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Abstract: Since the early ages of human existence on Earth, humans have fought against natural
hazards for survival. Over time, the most dangerous hazards humanity has faced are earthquakes and
strong winds. Since then and till nowadays, the challenges are ongoing to construct higher buildings
that can withstand the forces of nature. This paper is a detailed review of various vibration control
strategies used to enhance the dynamical response of high-rise buildings. Hence, different control
strategies studied and used in civil engineering are presented with illustrations of real applications
if existing. The main aim of this review paper is to provide a reference-rich document for all the
contributors to the vibration control of structures. This paper will clarify the applicability of specific
control strategies for high-rise buildings. It is worth noting that not all the studied and investigated
methods are applicable to high-rise buildings; a few of them remain limited by many parameters
such as cost-effectiveness and engineering-wise installation and maintenance.

Keywords: vibration control; natural hazards; high-rise structures; passive control; active control;
semi-active control

1. Introduction

In the past few decades, the design and construction of civil structures showed a deep
evolution because of the technological progress in materials and devices. Buildings are
getting taller, such as Borj Dubai (Figure 1), which is the tallest tower in the world at 828 m,
and the new challenge today is the 1 Km Tower in Jeddah, KSA. High-rise buildings are
becoming slenderer and more flexible, making them sensitive to the vibrations that natural
risks cause (wind and earthquakes). As a result, controlling vibration is now a crucial
concern in civil engineering.

Figure 1. Borj Dubai (Dubai, 2008) [1].
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The main purpose of vibration control is to prevent resonance, large amplitude oscil-
lations, and unstable vibrations, as well as the quick suppression of transient vibrations.
Numerous various forms of damping systems, each utilizing a different technical advance-
ment, have been developed as a result of research in vibration suppression. The four
categories of vibration control strategies are passive, active, semi-active, and hybrid.

Natural damping in flexible structures is frequently quite low, ranging from 0.1 percent
to 5 percent; yet, even a modest increase in modal damping by the use of external dampers,
devices, or damping materials may result in an acceptable reduction in response Høgsberg
Høgsberg [2]. This implies that the introduction of the so-called passive dampers is perfectly
adequate in conditions where the response is primarily controlled by resonance. Passive
techniques do not need any energy source and can be classified into three categories, namely
aerodynamic, structural, and mechanical vibration control. Many scholars have examined,
both theoretically and experimentally, how well passive systems operate. Jangid and Datta
Jangid and Datta [3] reviewed the seismic behavior of isolated buildings. Housner et al. [4]
gave a thorough analysis of structural control’s past, present, and future using various
control techniques. Buckle Buckle [5] evaluated the effectiveness of the passive control
of seismically vulnerable constructions. Soong and Spencer Jr Soong and Spencer Jr [6]
provided a cutting-edge analysis of how additional energy dissipation performs against
natural risks. Kunde and JangidKunde and Jangid [7] examined how base-isolated bridges
performed when subjected to dynamic forces. Spencer Jr and NagarajaiahSpencer Jr and
Nagarajaiah [8] gave a detailed analysis of the structural control schemes. Later, Patil and
Reddy Patil and Reddy [9] reviewed the effectiveness of base isolation systems applied in
structures. Saaed et al. [10] gave a contemporary analysis of structural control techniques.

2. Passive Control of High-Rise Buildings

Figure 2 shows different forms of passive dampers. Most of them have already been
practically used in real-life high-rise buildings.

Figure 2. Division for passive damper.

2.1. Isolating Base or Energy Transfer?

This method consists in installing mechanical devices at certain locations along the
structure or adding damping materials that control the structure vibrations without any
energy source.

Passive control has been widely practiced in civil engineering; the most used ones are:

2.1.1. Base Isolation System

The installation of devices that decouple the structure or its main elements from
potential hazardous earthquake-induced ground vibrations or support motions is the basic
concept behind base isolation, also known as seismic isolation. This uncoupling is achieved
by increasing the system’s flexibility and providing appropriate damping. This may be done
using a laminated rubber (elastomeric) bearing base isolator with or without lead [11]. Base
isolation can also be achieved using friction pendulum seismic isolation bearings [11–18]
at each support point; this makes the structure sway with a gentle pendulum motion
during earthquake ground shaking. This allows the ground to shake without damaging
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the structure. Friction isolation devices, yielding steel energy-absorbing devices [19–21]
and visco-elastic [22,23] and fluid-viscous damping devices [24], are also used for base
isolation. Mostly, the base isolation technique is used for low- to medium-rise buildings
for seismic response mitigation [25–34]. However, recently, the application of isolation is
proposed for high-rise buildings [35–41]. A detailed review of the base isolation system was
recently provided by Beirami Shahabi et al. [42]. In addition, the base isolation techniques
are practically used in real-life structures worldwide. Several buildings are already isolated
around the world, and the greatest examples are the Utah State Capitol building and Los
Angeles City Hall (see Figures 3 and 4).

Figure 3. Utah State Capitol building (a) and the seismic dampening widgets (base isolators, (b)).

Figure 4. Los Angeles City Hall (base-isolated).

2.1.2. Tuned Mass Damper (TMD)

The dynamic vibration absorber (DVA) was first introduced in 1928 by Hartog and
Ormondroyd Hartog and Ormondroyd [43] in mechanical engineering. Then, Den Hartog
Den Hartog [44] provided the procedure for optimization of the DVA. Lenzen Lenzen [45]
proposed the DVA in civil engineering under the name of TMD. It uses a secondary mass
(usually concrete or steel) attached to a vibrating structure by a spring and a viscous damper.
The characteristics of the dashpot, spring, and mass ratio are optimized with the aim of
producing maximum damping. In essence, the TMD can be seen of as an energy sink
where extra energy that has accumulated in the deck and pylons of the building or bridge
is transmitted to a secondary mass. The building and the TMD mass itself are connected,
and some sort of viscous damping device is used to absorb the energy.

