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Abstract: Recently, the COVID-19 pandemic coronavirus has put a lot of pressure on health systems
around the world. One of the most common ways to detect COVID-19 is to use chest X-ray images,
which have the advantage of being cheap and fast. However, in the early days of the COVID-
19 outbreak, most studies applied pretrained convolutional neural network (CNN) models, and
the features produced by the last convolutional layer were directly passed into the classification
head. In this study, the proposed ensemble model consists of three lightweight networks, Xception,
MobileNetV2 and NasNetMobile as three original feature extractors, and then three base classifiers
are obtained by adding the coordinated attention module, LSTM and a new classification head
to the original feature extractors. The classification results from the three base classifiers are then
fused by a confidence fusion method. Three publicly available chest X-ray datasets for COVID-19
testing were considered, with ternary (COVID-19, normal and other pneumonia) and quaternary
(COVID-19, normal) analyses performed on the first two datasets, bacterial pneumonia and viral
pneumonia classification, and achieved high accuracy rates of 95.56% and 91.20%, respectively. The
third dataset was used to compare the performance of the model compared to other models and
the generalization ability on different datasets. We performed a thorough ablation study on the
first dataset to understand the impact of each proposed component. Finally, we also performed
visualizations. These saliency maps not only explain key prediction decisions of the model, but also
help radiologists locate areas of infection. Through extensive experiments, it was finally found that
the results obtained by the proposed method are comparable to the state-of-the-art methods.

Keywords: COVID-19; chest X-ray; coordinated attention; LSTM; lightweight CNN model

1. Introduction

In December 2019, the COVID-19 virus was discovered and began to spread globally,
in January 2020, the World Health Organization (WHO) declared it an “international
public health emergency”, and by March 2020, the disease was considered a pandemic,
in February 2022, the WHO prequalified its first monoclonal antibody to treat COVID-19,
tocilizumab [1]. As of 16 October 2022, 621 million confirmed cases and 6.5 million deaths
have been reported globally [2]. Although many countries are now actively developing
and inoculating vaccines, since SARS-CoV-2 is an RNA virus, its biological characteristics
determine that it is prone to mutation, and the long-term effectiveness of the vaccine
cannot be guaranteed. Therefore, early detection of positive cases of COVID-19 disease and
isolation of infected persons as soon as possible remain the mainstream response.

The standard diagnostic method for detecting coronavirus infection is reverse tran-
scription polymerase chain reaction (RT-PCR), the results of which can be obtained within
a few hours or two days, but this detection method is not only time-consuming and ex-
pensive [3], but the detection process also requires close contact between the doctor and
the person to be tested. The diagnostic guidelines proposed by Wuhan Zhong nan Hospi-
tal indicate that COVID-19 can be assessed by detecting clinical symptoms and imaging
manifestations of pneumonia [4].
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Many researchers are also currently working on using modern computer science tech-
niques to detect COVID-19 from lung images, such as deep learning [5–9], as in [5] the
authors provide rapid analysis of chest radiology, biological samples, severity scores and
other clinical data. Amir Hossein Barshooi et al. [6] addressed the data limitation prob-
lem by combining traditional data augmentation techniques with generative adversarial
networks (GANs); while Bernheim et al. [7] concluded that the frequency of CT findings
related to the time course of infection. Vinayakumar Ravi et al. [8] extracted features from
the penultimate layer (global average pooling) of an EfficientNet-based pretrained model
on CT images, and reduced the dimensions of the extracted features using kernel princi-
pal component analysis (PCA), then applied random forest and support vector machine
(SVM) for prediction. Research by [9] summarized and reviewed some important research
publications for DL-based classification of COVID-19 from CXR and CT images. As can
be seen from these studies, CT and X-ray imaging systems are two effective tools for the
initial, rapid identification and quantification of positive cases of COVID-19. Compared
with the superior sensitivity of CT images, the disadvantages of CXR images are obvious:
ordinary CXR images are the sum of the effects of X-rays on all tissues between the X-ray
source and the capture sheet, and the tissue structure in X-rays is not very clear lacking 3D
information [10]. However, the huge advantage of CXR is that it can be obtained cheaply
and fast. Therefore, CXR is the better choice for initial evaluation.

The typical imaging findings of COVID-19 infection include ground-glass opacity
(GGO) and airspace consolidation [11]. By analyzing chest X-ray images for observation,
physicians can identify the initial stages of COVID-19 and the damage caused in the lungs,
mainly in the lower lobes in later stages, as well as peripheral and subpleural distribu-
tion [12]. Diagnosing COVID-19 patients using this manual and traditional process is
challenging because thousands of people are affected by COVID-19 every day, radiologists
visit many patients each day and the diagnostic process takes a lot of time, so errors could
significantly increase, and more false-negative results could occur which would take a huge
toll on the patients and medical staff.

Although there are many challenges in manually understanding traces of COVID-19
infection from X-rays, subtle differences between COVID-19 and other types of X-rays
can be traced through data patterns from convolutional neural networks (CNNs). Many
recent studies on the diagnosis of COVID-19 disease from sample chest X-ray images have
demonstrated the effectiveness of this approach in lung disease, and related studies [13]
have found that COVID-like properties are located in the peripheral regions of the lung. In
contrast, attributions for non-COVID pneumonia (NCP) occur in the middle of the lung.
This is consistent with radiologists’ clinical observations of distinguishing COVID scans
from NCP scans. Currently, many scholars are exploring ways to improve the results
obtained by previous CNN methods and their limitations. However, most studies apply
pretrained convolutional neural network (CNN) models and pass the features produced by
the last convolutional layer directly into the classification head.

