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Abstract: The Internet of Things (IoT) network integrates physical objects such as sensors, networks,
and electronics with software to collect and exchange data. Physical objects with a unique IP address
communicate with external entities over the internet to exchange data in the network. Due to a lack of
security measures, these network entities are vulnerable to severe attacks. To address this, an efficient
security mechanism for dealing with the threat and detecting attacks is necessary. The proposed
hybrid optimization approach combines Spider Monkey Optimization (SMO) and Hierarchical
Particle Swarm Optimization (HPSO) to handle the huge amount of intrusion data classification
problems and improve detection accuracy by minimizing false alarm rates. After finding the best
optimum values, the Random Forest Classifier (RFC) was used to classify attacks from the NSL-KDD
and UNSW-NB 15 datasets. The SVM model obtained accuracy of 91.82%, DT of 98.99%, and RFC
of 99.13%, and the proposed model obtained 99.175% for the NSL-KDD dataset. Similarly, SVM
obtained accuracy of 85.88%, DT of 88.87%, RFC of 91.65%, and the proposed model obtained 99.18%
for the UNSW NB-15 dataset. The proposed model achieved accuracy of 99.175% for the NSL-KDD
dataset which is higher than the state-of-the-art techniques such as DNN of 97.72% and Ensemble
Learning at 85.2%.

Keywords: hierarchical particle swarm optimization; internet of things; intrusion detection system;
random forest classifier; spider monkey optimization

1. Introduction

The Internet of Things (IoT) provides services for different fields for data exchange
in the infrastructure [1]. There are various applications of IoT, including smart homes,
smart cities, hospitals, supply chain system, smart grid systems, intelligent transportation
systems, etc. The IoT includes embedded sensor networks, physical objects, electronics,
software connection, and embedded electronics to exchange the data [2]. The IoT connection
helps significantly with data exchange, improving human lives, and thus, the crucial part
of the IoT is the cyber security problem, which affects the development of applications [3].
The IoT applications are more vulnerable to the malicious agents, so the IoT devices for
processing have reduced capacity. As the number of IoT devices grows, there is a greater
risk of security vulnerabilities, such as data theft and the possibility of Distributed Denial
of Service (DDoS) attacks [4]. The DDoS attacks will usually damage the node availability
via signal jamming or resource exhausting in the node’s battery. There are two types of
DDoS attack. One crashes the services and other floods the services [5]. The Denial of
Service (DoS) characterizes the attackers based on an explicit attempt at services prevention
that deploys the IoT devices to reach the goals. The server is compromised when the
attacks occur, and the IoT devices of the network are affected, resulting in an industrial
loss [6]. There are various attacks present which target IoT devices, such Mirai, Hajime,
Hide and Seek, Bashlite, Tsunami, Brickerbot, and Luabot. There have been various attacks
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initiated in the computer networks such as Port Scanning, Brute Force, Remote to Local
(R2L), Denial of Service (DoS), User to Root (U2R), and Probing, etc. Figure 1 shows the
representations of IoT towards the attackers. Network-based Intrusion Detection System
(NIDS) are useful for monitoring the network infrastructure, and malicious activities are
detected [7–9]. The open literature is studied when an intruder launches a network in
which the intruder has the potential to determine the attacks that use system vulnerabilities.
They gain unauthorized access to users’ information in order to take the system down.
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Various Machine Learning algorithms are applied to perform NIDS such as Artificial
Neural Networks (ANN) [10], K-Nearest Neighbor (KNN) [11], Naive Bayesian (NB), and
Support Vector Machine (SVM) [12]. However, the algorithms require the data to process
the missing values of unstable results, and they run slowly because of the large amount
of data. Therefore, optimization methods such as Particle Swarm Optimization (PSO),
Whale Optimization Algorithm (WOA), Dolphin Swarm Algorithm (DSA), Gray Wolf
Optimization (GWO), etc., were used to select the appropriate features for IoT attacks
classification in the environment. Feature selection was used to discard the redundant and
irrelevant features and choose the optimal feature subset to improve the pattern definition
that belongs to dissimilar classes [13–15]. The extraction of appropriate features was used
to minimize the amount of training and guarantee accuracy during the detection [16].
A cooperative classification model was developed by choosing a top set of attributes
using the feature selection [17,18]. The prior models did not provide effective feature
representation and did not extract the features required to obtain the random Fourier
feature needed to fit the linear classifier. The changes in the large size of data and the
unnecessary changes increased the operating time; hence, the desired results were not
achieved during the intrusion detection.