The pendulum TMD has been installed in many tall buildings, such as Taipei 101 in
Taiwan (see Figure 5). Elias and Matsagar [46] presented a detailed literature survey for
the research development of TMDs. Two recent progresses in the optimal use of TMDs
are (i) distributing the TMDs along the height of the building [47–50] (this approach was
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particularly proven to be effective for a high-rise 76-story benchmark building submitted
to wind loadings [51]) and (ii) use of inertance to connect the TMD to ground or lower
floors [52–62].

Figure 5. (a) Tower of Taipei 101 in Taiwan https://upload.wikimedia.org/wikipedia/commons/1/
1a/Taipei_101_2009_amk-EditMylius.jpg (accessed on 15 October 2022); (b) TMD installed in the top
of the tower https://upload.wikimedia.org/wikipedia/commons/1/15/Taipei_101_Tuned_Mass_
Damper.png (accessed on 15 October 2022); (c) zoom on the TMD https://upload.wikimedia.org/
wikipedia/commons/4/4a/Tuned_mass_damper_-_Taipei_101_-_Wikimania_2007_0224.jpg (ac-
cessed on 15 October 2022).

2.1.3. Tuned Mass Damper Inerter

In the last decade, a new device was introduced to the domain of vibration control in
civil engineering. The device is denoted as an “inerter” and has the capacity of producing a
force relative to the acceleration between its terminals [53,63]. This force is equivalent to a
fictive mass and can be used to enhance the performance of tuned mass dampers without
increasing their vertical loads on the building frames; the resulting device is usually denoted
a tuned mass damper inerter (TMDI) [64–67]. The association of the inerter to classical
damping devices may result in other devices, such as the tuned inerter damper (TID), the
multiple tuned mass damper, or the double mass tuned damper inerter (DMTDI) [68–70].

Despite the growing interest for the inerter applications in civil engineering, the
majority of the research remains in the numerical simulation stage. However, a few real
application to tall buildings can be found. Hence, a building in Sendai, Japan was equipped
with a tuned viscous mass damper (TVMD) consisting of a viscous damper and a ball screw
inerter in parallel connected to a spring in series [71]. The TVMD system is located in the
upper floors of the building and aims to enhance the seismic safety of the structure. Both
the TVMD and its location within the structure frame can be seen in Figure 6a,b.

Figure 6. (a) Tuned viscous mass damper coupled to a chevron bracing equipping a building in
Sendai, Japan; (b) tuned viscous mass damper device.

https://upload.wikimedia.org/wikipedia/commons/1/1a/Taipei_101_2009_amk-EditMylius.jpg
https://upload.wikimedia.org/wikipedia/commons/1/1a/Taipei_101_2009_amk-EditMylius.jpg
https://upload.wikimedia.org/wikipedia/commons/1/15/Taipei_101_Tuned_Mass_Damper.png
https://upload.wikimedia.org/wikipedia/commons/1/15/Taipei_101_Tuned_Mass_Damper.png
https://upload.wikimedia.org/wikipedia/commons/4/4a/Tuned_mass_damper_-_Taipei_101_-_Wikimania_2007_0224.jpg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Tuned_mass_damper_-_Taipei_101_-_Wikimania_2007_0224.jpg
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2.1.4. Tuned Liquid Damper (TLD)

TLD is a dynamic vibration absorber that uses the motion of shallow liquid (sloshing)
in a partially filled container to dissipate the vibration energy. The geometry of the tank that
holds the liquid and its viscosity is selected to have a frequency close to the fundamental
frequency of the structure [72–75]. Utilizing flow-damping elements like screens or posts
inside the container may cause the sloshing liquid’s energy dissipation to increase. Various
container forms, such as rectangular or circular, can be used as TLD. Besides a circular type,
a rectangular type has two different frequencies in two orthogonal directions [74,76]. For
illustration, the Shin Yokohama Prince Hotel in Yokohama, Japan, is equipped with tuned
liquid dampers, as shown in Figure 7a [77,78].

Figure 7. (a) Shin Yokohama Prince Hotel https://upload.wikimedia.org/wikipedia/commons/
thumb/7/70/Shin_Yokohama_Prince_Hotel_20080808-002.jpg/375px-Shin_Yokohama_Prince_
Hotel_20080808-002.jpg (accessed on 15 October 2022), Japan; (b) One Wall Centre in Canada (TLCD)
https://upload.wikimedia.org/wikipedia/commons/thumb/7/73/One_Wall_Centre.jpg/375px-
One_Wall_Centre.jpg (accessed on 15 October 2022).

2.1.5. Tuned Liquid Column Damper (TLCD)

This passive damping system uses water or other liquids in combination with the
functions of the mass, spring, and viscous damping elements. The desired natural frequency
of water motion is tuned by the geometry of the tank that holds the liquid [79–81]. A sluice
gate device may be used to dissipate the energy in the moving water. The benefits of using
a TLCD to reduce the motions of a building can be threefold [79]. A TLCD system is already
implemented in the tower of One Wall Centre in Vancouver, BC, Canada as shown in
Figure 7b. To reduce wind-induced vibrations, two tuned liquid column dampers (TLCDs)
were developed. A 4-story high, 50,000-gallon (230-ton) water tank set to the appropriate
frequencies constitutes each TLCD. Konar and Ghosh [75] presented a thorough analysis of
the vibration control using several types of tuned liquid dampers.

2.2. Energy Dissipation

This technique is one of the most practical and most used for structures with low to
medium height. Here, the studies with practical usage in high-rise buildings are discussed.
Some of the famous vibration mitigation methods in this area are discussed below.

