation data set and the one generated by the GE model. The results
demonstrate that the GE model cannot capture the behavior of the real system.

Figure 10. LLCD of BLL for the validation set and the GE model.

As proposed by Arauz and Krishnamurthy [24], we separated the samples using four
SNR thresholds from 10 dB to 75 dB. Each level represents a state of the model and is
modeled as a two-state Markov chain. The first state (10–26 dB) is the worst state, and the
fourth state (60–75 dB) is the best one.

In the model proposed by Carvalho et al. [10], the BLL is modeled through a geometric
series distribution. The parameter θ = 0.936848 was estimated using the Maximum
Likelihood Estimation (MLE). The GE model with substates proposed by Feng et al. [26]
suggests a good state with a set of four adjacent states. The probability of the transition to a
bad state is p1 = 0.009749, p2 = 0.004928, p3 = 0.002926, and p4 = 0.001855.

An adaptation between the GE model and heavy-tailed distributions was proposed
by Russ and Haghani [8]. The burst loss with a length lower or equal to three losses was
simulated with the GE model (p = 0.6240 and q = 0.6216), while the burst loss greater
than three losses was simulated with the Pareto type II distribution (shape = 2.5192 and
scale = 19.7564).
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The Finite State Markov Chain (FSMC) model presented by [27] was simulated with 4,
5, 7, 10, and 20 states, where the transition probability was estimated using the validation
data set.

It was not possible to simulate the DEPHMM [19] and HMM3g [11] due to the lack
of information about the configuration of observable events in the respective articles. We
suspect that, in these cases, the only observable event is the series of packet loss, but the
articles do not report this explicitly.

Table 6 presents a comparison of average BLL, maximum burst length, BLL standard
deviation, Mean Square Error (MSE) of burst loss, and the validation set for all competing
models described prior to the proposed model. Our model presents average BLL of 5.52,
maximum burst length of 7728, and standard deviation of 29.75. All those values are close
to the validation data set, thus, the proposed model significantly outperforms the existing
ones. The second best model was the Russ and Haghani [8], which suggests the use of a
heavy-tailed distribution to model burst lengths greater than three. Increasing the number
of states of the FSMC model increases the maximum BLL; however, it also increases the
standard deviation, which indicates that increasing the number of states is not enough to
improve the performance of this model.

Table 6. Comparison of related works with the proposed model.

Model Average
BLL

Maximum
BLL

Std. Dev.
BLL MSE

Validation data
set 5.37 8853 31.68 0

GE 5.36 65 4.832 0.352
[24] 4.88 54 4.52 0.319
[10] 5.37 158 7.53 0.352
[26] 6.52 96 6.01 0.352
[8] 8.11 11,074 24.08 2.907

[27] 4 states 16.76 204 15.78 0.352
[27] 5 states 22.52 273 21.45 0.352
[27] 7 states 34.85 489 33.80 0.351

[27] 10 states 54.19 721 53.39 0.349
[27] 20 states 150.5 2286 156.67 0.318

Proposed model 5.52 7728 29.75 0.70× 10−4

Figure 11 presents the QQ-Plot of the length of the simulated loss bursts based on the
related works compared to the data of the real sample observed in the networks. Observing
these comparisons, including results from Table 6, it is possible to identify and confirm
that most of the models tested can represent the length of the loss bursts, however, only
up to a certain maximum length. From this limit, the simulated models become inefficient
to represent the real behavior of the Wifi networks. The hybrid model that uses the GE
model and also a heavy-tailed distribution (GE + heavy-tailed) to model the losses is able
to present bursts greater than the length of 1500 in which it was also identified in the real
sample, however, it still failed to adequately represent the total behavior of the bursts when
observing the QQ-Plot. We consider that the tested and simulated models can adequately
represent the real samples up to a certain threshold. However, burst sizes greater than this
threshold must be modeled using another probability distribution, as we propose in this
new packet loss model, which proved to be better in relation to other existing models.
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Figure 11. QQ-Plot: simulation model of related works with the real samples.

5. Conclusions

In this article, we present a new model for packet loss in Wi-Fi networks using the
hidden Markov model. The proposed model jointly uses two important wireless network
variables: signal-to-noise ratio and channel occupation, which are the ones most correlated
with packet loss in Wi-Fi networks. Through clustering techniques, we identified that it
is not necessary to use a large number of states for the Markov chain—this is possible
due to the simultaneous use of the two observable variables. Unsupervised training
was carried out with a data set sampled on a real network, covering a wide variation in
network load and the channel’s SNR. The resulting model is more robust than existing
models because it is capable of predicting losses in a wide variety of situations without
the need for reparametrization. The simulated results, compared with a validation data
set, demonstrate that the proposed model is capable of mimicking the characteristics of
real networks. Moreover, they show that the proposed model is not only better, but it also
significantly outperforms existing models.
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