In this paper, our goal was to automatically and quickly analyze hidden features in
X-ray images based on a CNN model for accurate classification of COVID-19, pneumonia
(bacterial or viral pneumonia) and improve the sensitivity and specificity for COVID-19.

Therefore, in order to achieve the above goal, this paper selected lightweight networks
such as Xception, MobileNetV2 and NasNetMobile as the original feature extractors, which
have been pretrained on a large dataset called ImageNet and are widely used in image
classification work. These three base feature extractors were then improved by using
coordinated attention and LSTM. Finally, a fully connected layer, a dropout layer, and a
softmax layer were added on top of the extracted features to build a new classification head.
These improved base classifiers were used to classify chest X-ray images of patients. During
testing, the base classifier was used to first generate prediction scores, and then these scores
were combined using confidence fusion to generate the final class prediction. Finally, the
whole model was named COVIDX-LwNet, and the classification process and results of a
single base classifier were explained in detail using Grad-cam and visual feature maps.
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Briefly, the main highlights of the current work are as follows:

• A novel ensemble model is proposed to combine the results of three deep learning-
based classifiers by applying an ensemble method based on confidence fusion, a finely
trained model based on Xception, MobileNetV2 and NasNetMobile.

• For the specific implementation of confidence fusion, a detailed description is given,
the use of this ensemble approach helps reduce the chance of misclassification that
can occur when relying on a single classifier.

• In addition to using a pretrained model as a feature extractor, each classifier also has a
coordinated attention module and an LSTM layer.

• Feature map visualization was conducted on a single classifier to observe its feature
learning process.

The rest of the paper is organized as follows. The second section introduces the
research status in the field. Section 3 presents the dataset and proposed model. Section 4
presents experiments, including an ablation study on the model itself, the performance of
the model for three- and four-class classification, as well as comparisons with other classical
models or classification results from other state-of-the-art methods and generalization
ability verification. Section 5 discusses the interpretability of the proposed model. Finally,
Section 6 summarizes the full text and briefly discusses some of the limitations of this study
and future research directions.

2. Basic and Background

The COVID-19 outbreak has seen numerous research efforts to develop deep learning-
based diagnostic and screening methods using chest CXR imaging data. Image classification
techniques have provided important results for diagnosis and prognosis in the medical
field. According to the improvement of the model, it can be divided into four types:

(1) Transfer learning or fine-tuning of pretrained convolutional neural network models:
For example, Soarov Chakraborty et al. [14] classified COVID-19, pneumonia, and
healthy cases from chest X-ray images by applying a transfer learning method on a
pretrained VGG-19 architecture. Ejaz Khan et al. [15] proposed EfficientNetB1 with a
regularized classification head to detect chest X-ray classification of COVID-19. In this
study, not only a deep learning model but also the hyperparameters were fine-tuned,
thus significantly improving the performance of the fine-tuned deep learning model,
in addition, the classification heads were regularized to improve performance.

(2) After the convolutional neural network model extracts features, machine learning,
such as support vector machine or clustering, can be used as a classifier: such as
Sourabh Singh Verma et al. [16]. In this paper, the support vector was combined in the
last layer of the VGG16 convolutional network. For synchronization between VGG16
and SVM we added a layer of convolution, pooling and condensing between VGG16
and SVM, in addition, radial basis functions were used to transform and find the
best results. Anupam Das [17] developed an ensemble learning based on CNN deep
features (ELCNN-DF), in which the deep features are extracted from the pooling layer
of the CNN, the fully connected layer of CNN is called “Support Vector Machine” for
three classification device replacement. SVM, Autoencoders, Naive Bayes (NB), the
final detection of COVID-19 is performed by these classifiers, where a high-ranking
strategy is used.

(3) Integrated multiple convolutional neural network models: For example, Anubhav
Sharma et al. [18] proposed a method that identified patients infected with SARS-
CoV-2 from chest X-ray images of healthy and/or pneumonia patients: COVDC-Net,
which uses two modified pretrained models (on ImageNet), MobileNetV2 and VGG16,
respectively, and removes the classifier layer and fuses the two models using a confi-
dence fusion method. Jingyao Liu et al. [19] proposed an effective method based on
deep learning, deep feature fusion classification network (DFFCNet), to improve the
overall diagnostic accuracy of diseases. The method is divided into two modules, deep
feature fusion module (DFFM) and multiple disease classification module (MDCM).



Sensors 2022, 22, 8578 4 of 22

DFFM combines the advantages of different networks (EfficientNetV2 and ResNet101)
for feature fusion, and MDCM uses support vector machine (SVM) as a classifier to
improve the classification performance.

(4) Development of a new convolutional neural network model: Saddam Hussain
Khan et al. [20] developed a new CNN architecture STM-RENet to explain the ra-
diographic patterns of X-ray images, and the authors proposed a new convolutional
Block STM, which can implement region- and edge-based operations separately or
jointly. The use of a system that combines region and edge realization with convolu-
tion operations facilitates exploration of region homogeneity, intensity inhomogeneity,
and boundary-defining features. Additionally, exploiting the idea of channel boost-
ing by using transfer learning to generate auxiliary channels from two additional
CNNs, which are then connected to the original channels of the proposed STM-RENet,
developed CB-STM-RENet, which utilizes channel boosting and learning texture
changes to effectively screen X-ray images for COVID -19 infection further enhances
the learning ability of STM-RENet. Md. Kawsher Mahbub et al. [21] developed a
lightweight deep neural network (DNN) for unhealthy CXR screening with reduced
epoch and parameters.