2.2.1. Impact Dampers

Impact dampers [82,83] are an inertial system that consists of small rigid masses
suspended from the top of a container mounted at its side to the structure. The container is

https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Shin_Yokohama_Prince_Hotel_20080808-002.jpg/375px-Shin_Yokohama_Prince_Hotel_20080808-002.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Shin_Yokohama_Prince_Hotel_20080808-002.jpg/375px-Shin_Yokohama_Prince_Hotel_20080808-002.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Shin_Yokohama_Prince_Hotel_20080808-002.jpg/375px-Shin_Yokohama_Prince_Hotel_20080808-002.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/73/One_Wall_Centre.jpg/375px-One_Wall_Centre.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/73/One_Wall_Centre.jpg/375px-One_Wall_Centre.jpg
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designed with respect to an optimal spacing between the suspended mass and the container.
The collisions between them dissipate the vibration energy from the structure. Lu et al. [84]
presented a detailed literature survey on impact dampers. It has already been used in
real-life structures; a good example is the Titanium La Portada [85] (see Figure 8).

Figure 8. Titanium La Portada Building: https://upload.wikimedia.org/wikipedia/commons/
thumb/7/74/Titanium_La_Portada_%2838888739395%29.jpg/360px-Titanium_La_Portada_%283
8888739395%29.jpg (accessed on 15 October 2022).

2.2.2. Passive Viscous Control Strategies

Passive control of vibration can also be achieved using an auxiliary structure. This strategy
consists of connecting two parallel structures by passive devices (viscous dampers) [86,87].

Viscous brace systems (shear control) have also been used to control structure vibra-
tions [88]. It has been installed in many buildings, such as Prudential Tower in Tokyo, as
shown in Figure 9. A detailed literature survey of passive viscous dampers is provided by
De Domenico et al. [89].

https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Titanium_La_Portada_%2838888739395%29.jpg/360px-Titanium_La_Portada_%2838888739395%29.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Titanium_La_Portada_%2838888739395%29.jpg/360px-Titanium_La_Portada_%2838888739395%29.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Titanium_La_Portada_%2838888739395%29.jpg/360px-Titanium_La_Portada_%2838888739395%29.jpg
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Figure 9. Prudential Tower in Tokyo https://upload.wikimedia.org/wikipedia/commons/3/37
/Prudential-Tower-Tokyo-01.jpg (accessed on 15 October 2022).

It is worth noticing that several studies investigated the performance of viscous
dampers as coupling devices used to connect adjacent structures. Hence, Bhaskararao
and Jangid [90] used viscous dampers to connect adjacent buildings. It was found that
the dynamical response of both the connected structures was reduced. A large set of
studies investigating the effect of viscous dampers as coupling devices can be found in the
literature; numerically, this strategy has show its effectivness for high-rise buildings [91–99].

2.2.3. Aerodynamic Control

The aerodynamic control of vibrations is performed by the modification of the cross-
sectional configuration of the structure. For tall buildings, aerodynamic modifications (see
Figure 10) include tapering and drop-off corners, slotted and chamfered corners, setbacks,
fins, horizontal and vertical through-building openings, and sculptured building tops (see
Figure 11). This passive technique has been used in several tall buildings, such as the
Shanghai World Financial Center and Jin Mao Tower.

Figure 10. Examples of aerodynamic modifications to square building shapes.

https://upload.wikimedia.org/wikipedia/commons/3/37/Prudential-Tower-Tokyo-01.jpg
https://upload.wikimedia.org/wikipedia/commons/3/37/Prudential-Tower-Tokyo-01.jpg
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Figure 11. (a) Shanghai World Financial Center https://en.wikipedia.org/wiki/File:%E4%B8%8A%
E6%B5%B7%E5%9B%BD%E9%99%85%E9%87%91%E8%9E%8D%E4%B8%AD%E5%BF%83.jpg (ac-
cessed on 15 October 2022). (b) Jin Mao towers https://en.wikipedia.org/wiki/File:Jin_Mao_Tower_
2007.jpg (accessed on 15 October 2022).

2.2.4. Structural Control

This strategy includes creating systems like space frames and mega-frame systems,
as well as the addition of Vierendeel frames, belt trusses, super columns, bandages of
the Vierendeel type, and outrigger trusses or walls. Concrete or composite steel/concrete
construction with greater internal dampening might also be advantageous for a structural
system. For example, Melbourne Tower, shown in Figure 12a,b, features 2-story deep
outrigger trusses every 20 stories to aid in carrying lateral loads. This overcomes the
restrictions facing core systems by transferring some of the loads to the exterior frame.

Figure 12. (a) Illustration of outrigger system; (b) Melbourne Tower; (c) illustration of “virtual
outrigger” system using belt trusses; (d) Plaza Rakyat tower (Malaysia).

The Plaza Rakyat office tower in Kuala Lumpur uses belt trusses (Figure 12c,d). A
concrete shear core and 2-story outer belt walls that are joined to the concrete perimeter
frame at two levels make up the construction. By using standard outrigger systems, the
lateral loads are carried without being constrained by mechanical space.

Another example of structural control can be observed in the structural disposition of
the minaret of the Great Mosque of Algeria, as can be seen in Figure 13a. The minaret is a
slender structure with a height of 265 m above the ground and a square plan having a 26.8 m
length on each side. The composite structure comprising four RC cores at the corners, slabs
with an RC beam girder, and a stiffening system of steel profiles integrated in the RC cores
provide the rising structure’s stiffening system. Due to the height seismicity of Algiers, the
steel bracings were made as energy-dissipating components that yield before the foundation

https://en.wikipedia.org/wiki/File:%E4%B8%8A%E6%B5%B7%E5%9B%BD%E9%99%85%E9%87%91%E8%9E%8D%E4%B8%AD%E5%BF%83.jpg
https://en.wikipedia.org/wiki/File:%E4%B8%8A%E6%B5%B7%E5%9B%BD%E9%99%85%E9%87%91%E8%9E%8D%E4%B8%AD%E5%BF%83.jpg
https://en.wikipedia.org/wiki/File:Jin_Mao_Tower_2007.jpg
https://en.wikipedia.org/wiki/File:Jin_Mao_Tower_2007.jpg
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fails, in accordance with the aseismic strategy of capacity design. Three different types of
earthquake-resisting systems can be differentiated in the load-bearing structure, namely,
highly dissipative members, less dissipative members, and elastic members, as can be seen
in Figure 13b [100–102].

