
Citation: Kuo, T.-Y.; Wei, Y.-J.; Su,

P.-C.; Lin, T.-H. Learning-Based

Image Damage Area Detection for

Old Photo Recovery. Sensors 2022, 22,

8580. https://doi.org/10.3390/

s22218580

Academic Editor: Manuel José

Cabral dos Santos Reis

Received: 18 October 2022

Accepted: 4 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Learning-Based Image Damage Area Detection for Old
Photo Recovery
Tien-Ying Kuo 1,* , Yu-Jen Wei 1 , Po-Chyi Su 2 and Tzu-Hao Lin 1

1 Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
2 Department of Computer Science and Information Engineering, National Central University,

Taoyuan City 32001, Taiwan
* Correspondence: tykuo@ntut.edu.tw

Abstract: Most methods for repairing damaged old photos are manual or semi-automatic. With these
methods, the damaged region must first be manually marked so that it can be repaired later either
by hand or by an algorithm. However, damage marking is a time-consuming and labor-intensive
process. Although there are a few fully automatic repair methods, they are in the style of end-to-end
repairing, which means they provide no control over damaged area detection, potentially destroying
or being unable to completely preserve valuable historical photos to the full degree. Therefore, this
paper proposes a deep learning-based architecture for automatically detecting damaged areas of old
photos. We designed a damage detection model to automatically and correctly mark damaged areas
in photos, and this damage can be subsequently repaired using any existing inpainting methods. Our
experimental results show that our proposed damage detection model can detect complex damaged
areas in old photos automatically and effectively. The damage marking time is substantially reduced
to less than 0.01 s per photo to speed up old photo recovery processing.

Keywords: deep learning; damage area detection; damaged old photo

1. Introduction

Old photos can often contain various levels of damage caused by human improper
storage or environmental factors that deteriorate the integrity of photos. Fortunately, digital
image processing technology can be applied to recover the content of these photos to its
original state. The existing recovery methods for damaged old photos can be divided
into non-automatic and automatic processes according to whether human intervention is
required. The non-automatic methods can be further subdivided into manual and semi-
automatic methods. Manual recovery is made through a variety of image editing tools,
such as Photoshop or GIMP [1], to recover damaged photos based on user knowledge. The
semi-automatic method manually marks the damaged areas on the photos and then applies
the inpainting methods [2,3] to recover the contents of these locations. The mentioned
works focused on the design of repair methods. For example, Li et al. [2] modified the
confidence computation, strategy matching, and filling scheme to improve the inpainting
method. Zhao et al. [3] proposed an inpainting model based on the generative adversarial
network (GAN) and gated convolution [4]. With their methods, in addition to the damaged
photos as the input, additional damage masks should be specified before inputting into the
model. Non-automatic methods, while providing good recovery results, require physically
marking the damaged areas in the photos, taking a lot of time and effort.

The automatic method does not have the aforementioned problems as it does not re-
quire any additional information in the process of restoring damaged old photos. Works [5,6]
have used deep learning techniques to develop automatic methods that can be applied to a
wider variety of photo content and types of damage. Wan et al. [5] designed a model based
on the architecture of variational autoencoder (VAE) [7]. They used an encoder model to
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first obtain the feature vectors representing the input photo in the latent space, then used
the latent restoration network to remove the damage and noisy components embedded
in the feature vectors, and finally the feature vectors were reverted back to the recovered
photo. Liu et al. [6] designed two modules: latent class-attribute restoration (LCR) and
dynamic condition-guided restoration (DCR). LCR first analyzes the four class attributes of
smoothness, clarity, connectivity, and completeness in the photo to repair the global defects
and then uses multiple DCRs in series to process the local defects to restore the details in
the photo. Although the automatic method can reduce the processing time for restoring
damaged old photos, the results generated are not satisfactory. For example, in [5,6], some
textures and objects were removed from the recovered photos because they were mistakenly
treated as noise or damage, and some undamaged areas in the photos were also modified,
which is undoubtedly a problem for preserving the integrity of the photo content.