The following conclusions can be drawn from the above studies: At the beginning of
the COVID-19 outbreak, due to the lack of samples, many researchers proposed many mod-
els suitable for small amounts of data from this perspective. Some researchers use transfer
learning for training because it allowed the network to have a higher initial performance,
faster training speed, and a better convergence of the resulting model, which can reduce
network parameters and make the network smaller. However, in the process of learning
disease features, there are huge differences between medical images and natural images.
Often the scene is single and the structure is fixed. Deep learning usually pays attention
to some features that are not related to the disease, which leads to a poor generalization
ability of the obtained model. Most of the current research on COVID-19 use a single CNN
network for learning, and there is a problem of incomplete or useless feature extraction.
Different networks extract different features. Therefore, it is very necessary to develop a
new method that combines multiple CNN networks for learning.

Base classifiers in this paper preferentially selected the pre-trained models of Xcep-
tion, MobileNetV2 and NasNetMobile, which are lightweight networks, and introduced
coordinated attention, LSTM and a new classification head as improvements. The outputs
were integrated using confidence fusion to further improve detection accuracy.

3. Materials and Methods

In this section, the datasets used for the training and testing are discussed along
with the deep learning models used in this study. The datasets are further discussed
in Section 3.1. Likewise, the proposed methodology for the classification of COVID-19
infection is discussed in Section 3.2.

3.1. Dataset

To test our proposed method, we collected three datasets from different public sources:
Dataset-1 (D1), Dataset-2 (D2) and Dataset-3 (D3).

D1 used the COVID19-pneumonia-normal-chest-xray-pa-dataset dataset available to
the public on Kaggle. It consisted of images collected from GitHub repositories, Kaggle,
Radiopedia, the Italian Society of Radiology (SIRM) and the Figshare data repository
website. D2 adopted the CoroNet dataset from the study by Asif Iqbal Khan et al. [22]. It
provided COVID-19 X-ray images in the open source Github repository by Joseph et al. The
pneumonia bacteria, pneumonia virus, and normal chest X-ray images were all from the
Kaggle repository “Chest X-ray Images (Pneumonia)”. D3 used a curated dataset of post-
COVID-19 anterior chest radiographic images (X-rays) published by the Indian Institute of
Science, PES University, MS Ramaiah Institute of Technology, Concordia University.
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D1, D2 and D3 are shown in Table 1. In all experiments in this paper, the split ratio of
training set and test set was 8:2.

Table 1. Specific composition of D1, D2 and D3.

Dadaset Source Address Class
(Number of Samples) Total

D1

www.kaggle.com/amanullahasraf/
COVID19-pneumonia-normal-

chest-xray-pa-dataset (accessed on
17 June 2022)

COVID (2313)
6939

images
normal (2313)

pneumonia (2313)

D2
https:

//github.com/drkhan107/CoroNet
(accessed on 18 August 2022)

COVID (320)

1638
images

normal (445)

pneumonia_bacteria (449)

pneumonia_viral (424)

D3
https://data.mendeley.com/

datasets/9xkhgts2s6/1 (accessed on
18 August 2022)

COVID (1281)

9208
images

normal (3270)

pneumonia_bacteria (3001)

pneumonia_viral (1656)

3.2. Proposed Methodolgy

In this work, the architecture of the whole method is shown in Figure 1, which was a
lightweight network ensemble model for detecting COVID-19 based on chest X-ray images,
named COVIDX-LwNet in this paper. In other subsections of this section, the basic concepts
used in this work, such as the pretrained CNN models, coordinated attention, LSTM, and
confidence fusion methods are discussed. In addition, the hardware and hyperparameter
settings for the experiments of the proposed method are also described.
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As shown in Figure 1, first, the 224 × 224 × 3 chest X-ray images are normalized and
fed into the base classifier. Pretrained models, Xception, MobileNetV2 and NasNetMobile
extract feature maps of size 7 × 7 × 2048, 7 × 7 × 1280 and 7 × 7 × 1056, respectively.

Next, these feature maps are passed through a coordinated attention module to
decompose the channel attention into two one-dimensional feature encoding processes that
aggregates features along two spatial directions, respectively. Then, the resulting feature
maps are encoded as a pair of direction-aware pairs and a position-sensitive attention map,
which can be complementary applied to the input feature map to increase the representation
of objects of interest.

After this, the feature map from the coordinated attention module is fed into the
Reshape layer, which changes the shape from (h, w, c) to (h * w, c) for input into the LSTM.

LSTM enhances the performance of the model by maintaining the state information of
the features encountered in the previous generation of image classification and speed up
the convergence.

Finally, the features extracted by LSTM are inputted into the reconstructed classifi-
cation head, namely a Flatten layer, a Dense layer with 512 units, a Dropout layer with a
dropout rate of 0.5, and an output unit of 3 (in the four classifications, only the output unit
of the Softmax layer is changed to 4, and the rest are not changed).

During the testing process, the test samples are first passed through three base classi-
fiers to obtain the corresponding predicted scores, which are then used to confidently fuse
the obtained outputs to obtain the final predicted labels.