Figure 13. (a) General view of the Great Mosque of Algeria; (b) different structural members with
respect to their design behavior.

Passive dampers are by definition dissipative and steady, making them dependable
and resilient, but since they only affect the target frequency, they are unable to respond to
changes in the environment, the structure, or the loading. Additionally, passive dampers
do not work well when there are particularly strong earthquakes. As a result, active control,
a new category of vibration control, has emerged.

3. Active Control

This strategy uses a set of actuators and sensors connected by a feedback or feedfor-
ward loop.

It has the basic configuration shown in Figure 14. In fact, civil structures’ vibrations
can be controlled utilizing hydraulic or electromechanical actuator systems powered by a
suitable control algorithm, such as closed-loop or feedback, where the control forces are
determined by the structure’s feedback response, open-loop or feedforward, where the
control forces are determined by measured external excitations, or closed-open loop or
feedforward-feedback, where the control forces are determined by both the structure’s
measured response and measured. When structure parameters are unknown and are based
on tracking error between the measured response and the observed response, a system
based on the variation of closed-open loop control with a controller that can adjust the
parameters of the system, called adaptive control, can be used [103].
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Figure 14. Block diagram of active control.

In 1968, Zuk Zuk [104] was the first to present the early notion of active control. He
distinguished between active control, which is designed to reduce structural motion by
generating control forces. In 1972, active control of civil structures was first introduced by
Yao [105] as a means of protecting tall buildings against storms and became the subject of
intensive research subsequently. Many active control strategies have been proposed. The
most common ones are:

3.1. Active Mass Damper (AMD)

This method generates a vibration control force in an actuator by using the reaction
inertia force of an auxiliary mass (see Figure 15). In fact, a control computer analyzes
measured response signals and applies a control force depending on the structural re-
sponse’s feedback. To counteract the building motion, the actuator swings or pendulums
the secondary mass. To reduce the vibrations of tall structures, Chang and Soong [106]
proposed the active mass damper (AMD) in 1980 as an extension of a passive tuned mass
damper (TMD). To effectively regulate a tall building exposed to stationary random wind
forces, Abdel-Rohman [107] suggested a design procedure for an active TMD. Using an
AMD, Samali et al. [108] evaluated the active vibration control of a 40-story building un-
der significant wind excitations and contrasted the outcomes with a conventional TMD.
Wu and Yang [109] suggested an AMD system to mitigate the vibrations in the Nanjing
TV transmission tower in China based on linear-quadratic Gaussian (LQG), H∞, and
continuous sliding mode control (SMC) strategies. The reaction mitigation capabilities
of AMD systems installed in four actual steel-frame high-rise structures in Japan were
presented by Yamamoto et al. [110]. Ikeda et al. [111] investigated the effectiveness of
two AMD systems for controlling a building’s torsional and transverse vibrations. For
buildings with seismic protection and AMD control systems, Wang and Li [112] proposed
two controllers: fuzzy sliding mode control and variable structure control. Guclu and
Yazici [113] examined the performance of PD and fuzzy logic controllers in controlling a
15-story frame supplied with AMDs on the first and fifteenth floors. The first full-scale
application of active control to a building was accomplished by the Kajima Corporation
in 1989 (Kobori et al. [114]). The control system installed on the Kyobashi Center building
consists of two suspended AMDs (see Figure 15). The first AMD is used for transverse
motion, while the second AMD is employed to reduce torsional motion. The two damper
masses are driven by servo-hydraulic actuators [74]. Elias et al. [115] showed that the
performance of the active controllers for vibration control of buildings subject to pulse-type
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ground motions is not significant. Plus, the assumption of elastic models is not realistic.
Ümütlü et al. [116] showed the performance adaptive control design for an active TMD
system. They found that the proposed system was robust under the dynamical forces. The
absolute instantaneous optimal control performance index is as effective as LQR for an
active control system in the response mitigation of structures [117–119].

Figure 15. (a) Kyobashi Siewa Center (Japan) and (b) its AMD unit; (c) model of a building equipped
with an AMD on the top floor.

3.2. Active Connected Building Control (CBC) Using Mutual Action between Structures

The AMDs are used mainly to reduce the vibration of high-rise buildings caused
by moderate earthquakes or strong wind; however, this strategy may not be effective
with large-scale earthquakes or the very low frequency of ultra-tall towers. To solve
these problems, active CBC can be used. As shown in Figure 16, this method generates
a control force using an actuator positioned on a support structure that is parallel to the
flexible structure. This approach has the advantage of obtaining adequate control force at
low frequencies. It also provides more living comfortability and convenient living with
interchange using a connecting bridge between the buildings [120]. The active CBC of tall
buildings subjected to seismic excitation has been studied by Seto and coworkers [121,122],
Yamada et al. [123], and Christenson et al. [124]. In those investigations, the linear-quadratic
control approach was used to ascertain the control forces of coupled structures. The seismic
response of connected buildings has also been reduced using the nonlinear optimum control
method [125–129]. The stochastic optimal coupling control of nearby building structures
was investigated by Ying et al. [130] on the basis of the stochastic dynamical programming
principle and stochastic averaging method. The active CBC system is already installed in
the Harumi Triton Square in Tokyo (Japan).



Sensors 2022, 22, 8581 12 of 28

Figure 16. (a) Active CBC of Harumi Triton Square in Tokyo, Japan; (b) model of two adjacent
buildings connected with an active strut.

3.3. Active Bracing System (ABS)

Active bracing systems, which provide active elements between two succeeding levels
or between the ground and the first floor, as shown in Figure 17, can also reduce the
vibration of buildings. According to the LQR theory, Chung et al. [131,132] used ten-
dons attached to a servo-hydraulic actuator to operate a single-degree-of-freedom (SDOF)
and 3DOF structures. The effectiveness of a few control algorithms was investigated by
Loh et al. [133] using a full-scale, 3-story steel building with an active bracing system
placed on the first floor. Three different control algorithms—static-output-feedback LQR
control, modal control with direct output feedback, and static-output-feedback with vari-
able gain—are used in the experimental verification. A discrete-time modal control scheme
was put forth by Lu [134] and is very effective and shows potential for reducing the seismic
response of building structures fitted with ABS.