In order to improve these shortcomings, we propose a method by which to automati-
cally detect damaged areas in old photos and use the detection results to guide inpainting
methods to automatically recover the original content of these areas. In general, dam-
aged area detection involves finding damaged areas in objects, such as steel structures [8],
murals [9], photos [10,11], frescoes [12], and pavements [13–19], through algorithms. The
methods for detecting damaged areas can be divided into traditional algorithms and deep
learning algorithms depending on the development method.

Damage detection methods [9–12] were developed using traditional image processing
techniques. Jaidilert et al. [9] used seeded region growing [20] and morphology to detect
cracks. Bhuvaneswari et al. [10] combined a bilateral filter and Haar wavelet transform to
detect scratch damage in images. The Hough transformation was used in [11] to detect line
cracks in images. Cornelis et al. [12] believed that the luminance value of cracks is low, so
the top-hat transformation of morphology was used to find cracks with a low luminance
value. The damage detection methods mentioned above are not effective in detecting
irregular damage areas and can only detect simple damage with limited accuracy, which
may affect their subsequent repair performance.

In deep learning-based algorithms, although there are a few fully automatic repair
methods [5,6] as mentioned previously, they are in the style of end-to-end repairing, which
means that it is not easy to have control over the detection of damaged areas, potentially
destroying or being unable to completely preserve valuable historical photos to the full
degree. We note that although the image content is different between worn-out old photos
and pavement crack images, the damage types are similar and both include mainly irregular
cracks, so we review and discuss the related literature on pavement crack detection as
well. König et al. [13] replaced standard convolutional blocks with residual blocks and
added an attention gating mechanism to preserve spatial correlation in the feature map and
suppress gradients in unrelated regions. Yang et al. [14] proposed a feature pyramid and
hierarchical boosting network (FPHBN) to fuse features of different sizes. Lau et al. [15]
used a pre-trained ResNet-34 to enhance the feature extraction capability of the network,
while Liu et al. [16] used the dilated convolution approach to make the area of the receptive
field wider.

It is mentioned in [17] that the ratio between cracked and non-cracked pavement
is very imbalanced, often leading to poor network segmentation results and the failure
of network training for crack detection, and a similar problem exists in our task. The
solution to the imbalance between the cracked and non-cracked data can be adjusted
by either the data set [15,17,18] or the loss function [15,16,19]. The dataset adjustment
strategy breaks the picture into smaller blocks, such as 48 × 48, 64 × 64, or even multiple
block sizes [15] for the training model, and then picks the proper ratio of cracked and
non-cracked blocks for training to reduce the dataset imbalance problem. For example,
Zhang et al. [17] used cracked blocks only as the training set for their crack-patch-only
(CPO) supervised adversarial learning. Jenkins et al. [18] set the specific ratio between
cracked and non-cracked blocks in the training set to place more weight on cracked blocks.
As for the loss function, most works use binary cross-entropy (BCE) as a loss function
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for semantic segmentation-like applications, but this function is weak in handling the
imbalanced dataset issue. As a consequence, Lau et al. [15] replaced BCE functions with
dice coefficients to evaluate the correctness of the detected areas. Liu et al. [16] further
combined the BCE functions and the dice coefficients. Cheng et al. [19] applied distance
weight to improve the original binary cross entropy. Existing deep learning-based road
crack detection algorithms can work on more complex and diverse damage than can
traditional algorithms. However, since there are many differences between the content
of road images and old photos, it is not possible to use the road crack detection method
directly, so we need to develop a method suitable for detecting damage in old photos.

To summarize the main contributions of our work, unlike other literature approaches
where the content of some intact areas is changed during repair, our way of recovering
damaged old photos ensures no alteration of intact areas during repair to preserve photo
integrity and fidelity. Since the existing methods for detecting image damage are not
satisfactory, in this paper an automatic damage detection method is proposed for the
recovery of old damaged photos to save time and effort. The advantage of our work is
that our detection result enables the possibility of combining any subsequent inpainting
methods to repair the photo, which is not possible using existing automatic end-to-end
repairing methods.