Three base classifiers and the proposed model (COVIDX-LwNet) were all implemented
in Keras based on Tensorflow 2.5. The original models of the three base classifiers were all
pretrained on the ImageNet dataset. After improvement, 10% of the data was first divided
from the training set as the validation set, and then the Adam optimizer was used on the
prepared dataset. End-to-end retraining was performed with a learning rate of 2 × 10−4,
a batch size of 32, and an epoch value of 50. For training, data shuffling was enabled,
which involved shuffling the data before each epoch. All experiments and training were
performed on a Linux server equipped with a 3090 graphics card, and the CPU model
AMD EPYC 7601, 16 cores, 64 G.

3.2.1. Pretrained CNN Model

The layer weights of large CNN models (like AlexNet, DenseNet, etc.) are frozen
after being trained on large datasets, such as ImageNet. Therefore, researchers with low
computing equipment and small datasets can remove the last classification layer of the
pretrained model, add their own custom layers, and use the other layers described above
as feature extractors.

In applications such as COVID-19 detection, the differences in chest X-ray images
from different categories are less pronounced. In the current work, a CNN model was used
as a feature extractor, and the main role of the CNN was to convert the image as input into
a form that is easy to analyze without losing any useful information needed for prediction.

Furthermore, the limited amount of available data discourages the use of large models:
in fact, training smaller models is a safer option, as they are less prone to overfitting the
data. Very large models, such as DenseNet-121, without proper regularization, tend to
memorize the entire dataset, negatively impacting the generalization ability [23]. Therefore,
when we chose the model, we tried our best to consider the lightweight and simple model,
and the model with better initial classification effect through simple experiments was used
as the feature extractor.

The CNN model used here is described below:

• Xception: Xception [24] is another improvement of Inception-v3 proposed by Google
after Inception. On the basis of Inception v3, the Inception module is replaced with
a depth-wise separable convolution, and then combined with the skip connection of
ResNet, Proposed Xception.
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• MobileNetV2: MobileNetV2 [25] extends feature extraction and introduces an inverted
residual structure. The model architecture consists of a convolutional layer and
a series of residual bottleneck layers. The kernel size for all spatial convolution
operations adopts ReLU6 as nonlinearity, as well as batch normalization and dropout
in the training phase. Each bottleneck block consists of 3 layers, starting with a
(1 × 1) convolutional layer, followed by the aforementioned (3 × 3) depth-wise
convolutional layer, and finally another (1 × 1) volume without ReLU6 activations
laminate. MobileNetV2 is currently widely used due to its excellent feature extraction
capability and small size.

• NasNetMobile: NasNet [26] is a scalable CNN architecture (built through neural
architecture search) consisting of basic building blocks (units) optimized using re-
inforcement learning. A unit consists of only a few operations (several separable
convolutions and pooling) and is repeated as many times as the network requires. The
mobile version (NasNetMobile) consists of 12 cells.

3.2.2. Coordinated Attention

Coordinated attention is a new mobile network attention mechanism proposed by
Qibin Hou et al. [27], which embeds location information into channel attention, called
“coordinated attention”, and its structure is shown in Figure 2.
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Unlike channel attention, which converts a feature tensor into a single feature vec-
tor through 2D global pooling, coordinate attention decomposes channel attention into
two 1D feature encoding processes that aggregates features along two spatial directions,
respectively. This approach can capture long-range dependencies in one spatial direction
while preserving precise location information in the other. The resulting feature maps
are then encoded as a pair of orientation-aware and position-sensitive attention maps,
respectively, which can be complementary applied to the input feature maps to augment
the representation of objects of interest. This coordinate concern is simple and can be
flexibly plugged into the network with little computational overhead.

3.2.3. Long Short-Term Memory (LSTM)

Long short-term memory is an improvement over recurrent neural networks (RNNs) [28].
LSTM proposes memory blocks instead of traditional RNN units when addressing vanish-
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ing and exploding gradients. It then adds a cell state to hold the long-term state, which is
its main difference from an RNN. LSTM networks can remember previous information and
connect it to the currently acquired data. LSTM combines three gates: input gate, forget-
ting gate and output gate. The value range of the gate is (0,1), controlled by the sigmoid
function, where xt refers to the current input, Ct and Ct-1, respectively, represent the new
and previous cell states, ht and ht-1 are the current and previous outputs, respectively. The
internal structure of LSTM is shown in Figure 3.
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3.2.4. Confidence Fusion

Different layers of a convolutional neural network give different outputs. The output
from multiple models at different stages can be used to generate combined classification
results, which can often provide better results than the parent model. One such method
is to fuse the output vector [29] (classification probability vector) from the last Softmax
classifier layer, e.g., confidence fusion, the process of which is schematically shown in
Figure 4. Let pi be the output of a given CNN model and denoted as (pi,1, pi,2, ........., pi,n),
where i denotes the CNN under consideration and n denotes the classification number
class, where I is the total number of models fused. The term pi,j represents the probability
that the i-th CNN classifies the given sample as the j-th class. The mean value for each
category is calculated according to Equation (1):

−
pj =

I

∑
i=1
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Among the n classes, the final predicted class c is given by Equation (2).

c = argmax
−
pj where 1 < j < n (2)

4. Experiments
4.1. Performance Parameters

Once the model was trained, performance parameters based on the confusion matrix
were computed from each stage of the proposed method. The performance parameters,
namely, Precision, Sensitivity (Recall), Specificity, F1 and Accuracy are expressed as:

Precision =
TP

TP + FP
(3)

Sensitivity(Recall) =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

F1 = 2 × Precision × Recall
Precision + Recall

(6)

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

TP, TN, FP and FN are confusion matrix elements (see Table 2).

Table 2. Correlation calculations of confusion matrix (Cited from literature [30]).