Figure 17. n-story shear frame equipped with an ABS between the ground and the first floor.
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3.4. Active Tendon Control

The system for buildings is made up of tendons that are attached to the proper location
in the structures and electrohydraulic servomechanisms. To reduce the structure’s vibration,
the hydraulic rams’ movements generate the control forces in tendons (Figure 18). The
sensors and the control algorithm regulate the motion of the hydraulic rams. Active tendons
are usually used in cable-stayed bridges and can be found in multiple bridges around the
world. The most illustrative example can be observed in the Normandy Bridge, France; the
span of the bridge is 850 m and it is equipped with both stay cables and control cables [135].
The main difficulty with such systems in the nonlinear behavior of cables, especially under
combined loads of wind and passing vehicles.

Figure 18. (a) Normandy Bridge equipped with active tendon cable https://upload.wikimedia.
org/wikipedia/commons/c/cc/Pontdenormandie.JPG (access on 15 October 2022); (b) active ten-
don mechanism.

3.5. Active Control Algorithms

All active strategies described above use control algorithms [11]. Control algorithms
select sensor and actuator placements; then, based on the measurements from sensors, the
control gains are optimized, and the required control forces or displacements are computed.
The common ones are:

3.5.1. Linear Optimal Control

In linear control, all mathematical equations and operations are linear.
Consider the system:

.
x = Ax + Bu; x(0) = x0

where the system matrix A is not necessarily stable, but it is assumed that the pair (A, B) is
controllable. The basic optimal algorithms are presented below:

• Linear quadratic regulator (LQR)
The LQR algorithm consists of the minimization of a quadratic cost functional J of the

following form:

J =
∞∫

0

[xTQ x + uT R u]dt

where Q and R are referred to as weighting matrices and u = −G z is the control force (G is
the gain matrix).

https://upload.wikimedia.org/wikipedia/commons/c/cc/Pontdenormandie.JPG
https://upload.wikimedia.org/wikipedia/commons/c/cc/Pontdenormandie.JPG


Sensors 2022, 22, 8581 14 of 28

The unknown external excitation is not considered throughout the reduction process.
This control algorithm is not really optimal as a result. In actuality, a large number of control
algorithms are not really optimal in this regard. Numerous studies on linear optimum
control have been conducted [106,132,136–139].

• H2 control
H2 control is an idealized control based on the 2-norm that the mean can identify more

easily in one-dimensional space [140]. Recall:

‖x‖2 = (
N

∑
i=1
|xi|2)

1/2

Control is beneficial for lowering the overall root mean square response for structural
control applications. We have the following for the state-space system G(s):

‖G(s)‖2 '

√√√√√ 1
2π

∞∫
−∞

tr(GH(jω)G(jω))dω

Therefore, the system’s H2 is comparable to the minimizing of all singular values or
harmonic frequencies in terms of physics. The H2 control can be helpful in guaranteeing
overall structural integrity to protect against seismic excitation in this way [141,142].

• H∞ Control
Another form of optimum control based on the infinity-norm is H∞ control. Recall:

‖x‖∞ = max(|xi|)

As a result, the H∞ control aims to reduce the highest response possible in a struc-
ture [143]. Relating the G(s) state space system to the H∞ norm:

‖G(s)‖∞ , maxσ
ω

(G(jω))

In terms of physics, the H norm merely determines the system’s maximum value.
Since unstructured model uncertainties are conveniently represented by the H∞ norm,
structural control applications can benefit greatly from its use. Furthermore, the H∞ norm’s
virtue of being an induced norm makes it simpler to implement in big systems than the
H2 norm.

3.5.2. Instantaneous Optimal Control

In the instantaneous optimum control, the control algorithm based on the time-
dependent performance function J is improved using the information of external excitation
up to the current time (t). The adequate control force is calculated by minimizing J(t)
at any instant of time, t. Writing the state vector z(t) in terms of the state vector and at
the prior time step, which is assumed to be known, is how the problem is formulated.
Over the time span ∆t the cost function is reduced. Abdel-Rohman and Leipholz Abdel-
Rohman and Leipholz [144] and Yang et al. [145] have made noteworthy contributions to
instantaneous control.

3.5.3. Sliding Mode Control (SMC)

Utkin [146] was the first to introduce the sliding mode control (SMC) scheme. This
algorithm consists in generating a sliding surface with a linear combination of state vari-
ables, such that the motion of the structure is stable on this surface. The sliding surface is
obtained by minimizing a performance function of LQR type and thus by solving the Riccati
equation. Then, based on the Liapunov stability criterion, controllers are designed to drive
the response trajectory onto the sliding surface. An improvement over the SMC is achieved
by designing a controller based on a linear feedback system and nonlinear feedback of the
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state vector. To make the control strategy more robust, the nonlinear feedback system takes
into account the uncertainties arising from the excitation (see Yang et al. [147] and Sarbjeet
and Datta Sarbjeet and Datta [148]).

3.5.4. Nonlinear Control

The nonlinear control consists of minimizing a higher-order performance function
such that the control force becomes a nonlinear function of the state variable. Wu et al. [149]
developed a nonlinear control strategy based on the LQR and the solution of the Riccati
equation. The control force was expressed in a convenient form by using a weighted
nonlinearity feedback parameter. Other works on nonlinear active control include those of
another type of nonlinear control scheme presented by Shefer and Breakwell Shefer and
Breakwell [150] and Suhardjo et al. [151] for the response reduction in nonlinear structures.
The control algorithm takes into account stiffness, and damping nonlinearities and the
nonlinear equation of motion can be solved in the time domain, with a control force derived
as a nonlinear function of the state variable. The minimization of the nonlinear performance
function is again achieved through the solution of the Riccati equation.