From the literature, it is concluded that various security challenges and issues were
present in the IoT application. The key challenges faced are as follows:

• Designing a security framework for the IoT application is a problematic task because
of the dynamic IoT network nature.

• The security mechanism for IoT is ensured by using an appropriate tool for distribution
of architecture, which has the ability to analyze a huge amount of data. This was
a challenge.
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• The network environment has interconnected devices, which includes poorly designed
sensors and authentication measures.

Therefore, the above issues are addressed by using a Hybrid SMO-HPSO that analyzed
the huge amount of data via IoT devices. The IDS has the advantages of mitigating the
attacks in IoT and ensures the security mechanism by using an appropriate tool. The
proposed method uses the hybrid feature selection algorithm that identified the appropriate
features for discarding the irrelevant features. Therefore, the hybrid feature selection is
used to obtain the subset of features that results with improvement in the performances.
The RF classifier is employed to classify and identifies the attacks as normal and abnormal
attack observations.

Thus, the main contributions of this study are mentioned as follows:

• The hybrid feature selection that combines SMO and HPSO is developed to solve the
massive intrusion data classification problem and improve the accuracy rate of attack
detection. The local searching phase of conventional SMO is operated in a random
manner, which affects the optimal score value. In order to overcome this issue, the
hierarchical PSO’s velocity is combined with SMO’s searching process to obtain the
optimal feature subset.

• Further, the feature importance with Rosenbrock function is included as gradient for
Hybrid SMO-HPSO. Rosenbrock is a parabolic mathematical function which represents
the probability density function of any events. In this research, the probability of
features contributing to the target class is defined by the Rosenbrock function, so
the Hybrid SMO-HPSO does not require any classified instance output to compute
the fitness.

• To enhance the accuracy that shows lower classification error, the attacks for NSL-KDD
are classified into four types of attack, including DoS, U2R, R2L, and probing attack.
The UNSW Dataset classifies the attacks into normal and abnormal classes.

The structure of this study is as follows: Section 2 examines related studies of IDS
detection for IoT attack categorization. Section 3 elaborates on the methodology used for
the development of the hybrid model. Section 4 presents a simulation comparison and
performance evaluation to demonstrate the efficacy of the suggested model. The conclusion
is given in Section 5.

2. Related Works

In the field of IDS, many scholars have conducted various research studies using a
machine learning algorithm by using publicly available datasets. The main aim of the
existing models was to improve the intrusion detection rate.

2.1. Attack Detection Based on Classification

Su et al. [12] created a Bidirectional Long Short-term Memory and Attention Mecha-
nism (BAT) to detect network intrusions. The created model was capable of automatically
learning the hierarchy’s essential characteristics. The Attention mechanism was used to
filter the network flow vector, which was made up of packet vectors derived by BLSTM.
The primary characteristics produced by the BLSTM model were utilized to classify net-
work traffic. Multiple convolution layers were used to extract local characteristics from
traffic data. The data samples were processed, and the BAT model classifies them using
the Softmax classifier. The created technique has difficulties selecting features and cannot
effectively handle the huge intrusion data classification, which results in low identification
accuracy and a high false alarm rate.

Gao et al. [19] created an adaptable Ensemble Machine Learning (EML) model for
intrusion detection. Using an adaptive ensemble learning approach, the created model
considered the NSL-KDD dataset for the research. The multi tree technique was built using
training data and the setup of several decision trees. Classifiers such as Decision Tree,
Random Forest, k-Nearest Neighbor (k-NN), Deep Neural Network (DNN), and developing
an EML adaptive voting algorithm were utilized to increase the overall detection impact.



Sensors 2022, 22, 8566 4 of 18

The preprocessing module converts all character-type information, such as label and service,
to numbers, standardizes the data, and removes superfluous features. However, the
proposed technique was not centralized sufficiently to show difficulties with categorization
because R2L and U2R data were overlapped with other data.