Based on the Gold Standard

Disease Present Disease Absent Total

Predicted Model
Positive True positive (TP) False positive (FP) TP + FP

Predicted Model
Negative False negative (FN) True negative (TN) FN + TN

Total TP + FN FP + TN TP + FP + FN + TN

4.2. Three Classifications (Dataset D1)

In this subsection, the performance of the different components of the proposed model
and the performance of tri-classification are discussed, for which many experiments were
performed on the described dataset.

However, for simplicity, dataset D1 was dedicated to ablation experiments and tri-
classification (COVID-19, normal and other pneumonia) experiments. The final variant
(i.e., after adding a coordinated attention module and an LSTM layer and a new clas-
sification head) was considered here as a base classifier and was used to design an en-
semble method based on confidence fusion. Now, Xception + Coordinated Attention
module + LSTM layer + new classification head, MobileNetV2 + Coordinated Attention
module + LSTM layer + new classification head, and NasNetMobile + Coordinated At-
tention module + LSTM layer + new classification head are called Base Classifier 1, Base
Classifier 2, and Base Classifier 3, respectively.

First, there were two groups of ablation experiments. The purpose of the first set
of ablation experiments was to verify whether the added components can improve the
performance of existing classifiers. The purpose of the second set of ablation experiments
was to verify how much removing a certain component affects the improved classifier. The
results of the two sets of experiments are presented in Tables 3 and 4, respectively.
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Table 3. The first set of ablation experiments, evaluation metric: Accuracy (%).

Xception MobileNetV2 NASNetMobile

CNN 93.32 91.87 92.88

CNN + CoordAtt * 94.12 93.96 93.10

CNN + CoordAtt + LSTM 94.27 94.03 93.15

CNN + CoordAtt + LSTM + New
classification header 94.66 94.17 93.45

* CoordAtt means the abbreviation of Coordinated Attention.

Table 4. The second set of ablation experiments, evaluation metric: Accuracy (%).

Xception MobileNetV2 NASNetMobile

CoordAtt w/o * 94.18 91.97 92.88

LSTM w/o 94.45 93.88 93.38

New classification
header w/o 94.27 94.03 93.15

CoordAtt + LSTM + New
classification header w/ * + w/ + w/ 94.66 94.17 93.45

* w/o means the abbreviation of without, w/ means the abbreviation of with.

From the results of the first group of ablation experiments in Table 3, it can be seen that
compared with the original CNN, the addition of CoordAtt and new classification header
improved the classification performance of the original CNN, especially the performance
improvement brought by CoordAtt is the most obvious. The LSTM only showed a slight
improvement on the original models of Xception, MobileNetV2 and NASNetMobile, with
an increase of 0.15%, 0.07% and 0.05%, respectively. According to the results of the second
set of ablation experiments in Table 4, it can be seen that after removing the CoordAtt or new
classification header, the performance of the specific basic classifier was negatively affected.
Among them, the basic classifier 2 (MobileNetV2) was most affected by CoordAtt. The
most affected by the new classification header was the basic classifier 3 (NASNetMobile),
which was reduced by 0.46%. Therefore, it is safe to say that using the coordinated attention
module and the new classification header helped to improve the performance of the base
classifier, and the addition of LSTM had a slight improvement.

The base classifier and confidence fusion-based ensemble methods also recorded
precision, recall, F1 score, and test accuracy, which were given by averaging the results of
5-fold cross-validation. Table 5 shows the performance of the final proposed architecture,
COVIDX-LwNet, at each compromise.

Figure 5a,d show the accuracy, sensitivity, specificity and F1 score of all three base
classifiers and the proposed ensemble method, respectively. It is worth mentioning that,
the sensitivity and specificity of the proposed model COVIDX-LwNet in the COVID
category were both above 98.7%, respectively, which indicates that the proposed model
(COVIDX-LwNet) can be more effective in reducing the false negative rate of new coronary
pneumonia. While Figure 6 records the accuracy of testing each of the above models,
the ensemble method based on confidence fusion was superior to all basic classifiers in
accuracy, reaching the highest 95.56% among the four models.
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Table 5. The performance of the final proposed architecture, COVIDX-LwNet, at each compromise
(D1, 3 class).

Class Metric
Fold

1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Average

COVID

Precision 98.49 97.24 95.57 97.65 98.70 97.53

Sensitivity 98.92 99.13 98.05 99.13 98.70 98.78

Specificity 99.24 98.60 97.73 98.81 99.35 98.75

F1 98.70 98.18 96.79 98.39 98.70 98.15

Normal

Precision 92.68 91.84 91.58 92.42 91.99 92.10

Sensitivity 98.49 94.82 96.33 97.41 96.76 96.76

Specificity 96.11 95.78 95.57 96.00 95.78 95.85

F1 95.50 93.30 93.89 94.85 94.32 94.37

Pneumonia

Precision 98.61 95.90 97.89 98.14 96.13 97.33

Sensitivity 92.01 90.93 90.28 91.36 91.14 91.14

Specificity 99.35 98.05 99.03 99.14 98.16 98.75

F1 95.20 93.35 93.93 94.63 93.57 94.14

Accuracy 96.47 94.96 94.88 95.97 95.53 95.56
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attention module + LSTM layer + new classification head, base classifier 3: NasNetMobile + Coordi-
nated attention module + LSTM layer + new classification head) and the proposed ensemble model
COVIDX-LwNet (the model proposed in the figure) based on confidence fusion on the test set of the
D1 dataset. In (a) precision, (b) sensitivity, (c) Specificity, (d) F1 score of all three base classifiers and
the proposed ensemble method are shown, respectively.
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The training properties of the training accuracy curves and training loss curves of
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4.3. Four Classifications (Dataset D2)