3.5.5. Active Control Using Neural Network and Fuzzy Logic

Fuzzy logic theory and neural networks’ primary goal is to avoid the need for creating
a control algorithm analytically. These control systems are superior in terms of practical
applications and are more adaptable, even though they do not rigorously and ideally
manage the structural response. Neural networks are commonly used in active control
of structures to offer control forces that lessen the response of the structure to future
earthquakes that are unknown [152–155].

The fuzzy control method is reliable and capable of handling the structure’s nonlinear
behavior. Additionally, the calculations required to drive the controller are fairly straight-
forward and may be simply included into a fuzzy chip. The Simulink and fuzzy toolboxes
in the MATLAB environment are typically used to solve the control equation of motion.

By taking into account feedback as (i) only velocity, (ii) velocity and displacement,
and (iii) velocity, acceleration, and displacement, different forms of fuzzy rule bases can be
utilized to map control forces according to the levels of the structural responses. Although
fuzzy control does not offer optimal control, it is more flexible than traditional control
theories. Battaini et al. [156], Kurata et al. [157], and Tani et al. [158] have all described
various applications of fuzzy control theory to various sorts of structures.

Wavelet-Based Control Algorithm

The concept of wavelets was first introduced to the vibration control of structures by
Adeli and Kim [159]. By effectively combining a feedback control algorithm, such as the
LQR or LQG algorithm, the filtered-x (LMS) algorithm, and wavelets, they developed a new
wavelet-hybrid feedback least mean square (LMS) algorithm for resilient management of
civil structures [160]. The new wavelet-based control technique has a number of benefits, in-
cluding formulating the external excitation term, suppressing vibrations across a spectrum
of input excitation frequencies, and being less vulnerable to modeling errors. Ref. [161]
Utilizing a wavelet-based control technique, the active vibration control of cable-stayed
bridges subject to seismic excitations was examined.

Other Active Control Laws

Other active control laws have been introduced for structural damping in space and
mechanical applications and may be good candidatures for civil engineering applications,
such us:

• First and second-order positive position feedback (PPF), which uses a force actuator
and displacement sensor [162–164].

• Integral force feedback (IFF) [165], which uses a force sensor and a displacement actuator.
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• Direct velocity feedback (DVF) [166], which uses a force actuator and a velocity or
acceleration sensor.

• Lead compensator [164], which uses a force actuator and a displacement sensor.
• Proportional integral derivative (PID) controller [166], which uses control loop feed-

back to control process variables such as displacement, velocity, and acceleration.

Generally, active control has high performance on the target mode and also acts
indirectly on other modes, but the stability is guaranteed only if the sensors are collocated
with the actuators (physically located in the same place), and, in some cases, it is subject to
spillover instability, which means that the control system always tends to destabilize the
flexible modes just outside the control bandwidth (residual modes). Another disadvantage
of active control is the requirement of energy, which implies the high cost of this strategy.
All the active control algorithms, laws, and strategies presented in this section may be used
in a semi-active control version.

3.6. Semi-Active Control

To reduce the high cost of active control, a new control method called semi-active,
which combines the best features of both passive and active strategies, was introduced
by Karnop et al. in 1973 in mechanical engineering [167] and by Hrovat et al. [168] in
1983 in civil engineering. Semi-active control devices give the adaptability of active control
devices with a minimum of energy and may run on battery power, which is crucial during
seismic events when the primary power source to the structure may fail. This has attracted
attention in recent years. A semi-active control device has qualities that can be modified to
best reduce the system responses but cannot inject mechanical energy into the controlled
structural system (containing the structure and the control device) [169]. According to
preliminary research, semi-active systems outperform passive devices when implemented
properly, opening the door to the possibility of successful response reduction under a variety
of dynamic loading scenarios [169–172]. There are many semi-active systems available,
including electro-mechanical devices, smart tuned mass dampers, tuned liquid dampers,
controllable friction devices, controllable fluid dampers, and controllable stiffness devices.

3.6.1. Variable-Orifice Dampers

This device modifies a traditional hydraulic fluid damper’s resistance to flow using a
programmable, electromechanical, variable-orifice valve [8] (Figure 19). This concept was
first proposed by [173] to control the motion of bridges experiencing seismic motion, and
later it was studied analytically and experimentally by a number of researchers, including
Kawashima and Unjoh Kawashima and Unjoh [174], Patten et al. [175], and Symans and
Constantinou Symans and Constantinou [176]. To reduce traffic-induced vibrations, Sack
and Patten Sack and Patten [177] created a hydraulic actuator with a variable orifice,
which Neff Patten et al. [178] deployed in a full-scale bridge on Interstate Highway I-
35 in Oklahoma. Symans and Kelly Symans and Kelly [179] have conducted analytical
and experimental research on the use of variable fluid dampers for reducing structures’
seismic responses. An on-off controllable orifice hydraulic damper employed as a resettable
stiffness device has been explored by Jabbari and Bobrow Jabbari and Bobrow [180] and
Yang et al. [181]. Additionally, Mori Tower makes use of variable-orifice dampers (Tokyo).

3.6.2. Variable-Stiffness System

The variable-stiffness system is composed of many variable-orifice dampers used
to produce an on-off mode: (i) when the valve is closed, a very high stiffness can be
achieved because of hydraulic fluid compressibility and (ii) when the valve is open, the
stiffness becomes very small. The main drawback of these devices is that they cannot vary
stiffness continuously between different stiffness states [8]. Kobori et al. [182] implemented
a full-scale variable-stiffness system (AVS) to investigate semi-active control of the Kajima
Research Institute Building (Figure 20). Nagarajaiah Nagarajaiah [183] has developed a
semi-active continuously and independently variable-stiffness device (SAIVS). Nagarajaiah
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and Mate Nagarajaiah and Mate [184] have shown the effectiveness of the SAIVS device
in a scaled structural model by varying the stiffness smoothly and producing a non-
resonant system.