2. Proposed Method

Our recovery processing of damaged old photos is divided into two parts, as shown in
Figure 1. In the detection model (MD), the model input is an old damaged photo (Idamaged)
and the model output is a damaged area mask (Mask). The Idamaged and the Mask are then
exported to the inpainting method (MR) to generate the repaired photo (IRepaired), where
the MR can be any existing method.

Mask = MD

(
Idamaged

)
(1)

IRepaired = MR

(
Mask, Idamaged

)
(2)
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Net [21]. The first half is an encoder that extracts the image features, while the second half 
restores the image to its original size by up-sampling and uses the sigmoid function to 

Figure 1. Flow chart of our architecture to automatically repair damaged old photos. By feeding an old
damaged photo into our damage detection network, we can generate a damaged area mask. To restore
the photo, the damaged photo and the mask are fed together into an arbitrary inpainting algorithm.

Figure 2 shows the architecture of our damaged detection model is derived from
U-Net [21]. The first half is an encoder that extracts the image features, while the second
half restores the image to its original size by up-sampling and uses the sigmoid function to
find out the map of pixel damage probabilities. The advantage of using U-Net is its ability
to capture features at different scales, which are important for old photo damage detection
and allow the model to more accurately identify damage in different shapes and sizes.
Another merit of U-Net is the ability to concatenate features of the encoder into the decoder,
allowing the model to train without losing the features obtained in the shallow network.
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Figure 2. Architecture of the damage detection model.

In order to improve the ability to extract features, we replaced the original convolu-
tional layers of U-Net with residual dense blocks (RDBs) [22]. This block is a combination
of a residual block [23] and a dense block [24]. The residual block uses a skip connection to
combine the input of the block with the output of the block, thus increasing the stability of
the model training and the speed of convergence. The dense block continuously passes
all the shallow features of the block to the deeper layers, thus making full use of the in-
formation from the shallow features. The RDB retains these advantages to improve the
performance of the whole model. The original convolution layers at each scale used in
U-Net would gradually lose its shallow feature information, but this problem was solved
when we adopted RDB. In this way, it is possible to use more information from the area
surrounding the damage for damage detection.

Since there is no open dataset of damaged old photos available for use, we collected
photos from the Internet and marked the damaged areas in the images by ourselves. These
photos consisted mainly of portraits, buildings, and natural scenery, with their sizes ranging
from 129 × 317 to 797 × 1131 pixels. To generate ground truths, we manually marked
the damaged areas of the collected photos using the image editing tool GIMP [1]. The
transparency function of the GIMP layer feature makes marking damaged areas in photos
easier and more precise. Figure 3 shows examples of photos from our collected dataset as
well as the corresponding marked ground truth. We collected a total of 170 old damaged
photos and manually labeled them, 123 of which were for the training set, 18 for the test set,
and the remaining 29 for the validation set. On account of the limited number of photos in
the data collection, the data augmentation technique was used to increase the dataset size
via horizontal flipping and the 90-, 180-, and 270-degree rotation of photos.
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Figure 3. Dataset for damage detection: (a) old damaged photo; (b) corresponding marked ground truth.

Because there are more undamaged old photos on the Internet, in order to further
extend the training dataset we collected and used these undamaged photos, along with
a collection of damage-like textures, to synthesize artificial damaged photos. Compared
to Figure 4a we can see some differences between the artificially damaged photo and the
old real damaged photo. The real damaged area of an old photo is composed of complex
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multitoned contents, not just simple good or bad, but our synthesized damaged photo only
uses a single color to represent damage. We treated this difference as a type of damage to
improve the generalizability of the model.
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Figure 4. Real damaged photos and damaged photos synthesized by texture mask: (a) real damaged
photo; (b) our synthesized damaged photo.