In this section, the performance of the proposed model (COVIDX-LwNet) on four
classifications (COVID-19, normal, bacterial pneumonia, and viral pneumonia) on dataset
D2 will be discussed in detail, as well as comparison of the results with other models. The
COVIDX-LwNet applied to the four-class is a modification of the three-class COVIDX-
LwNet described in Section 4.1. There were three main changes: first, the output unit
of the last layer of softmax layer was changed to four; secondly, considering the size of
the data set D2, the batch size was changed to 16; finally, the learning rate was changed
from 2 × 10−4. If it remains unchanged for three epochs, it decays to 0.5 times the original
learning rate. The rest were consistent with the experimental setup in Section 3.2.

The base classifier and confidence fusion-based ensemble methods also recorded
precision, sensitivity, F1-score, and test accuracy, which were given by averaging the results
of 5-fold cross-validation. Table 6 shows the performance of the final proposed architecture,
COVIDX-LwNet at each compromise, the final average test accuracy was 91.2%. The
training properties of the training accuracy curves and training loss curves of the three base
classifiers are also shown in Figure 8a,b, and their trends with the proposed model’s P-R
and ROC curves are shown in Figure 8c,d. Overall, the proposed model is well-trained and
performed well on the current four classes of problems.

In addition, we also condudcte a detailed comparison of the proposed model COVIDX-
LwNet with those proposed in two other papers on the D2 dataset.

Wang and Wong [31] proposed a residual deep architecture called COVID-Net for
detecting COVID-19 from chest X-ray images. COVID-Net, one of the early works on
COVID-19, used deep neural networks to classify chest X-ray images into four categories
(COVID, normal, pneumonia bacteria, and pneumonia virus), and COVID-Net achieved
83.5 in four categories % accuracy.

Asif Iqbal Khan et al. [22] proposed CoroNet, a deep convolutional neural network
model for automatic detection of COVID-19 infection from chest X-ray images. The overall
accuracy rate on pneumonia bacteria and pneumonia virus) reached 89.6%, of which the
accuracy and recall rate of the COVID-19 case were 93.2% and 98.2%, respectively. It should
be noted that the D2 dataset used in this paper is also derived from this study.
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Table 6. The performance of the final proposed architecture, COVIDX-LwNet, at each compromise
(D2, 4 class).

Class Metric
Fold

1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Average

COVID

Precision 100 98.39 100 96.83 100 99.04

Sensitivity 95.31 95.31 96.88 95.31 96.88 95.94

Specificity 100 99.62 100 99.24 100 99.77

F1 97.60 96.83 98.41 96.06 98.41 97.46

Normal

Precision 90.53 92.31 93.62 92.55 92.55 92.31

Sensitivity 96.63 94.38 98.88 97.75 97.75 97.08

Specificity 96.23 97.07 97.49 97.07 97.36 97.08

F1 93.48 93.33 96.17 95.08 95.08 94.63

Pneumonia_Bacteria

Precision 88.76 86.17 92.31 85.54 93.98 89.32

Sensitivity 87.78 90.00 80.00 78.89 86.67 84.67

Specificity 95.80 94.54 97.48 94.96 97.90 96.14

F1 88.27 88.04 85.71 82.08 90.17 86.85

Pneumonia_Viral

Precision 87.95 88.89 81.91 79.55 86.52 84.96

Sensitivity 85.88 84.71 90.59 82.35 90.59 86.82

Specificity 95.88 96.30 93.00 92.59 95.06 94.57

F1 86.90 86.75 86.03 80.92 88.51 85.82

Accuracy 91.16 90.85 91.20 90.11 92.68 91.20
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Table 7 shows that COVID-Net, performance comparison of CoroNet and our proposed
model (COVIDX-LwNet) on dataset D2 on a four-class classification task.

Table 7. COVID-Net, four-class performance comparison between CoroNet and COVIDX-LwNet.

Class

COVID-Net CoroNet COVIDX-LwNet (Ours)

Prec.
(%) *

Sen.
(%) F1 (%) Prec.

(%)
Sen.
(%) F1 (%) Prec.

(%)
Sen.
(%) F1 (%)

COVID 80 100 88.8 93.17 98.25 95.61 99.04 95.94 97.46

Normal 95.1 73.9 83.17 95.25 93.5 94.3 92.31 97.08 94.63

Pneumonia_Bacteria 87.1 93.1 90 86.85 85.9 86.3 89.32 84.67 86.85

Pneumonia_Viral 67.0 81.9 73.7 84.1 82.1 83.1 84.96 86.82 85.82

# of Parameters 116 million 33 million 71 million

Accuracy 83.5% 89.6% 91.2%

* Pre (precision), Sen. (Sensitivity), # indicates the amount of parameters, and bold indicates the best performance
on this metric.

4.4. Comparison (Dataset D3)

We also compared the performance of our system with other deep learning methods
on dataset D3. Due to the obvious imbalance of the D3 dataset, in order to facilitate us to
perform, three-class and four-class on the D3 dataset, two different datasets ((D3_1 to D3_2)
generated from the D3 dataset are listed below) combinations.

D 3_1 (three categories): In the D3 dataset, all the 1281 sheets of the COVID category,
the first 1281 sheets of the normal category, the first 641 sheets of the pneumonia_bacteria
category and the top 641 sheets of the pneumonia_viral category together form pneumonia.
The class was 1282 sheets.