Figure 19. Variable-Orifice Dampers.

Figure 20. (a) Kajima Technical Research Institute with AVS system; (b) control scheme used in the
Kajima Technical Research Institute [8].

3.6.3. Controllable-Fluid Device

Electro-rheological (ER) or magneto-rheological (MR) fluids are used in controllable-
fluid devices [8]. They are made of a fluid-filled hydraulic cylinder with microscopic
dielectric particles (Figure 21). When there is current present, these particles polarize and
increase flow resistance, converting viscous fluid into a yielding solid in milliseconds.
Electromagnets situated inside the piston head of the MR dampers, which are magnetic
counterparts of ER dampers, produce the magnetic field [185–190]. However, only MR
fluids have been demonstrated to be tractable for applications in civil engineering [170].
At the Tokyo National Museum of Emerging Science and Innovation, about 30 MR fluid
dampers were placed (Figure 22).

Figure 21. Controllable-fluid damper.
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Figure 22. The National Museum of Emerging Science and Innovation (Tokyo) https://upload.
wikimedia.org/wikipedia/commons/thumb/f/ff/Miraikan.jpg/1024px-Miraikan.jpg (access on
15 October 2022).

3.6.4. Variable Friction Devices

Variable friction devices are based on forces generated by surface friction to dissipate
vibratory energy in a structural system. The devices proposed by Akbay and Aktan
Akbay and Aktan [191] and Kannan et al. [192] consist of a friction shaft that is rigidly
connected to the structural bracing. The force at the frictional interface was adjusted
by allowing slippage in controlled amounts. Feng et al. [193] have employed a semi-
active friction controllable fluid bearing in parallel with a seismic isolation system. Yang
and Agrawal Yang and Agrawal [194] have studied variable friction systems for seismic
response reduction in nonlinear buildings. Garrett et al. [195] have studied piezoelectric
friction dampers experimentally.

3.6.5. Electro-Mechanical Devices

Electro-mechanical devices are based on forces generated by the variation in the
magnetic circuit’s reluctance that causes the magnetic flux linkage to vary over time; this
is mainly observed in the Maxwell magnetic actuator (Figure 23a), while in the Lorentz
magnetic actuator (Figure 23b) the force is the result of the interaction between eddy
currents produced in a conductor traveling in a constant magnetic field. These two types of
electro-mechanical devices are polyvalent and can be used as passive, active, or semi-active
controllers [196]. Despite their excellent potential, electro-mechanical devices were not
used to control the vibration in high-rise structures. However, they could be used with the
development of technologies related to their exploitation and maintenance.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 29 
 

 

 
 

(a) (b) 

Figure 23. (a) Maxwell magnetic actuator and (b) Lorentz magnetic actuator. 

3.6.6. Semi-Active TMD and Semi-Active TLD 

A TMD with changing stiffness is referred to as a semi-active tuned mass damper 

(STMD). Real-time control gives it the particular advantage of continuously returning to 

its frequency, making it resistant to changes in building stiffness and dampening [197]. By 

utilizing the SAIVS device, Nagarajaiah and Varadarajan Nagarajaiah and Varadarajan 

[198] created this device, and they have experimentally and analytically demonstrated its 

efficacy on a small-scale 3-story structural model. 

In the TLDs, the sloshing frequencies of the fluid are changed by modifying the 

length of the hydraulic tanks and adjusting the rotation of the rotatable baffles in the tank.  

All the semi-active devices presented above had been also used with base isolation 

[199–201], CBC control [202,203], and ABS control [204].  

3.6.7. Semi-Active Impact Dampers 

An impact damper is composed of a loose mass within the main mass connected to 

the host structure through a dashpot and a spring. This system has been proven to be very 

effective in reducing undesirable vibrations in mechanical systems [205]. Combined with 

a magnetorheological device, the impact damper results in a so-called semi-active impact 

damper or smart impact damper [206]. To the authors’ best knowledge, these control 

schemes were not exploited in controlling the response of high-rise buildings.  

3.7. Hybrid Control 

Another type of control strategy is the hybrid device, which was also designed to 

overcome the shortcomings of a passive system that performs inadequately in connection 

with very large earthquakes. In the case of a TMD, the building may be equipped with a 

passive auxiliary mass damper system and a small tertiary mass connected to the second-

ary mass with a spring, damper, and an actuator (Duox). The secondary system is set in 

motion by the active tertiary mass, and it is driven in the direction opposite to the TMD, 

making it more effective [207,208]. 

Hybrid mass dampers (HMDs) behave as either a TMD, using the concept of moving 

mass supported mechanisms of the same natural period as the building, or an AMD, ac-

cording to the wind conditions and building and damper mass vibration characteristics 

(Tamura et al. [209]). The active portion of the system is only used in the case of large 

excitations. Otherwise, it behaves passively. The main advantage of these systems appears 

in the cases of power failure or extreme excitations that exceed the actuator capabilities; 

the HMD device will automatically switch into passive mode until the system can safely 

resume normal operations. HMD was installed in many tall buildings in the world, such 

 

  

  

  

     

      
  

  

Figure 23. (a) Maxwell magnetic actuator and (b) Lorentz magnetic actuator.

https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Miraikan.jpg/1024px-Miraikan.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Miraikan.jpg/1024px-Miraikan.jpg


Sensors 2022, 22, 8581 19 of 28

3.6.6. Semi-Active TMD and Semi-Active TLD

A TMD with changing stiffness is referred to as a semi-active tuned mass damper
(STMD). Real-time control gives it the particular advantage of continuously returning to
its frequency, making it resistant to changes in building stiffness and dampening [197]. By
utilizing the SAIVS device, Nagarajaiah and Varadarajan Nagarajaiah and Varadarajan [198]
created this device, and they have experimentally and analytically demonstrated its efficacy
on a small-scale 3-story structural model.

In the TLDs, the sloshing frequencies of the fluid are changed by modifying the length
of the hydraulic tanks and adjusting the rotation of the rotatable baffles in the tank.