The model parameters are initialized using the MSRA initialization method [25] in
the experiments, and the optimizer is the Adam optimizer with β1 =0.9, β2 =0.999. The
initial learning rate of the model is set to 0.0001, and every 1000 epochs are multiplied by
0.1 to train a total of 2000 epochs. The training patch size 48 × 48, which is commonly
used in pavement crack detection, is less appropriate for our task. The main reason for
this is that most cracked pavement images only have a black background and a few white
cracks, whereas old cracked photos have more complex content, such as portraits, objects,
buildings, and so on. Therefore, we partitioned the photos of the training set into patches of
100 × 100 pixels in size to account for more context to improve the performance, and in our
experiment, larger patch sizes than this did not result in any additional performance gain.
We also controlled the ratio of patches with damaged areas to patches without damage at
8:2 in training.

The loss function was balanced cross entropy. The main reason for employing balanced
cross entropy was to compensate for the imbalance between intact and damaged areas. It
modified the original binary cross entropy with the ratio of the two categories, giving more
weight to the fewer damaged areas and less weight to the more numerous intact areas as
shown in (3) where N is the total number of pixels in training blocks, αi is the weight of the
intact areas, yi denotes whether the ith pixel belongs to the intact category in the ground
truth, and p(i) is the model’s prediction of the probability that the ith pixel belongs to the
intact areas.

Ldetection = − 1
N

N

∑
i=1

αi · yi · log(p(i)) + (1 − αi) · (1 − yi) · log(1 − p(i)), (3)

3. Experiment Result

In our experiment, model training and testing were carried out on a computer
equipped with an Intel i5-2400 CPU and an NVIDIA 2070 8GB GPU. To assess the model
performance of damage detection, we adopted the evaluation methods commonly used
in image segmentation and pavement crack segmentation, including precision, recall, F1-
measure, and precision-recall curve (PR curve), as our evaluation metrics. Precision is
the percentage of the results identified as damaged areas that are actually damaged. The
percentage of true damaged areas detected is represented by recall. The F1 measure con-
siders both precision and recall. Since the ground truth is created by manual marking and
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each person has different damage marking criteria, we adopted the regional precision and
recall proposed in [26], which considers the detection result correct as long as it is within
five pixels of the manual marking results, to compensate for the ground truth credibility
problem caused by manual marking errors.

3.1. Comparison of Various Modules

In this section, we first evaluate the performance of our damage detection model
on old photos by testing the performance of U-Net barebones combined with various
modules. We compared the results of our proposed method with three methods, including
the original U-Net architecture, the U-Net architecture with a residual block module, and
the U-Net architecture with a dense block module. Figure 5 and Table 1 show the results in
terms of the PR curve, precision, recall, and F1-measure, which show that our proposed
approach outperformed all other module combinations. Figure 6 depicts the visual outcome
of using various modules to detect damage. It can be seen that our proposed method is
capable of detecting more subtle damage as well as the damage border. The more complete
the detection, particularly along the damage border, the more it can assist us in repairing
damage without affecting the repair result.
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Table 1. The recall, precision, and F1 measure of different modules.

Structure Recall Precision F1 Measure

U-Net 0.857 0.802 0.817
U-Net with residual block 0.876 0.833 0.846

U-Net with dense block 0.903 0.843 0.866
U-Net with RDB (proposed) 0.911 0.847 0.873