D3_2 (four classifications): In the D3 dataset, all the 1281 sheets of the COVID category,
the first 1281 sheets of the normal category, the first 1281 sheets of the pneumonia_bacteria
category and the first 1281 sheets of the pneumonia_viral category.

The experimental setup remains the same as in Section 3.2.
First, we applied popular pretrained networks on dataset D3: VGG16, ResNet50, and

DenseNet121, as well as base classifier 1 (Xception), base classifier 2 (MobileNetV2), and the
proposed model (COVIDX-LwNet) in this paper. The category recognition was performed
using the Softmax layer of the pretrained network. We first compared two of the most
commonly used indicators to measure the amount of model complexity and the amount of
calculation, the parameters and FlOPs of the model are in Table 8.

Table 8. the parameters and FlOPs of the model.

Vgg16 Resnet50 Densenet121 Base
Classifiers 1

Base
Classifiers 2

Base
Classifiers 3

COVIDx-
LWNet

# *of
Parameters

15
million

24
million

7
million

38
million

16
million

16
million

71
million

FLOPs 29
million

47
million

14
million

90
million

45
million

47
million

90
million

* # indicates the amount of parameters.

Second, on the D3 dataset specifically used for testing and comparison, we used a five-
fold cross-validation method to train the model. In the testing phase, the three-classification
of the model adopted the test accuracy obtained from the D3_1 dataset training and D1
dataset testing, which was the same as the test accuracy obtained from the D3_1 dataset
training and D3_1 dataset testing (that is, the model was trained and tested on the same
dataset). We then rated and compared the differences between the above two to evaluate the
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generalization ability of the model. The model’s four-class generalization ability verification
(on the D3_2 and D2 datasets) was the same as the three-class.

Therefore, in the comparative experiments in this subsection, we conducted four sets of
experiments: the first set of D3_1:D3_1 (e.g., training set: test set), the second set of D3_1:D1,
the third set of D3_2:D3_2, and the fourth set of D3_2:D2. The first two groups were
three-category experiments, and the latter two groups were four-category experiments.

Tables 9–12, show the accuracy of each model on different tasks. Compared with
other traditional pretrained models, the proposed model achieved 99.15% and 94.86% high
accuracy in the first and third sets, respectively, and showed superior performance in the
second and fourth sets of experiments.

Table 9. D3_1:D3_1 (train: test), three-class.

Vgg16 Resnet50 Densenet121 Base
Classifiers 1

Base
Classifiers 2

Base
Classifiers 3

COVIDx-
LWNet

COVID_Sensitivity 97.72 99.25 98.23 98.97 99.16 97.25 99.03

COVID_specificity 98.61 99.36 99.46 99.16 98.64 99.32 99.89

Accuracy 97.24 98.56 98.01 99.01 98.78 98.28 99.15

Table 10. D3_1:D1 (train: test), three-class.

Vgg16 Resnet50 Densenet121 Base
Classifiers 1

Base
Classifiers 2

Base
Classifiers 3

COVIDx-
LWNet

COVID_Sensitivity 83.15 90.54 88.69 93.29 88.59 89.42 92.65

COVID_specificity 98.26 96.23 97.08 96.88 93.21 94.18 95.49

Accuracy 88.78 90.89 89.25 92.71 92.49 91.08 93.21

Table 11. D3_2:D3_2 (train: test), four-class.

Vgg16 Resnet50 Densenet121 Base
Classifiers 1

Base
Classifiers 2

Base
Classifiers 3

COVIDx-
LWNet

COVID_Sensitivity 90.26 95.46 91.56 93.69 91.84 92.56 94.14

COVID_specificity 94.61 98.16 98.72 98.89 99.25 98.47 99.26

Accuracy 90.79 92.03 93.14 93.21 92.4 91.73 94.86

Table 12. D3_2:D2 (train: test), four-class.

Vgg16 Resnet50 Densenet121 Base
Classifiers 1

Base
Classifiers 2

Base
Classifiers 3

COVIDx-
LWNet

COVID_Sensitivity 84.64 91.26 89.54 93.46 89.69 88.65 92.56

COVID_specificity 90.17 97.78 96.45 98.43 95.42 94.46 98.75

Accuracy 80.47 84.89 83.53 87.26 86.94 85.6 88.65

Furthermore, our method results are promising and comparable to other deep learning
studies for COVID-19 detection. Other research results on DL and the details of their
respective datasets are shown in Table 13.
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Table 13. Comparison of the proposed system with existing systems in terms of accuracy.

Year Author Classes Type Model Accuracy

2020 Shibly et al. [32]
2 Class:

(COVID: 183,
normal: 13,617)

Chest X-ray R–CNN 97.36%

2020 Tulin Ozturk et al.
[33]

3 Class
(COVID: 127,
normal: 500,

pneumonia: 500)

Chest X-ray DarkCOVIDNet 87.02%

2021 Law and Lin. [34]

3 Class
(COVID: 1200, normal:

1341,
pneumonia: 1345)

Chest X-
ray VGG-16 94%

2021 Francis Jesmar P.
Montalbo [35]

3 Class
(COVID: 1281, normal:

3270,
pneumonia: 4657)

Chest X-
ray

Fused-DenseNet-
Tiny 97.99%

2022
Abhijit

Bhattacharyya et al.
[36]

3 Class
(COVID:342,
normal: 341,

pneumonia: 347)