All the semi-active devices presented above had been also used with base isola-
tion [199–201], CBC control [202,203], and ABS control [204].

3.6.7. Semi-Active Impact Dampers

An impact damper is composed of a loose mass within the main mass connected to
the host structure through a dashpot and a spring. This system has been proven to be very
effective in reducing undesirable vibrations in mechanical systems [205]. Combined with a
magnetorheological device, the impact damper results in a so-called semi-active impact
damper or smart impact damper [206]. To the authors’ best knowledge, these control
schemes were not exploited in controlling the response of high-rise buildings.

3.7. Hybrid Control

Another type of control strategy is the hybrid device, which was also designed to
overcome the shortcomings of a passive system that performs inadequately in connection
with very large earthquakes. In the case of a TMD, the building may be equipped with a
passive auxiliary mass damper system and a small tertiary mass connected to the secondary
mass with a spring, damper, and an actuator (Duox). The secondary system is set in motion
by the active tertiary mass, and it is driven in the direction opposite to the TMD, making it
more effective [207,208].

Hybrid mass dampers (HMDs) behave as either a TMD, using the concept of moving
mass supported mechanisms of the same natural period as the building, or an AMD,
according to the wind conditions and building and damper mass vibration characteristics
(Tamura et al. [209]). The active portion of the system is only used in the case of large
excitations. Otherwise, it behaves passively. The main advantage of these systems appears
in the cases of power failure or extreme excitations that exceed the actuator capabilities;
the HMD device will automatically switch into passive mode until the system can safely
resume normal operations. HMD was installed in many tall buildings in the world, such as
Landmark Tower in Yokohama (Figure 24a). The installed HMD device is represented in
Figure 24b.

Kim and Adeli Kim and Adeli [210] introduced a hybrid control system consisting of
a passive supplementary damping system and a semi-active tuned liquid column damper
(TLCD) system. They evaluate the effectiveness and robustness of the hybrid damper-
TLCD system in reducing vibrations under various seismic 8-story frames using a new
wavelet-based control algorithm [134].
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Figure 24. (a) Landmark Tower in Yokohama equipped with tow HMDs https://upload.wikimedia.
org/wikipedia/commons/0/03/Yokohama_Landmark_Tower_201507.JPG (access on 15 October
2022); (b) HMD device https://www.mhi.com/products/infrastructure/images/steelstructures_
vibrationcontrol_case07.png (access on 15 October 2022).

4. Illustration of Literature Results

To illustrate the efficiency of vibration control devices deployed in high-rise buildings,
a review of various results obtained and presented in the literature is resumed in the two
following tables [211–220]. Table 1 presents the results obtained when submitting high-rise
benchmark buildings to earthquake excitation while equipping them with different control
devices (best performances), and Table 2 shows the results of the same high-rise buildings
submitted to wind excitations. The tables also show the device type, the quantity of interest,
and the percentage reduction obtained when compared to the uncontrolled case.

It can be seen from Tables 1 and 2, the performances of control devices are extensively
studied for high-rise buildings subjected to both earthquakes and wind loadings. It can
be clearly stated that the performance of these devices can effectively reduce induced
vibrations, henceforth reducing both structural damage and users’ discomfort.

Table 1. Performance of various control strategies for reducing earthquake-induced vibrations in
high-rise buildings.

Researcher(s) Used Device N◦ of Floors

Reduction in Dynamical Parameters
of Interest

Peak
Displacement

Peak
Acceleration Peak Base-Shear

Elias and Matsagar [211] TMD 20 20% 10% 10%

Elias et al. [220] Multiple
Distributed TMD 20 30% 40% 35%

Samiee [212] TLD 20 17.42% 7.2% /
Halperin et al. [213] Viscous damper 20 30–42% 70–82% /

Bitaraf and Hurlebaus [214] MR damper 20 46% 55% /
Raut and Jangid [215] Friction damper 20 46.7% 23.5% 5.33%

https://upload.wikimedia.org/wikipedia/commons/0/03/Yokohama_Landmark_Tower_201507.JPG
https://upload.wikimedia.org/wikipedia/commons/0/03/Yokohama_Landmark_Tower_201507.JPG
https://www.mhi.com/products/infrastructure/images/steelstructures_vibrationcontrol_case07.png
https://www.mhi.com/products/infrastructure/images/steelstructures_vibrationcontrol_case07.png
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Table 2. Performance of various control strategies for reducing wind-induced vibrations in high-
rise buildings.

Researcher(s) Used Device N◦ of Floors

Reduction in Dynamical Parameters
of Interest

Peak
Displacement

Peak
Acceleration Peak Base-Shear

Banerjee et al. [216] TMD 25 12.7% 21.8% /
Suthar and Jangid [217] TLCD 76 35.5% 38.8% /

Koutsoloukas et al. [218] HMD 15 23% 37% /

Elias et al. [50] Multiple
Distributed TMD 76 56% 52%

Li et al. [219] TTMDI 25 / 42.81% /

5. Conclusions

This survey paper presents an extensive view of the practical applications of damping
devices and systems applied to high-rise structures subjected to dynamical loadings. It is
worth noting that most vibration control devices were initially developed for mechanical
problems and then adopted for civil engineering problems. Despite the large variety of
devices and control strategies, a few found their way to real engineering applications. They
can be identified in high-rise buildings such as tuned mass dampers, tuned liquid dampers,
and bracing systems. The systems are the most used because of their cost effectiveness and
relative ease of maintenance.

With the fast development of technologies such as 3D printing and artificial intelligence,
it may be possible that other control devices and strategies such as semi-active dampers and
active tendons will be introduced to mitigate the vibrations in high-rise buildings.

With this in the background, it is worth saying that without the introduction of
vibration control devices, many building designs would have failed under the numerous
seismic events and strong winds recorded in different regions of the world. These vibration
control devices are more than necessary nowadays with the growing ambitions of architects
and engineers.
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