3.2. Comparison of Different Detection Methods

Next, we compare our method with other methods in the literature. We disassembled
the damage detection part from the whole end-to-end work [5] and compared it to our
method. Since there are so few existing deep learning-based damage detection methods for
old photos, we also compared the results of pavement crack detection models [16,18,19] that
have been retrained using our dataset to work on old photo damage detection. The results
of the PR curve are shown in Figure 7. The best recall, precision, and F1 measure values for
each method are shown in Table 2. The comparison results show that our detection effect is
the best.
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Figure 8 compares the visual results of the proposed method with those detected by
other methods. It can be seen that our proposed method of detecting damage in the photo
was more accurate, especially in the detection border denoted inside the yellow boxes. By
contrast, the methods proposed by [16,18,19] failed to completely detect the damage in the
image, and [5] often labeled undamaged areas as damage, such as around the tip of the
nose in Figure 8.
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As shown the Table 3, we also compared the number of parameters and computation
speed with these methods [5,16,18,19] where the size of the test photos was 512 × 512.
Jenkins et al. [18] and Cheng et al. [19] used the same model framework, but the model was
trained using different strategies. Therefore, they have the same number of parameters and
running time. Table 3 shows that both our detection models and those of [5] are fast as both
lower to the scale of 10−3 s, but our model is much lighter as our number of parameters is
only about one-sixteenth of all the other methods.

Table 3. Parameter and run time.

Method Parameter Computation Time (s)

Our proposed method 2.3 M 0.0084
Wan et al. [5] 37 M 0.0042
Liu et al. [16] 31.38 M 0.0122

Jenkins et al. [18] 33.24 M 0.0162
Cheng et al. [19] 33.24 M 0.0162
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3.3. Combination with Inpainting Methods

Next, we present our results regarding practical application. We used [4,27,28] as
the inpainting method in the subsequent process to repair actually damaged photos. The
repair results using actually damaged photos are shown in Figures 9c–e and 10c–e, which
demonstrate the results of our damage detection followed by different inpainting meth-
ods [4,27,28]. We can see in Figure 9c that Yu [27] failed to repair the cheeks and mouth in
our detected area. Repair to damaged areas by gated convolution [4] is generally blurred as
shown in Figure 9d. Figure 10c,d shows that deformation of the collar edge occurred after
restoration. In general, the results of partial convolution [28] as shown in Figures 9e and 10e
are more satisfactory compared to other inpainting methods [4,27]. This demonstrates
that our architecture can be combined with any inpainting method, but we suggest that
partial convolution [28] will achieve better results. In Figures 9b and 10b, we also com-
pare our method with the end-to-end method [5], which integrates damage detection and
repairs in one stage. Although [5] looks to have been effective in repairing the damaged
areas, there are some color distortion problems with unfaithful tonal changes and a loss of
texture in the image, such as in the cheeks as shown in Figure 9b. We can see that there
are unrestored damaged areas and missing window frame details marked in the red box
in Figure 10b. Thus, combining our architecture with the inpainting method [4,27,28] in
contrast to [5] provides better results without affecting content in the undamaged regions
in the recovery results.
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Figure 10. Results for different restoration methods on the damaged photo: (a) the old damaged
photo; (b) the result of Wan et al. [5]; (c) the result of ours + Yu et al. [27]; (d) the result of ours + gated
convolution [4]; (e) the result of ours + partial convolution [28].

There will still be cases where our approach may fail. For example, if the model
encounters a mixture of various complex damage, as shown in Figure 11, it becomes
difficult to distinguish the damaged areas, resulting in partial detection and incomplete
repair results. To deal with such a complex pattern of damage, future studies could
investigate and apply the concept of directional clues in damage patterns [29–31] to aid in
crack damage detection.
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4. Conclusions

Most restoration methods for damaged old photos require the manual marking of
damaged areas for restoration, which is quite inefficient. Therefore, we proposed a damage
detection model for old photos. Our method can detect damaged areas automatically
without manual marking, which significantly reduces repair time. The detection results
can be optionally screened and flexibly combined with any powerful inpainting method to
fully automatically recover the content of the photos. We analyzed various block modules
to design the detection model and found that the residual dense block (RDB), which
combines the advantages of residual block and dense block, can effectively improve model
detection capability. When compared to other detection algorithms, our method can
detect damaged areas more accurately. We demonstrated the restoration of damaged old
photos by combining our detection results with three different inpainting methods. In
our restoration results, both the damaged and undamaged areas of the photos did not
suffer from color tone changes, color distortion, or texture loss. Our method can better
preserve the integrity of photos than can the existing end-to-end method, which alters the
undamaged areas of photos.
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