Chest X-
ray

VGG-19, BRISK
and RF 96.60%

2022 Anubhav Sharma
et al. [18]

4 Class
(COVID: 305,
normal: 375,

pneumonia_bacterial:
355

pneumonia_viral: 379)

Chest
X-ray COVDC-Net 90.22%

2022 (ours) Proposed model

3 Class (D1)

Chest
X-ray COVIDX-LwNet

3 class, D1:
95.56%

4 Class (D2) 4 class, D2:
91.2%

3 Class, 4 Class (D3)

3 class, D3:
99.15%

4 class, D3:
94.86%

5. Visualization

Visual analysis of neural networks is of great significance in both research and practical
applications. Gradient-weighted class activation map (Grad-CAM) [37] analysis helps us
understand the inner workings of CNN models. It does this by using a heatmap that shows
important regions of the input image according to the model. Through this, it is possible to
verify that the convolutional model and highlights regions of interest that are required for
the classification task.

Taking our improved Xception model (e. g. base classifier 1) as an example, Figure 9
shows the three-classification results of some sample images of the test set in dataset D1
three images are randomly selected for each category, for a total of nine images. The green
font means the predicted class is consistent with the real class, and the prediction error is
the red font. It was found through Figure 9 that the predicted classes had much higher
values than the undetected classes, which indicates that the proposed COVIDX-LwNet
method accurately extracted disease-related features, and these features were only matched
to specific classes. However, we still found that despite the excellent overall accuracy of
the COVIDX-LwNet method, its predicted wrong class gave a probability of about 99%.
Literature [38] have already discussed how deep neural networks can be easily fooled
and produce high-confidence predictions based on junk images, so this may be a serious
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weakness of CNNs in general. CNNs are not without errors, even if they have high accuracy.
Especially in the medical field where critical decisions are made, it is crucial to understand
the errors associated with predictions, which can be further addressed in future studies.
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Figure 9. Three classification results of some sample images of the test set in dataset D1 (three random
images for each category, nine images in total), the true label in the leftmost column is COVID, and
the true label in the middle column is normal, the ground truth label for the rightmost column
is pneumonia.

Figure 10 shows the Grad-CAM analysis of the nine images above. As can be seen from
Figure 9 raw X-ray images, they contain unwanted text and other symbols that may affect
the performance of the classifier, but from the Grad-CAM visualization, it is important to
note that the model does not focus on unwanted information and only looks at the areas
that actually help with the classification task. Therefore, in Figure 10, it can be seen that the
COVID-19 chest X-ray image was not clear, but the classifier still manages to classify it by
focusing on important regions of the lungs.
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In addition, visualizing the intermediate feature map refers to the feature map showing
the output of each convolutional and pooling layer in the network for a given input (the
output of a layer is often referred to as the activation of the layer, that is, the output of the
activation function). This allows us to see how the input is decomposed into the different
filters that the network learns. We wished to visualize feature maps in three dimensions:
width, height and depth (channels). Each channel corresponds to a relatively independent
feature, so the correct way to visualize these feature maps is to plot the content of each
channel as a two-dimensional image. Figure 11 shows an example of features learned by
base classifier 1 on CXR images in the first 16 channel maps of features extracted from the
first, second and third convolutional layers and their overlay fusion.
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Figure 11. (a–c) shows the first 16 channel maps of the features extracted by the first three convolu-
tional layers of base classifier 1 and their overlay fusion on the right, some feature maps are clearly
specialized to detect areas where the thorax and lungs are present, others highlight only areas with
thickened lung markings, pulmonary fibrosis and bilateral diffuse opacities.
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6. Conclusions

The application of pattern recognition techniques has proven to be very useful in many
real-world situations. Several papers [10,13,39–41] proposed the use deep learning methods
to identify pneumonia and COVID-19 in CXR images with encouraging results. Therefore,
given the recent trend of using deep learning models for early detection of COVID-19
cases, this paper proposed a method for COVID-19 detection using chest X-ray images as
input data, named COVIDX-LwNet. The proposed method uses a confidence fusion to
combine the outputs of three base classifiers—Xception, MobileNetV2, and NasNetMobile.
Prior to this, the performance of the feature extractor performance was enhanced by
applying coordinated attention module, a LSTM layer, and a new classification header
to form an improved base classifier. After various experiments, the results demonstrate
that the ensemble classification model based on confidence fusion significantly improves
the performance of a single classification model. Furthermore, this ensemble model is
comparable to state-of-the-art models in both three-class and four-class cases.

Although, COVIDX-LwNet performed well when compared to other state-of-the-
art COVID-19 detection methods, there is still room for improvement. First of all, in
experiments we found that the addition of LSTM only slightly improved the final results of
the three base classifiers, but the main purpose of using LSTM was to enhance the model by
maintaining the state information of the features encountered in the previous generation of
image classifications. This feature can significantly speed up the convergence of the model.
This finding prompted us to retain the addition of LSTM, and the future research goal is to
find or construct similar functional but more efficient components to replace LSTM.

Second, it can be seen that the proposed method misclassified some test data samples,
and the reason for this misclassification can be attributed to the performance of the individ-
ual classifiers. This can be improved by using a more powerful set of classifiers than the
current one and by increasing the number of combined classifiers using confidence fusion
methods. In addition to that, its predicted wrong class gave a probability of about 99%, so
incorporating uncertainty [42] into the predictions and providing error bars for the CNN
predictions to allow medical staff to manually review mispredictions may be a challenge
for current models.

Finally, it is planned to use this method for other medical image classification tasks in
the future.
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