Çavuşoğlu [20] created a hybrid of machine learning and feature selection approaches
such as Artificial Neural Network (ANN) and Support Vector Machine (SVM). The pro-
posed model initially performs data preprocessing on the NSL-KDD dataset by means of
multiple feature selection techniques, after which the dataset size was decreased. For the
feature selection procedure, the existing two techniques were used. Based on the type of
attack, the layered architecture selects the relevant machine learning algorithms. It was
able to create an effective result for lesser attributes from the dataset based on the feature
selection approaches. On the basis of protocol type, the most significant components used
showed network traffic. However, unnecessary and data analysis were employed on huge
datasets, resulting in longer processing times and failure to reach the intended performance.

Wu et al. [21] created an Improved DBN (IDBN) using feature weighted SVM for
intrusion detection. An adaptive learning rate method was utilized to improve the train-
ing performance of the IDBN, which was used to learn deep features from raw data to
reduce dimensionality. Second, the PSO method was used to optimize the SVM, which was
followed by determining the weights of deep features and the optimal Gaussian kernel pa-
rameters. This results in the WSVM, which is used to remove weakly linked and redundant
features from the IDBN-derived features. The IDBN-WSVM model was validated using the
NSL-KDD dataset, which decreased the training time. The testing time for the large-scale
datasets was more resilient and had a higher generalization performance. The presented
technique did not demonstrate effective feature representation and failed to extract features
to generate random Fourier features to suit a linear classifier.

Alternatively, various research studies were presented which consisted of articles
pointing out the success using feature selection algorithms in NIDS. Kumar et al. [22]
developed an integrated rule-based IDS system for the classification of the attacks. In
the existing IDS techniques, the anomaly-based model classifies for both parts of the
combination. Additionally, the developed model showed improvement in the performances
when the developed model was integrated to perform a classification-based model that
detected the five categories using the UNSW-NB 15 dataset. However, an enhancement in
detection is required for real time data to classify new unknown attacks.

Ramaiah et al. [23] utilized an Optimized Deep Neural Network (ODNN) for ID. The
existing models showed challenges in aspects of network security. The ID is important,
as it effectively mitigates the organization vulnerability. The IDS uses a correlation tool
and a random forest to detect the independent variables predominantly for neural-based
network classification. The models detected the malicious attacks using a shallow neural
network and an optimization approach, which used a shallow neural network and an
optimized neural-based classifier. The results obtained during the experiment showed
that the proposed IDS was higher for the counterpart intrusion detection that needed
improvement in memory for the complex neural networks.

Ajdani and Ghaffary [24] designed a Support Vector Machine (SVM) for IDS. The
developed model designed an analytical framework to detect the destructive data using
three factors: users’ information, scale, and time. The developed model trained the data and
divided them into sub periods which exploited user review information at each time period
when the data were trained. The storage methods were applied to enhance the scalability
in terms of speed, which reduced the computation volume. However, the scalability factor
was increased, as the model had used external search and destructive data continuously.

Hsu et al. [25] used LSTM-based CNN for network intrusion detection. The problem
was overcome by the deep learning schemes, as it provided the solution for several fields.
The deep learning model is constructed using CNN-LSTM layers, which classify each
part of the traffic network. The proposed deep learning model is constructed on the basis
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of Convolutional Neural Network (CNN), with LSTM achieving well in various fields.
However, an extra model is required to be implemented in a real-time traffic network.

Kasongo and Sun [26] created IDS using Feed Forward Deep Neural Networks
(FFDNNs) and a filter-based feature selection method. The technique produced opti-
mum subsets of characteristics with the least amount of redundancy. The IDS system
created was based on deep learning with FFDNNs and a filter-based feature selection
method. The FFDNN-IDS was tested on the well-known NSL-KDD dataset and compared
against current classifiers, such as SVM and Naïve Bayes. The majority of misclassifications
occurred because they were uncommon in both the training and test datasets.

2.2. Attack Detection Based on Optimization Algorithms

The previous section discussed the classification; however, processing of data is needed
for the missing values, as the algorithms used were unstable. Therefore, optimization
algorithms were used to select the appropriate features for the IoT attacks classification
in the environment. The existing models that were involved in attack detection using
optimization algorithms are as follows:

The feature selection algorithm effectively influenced the ML-based IDS model that ex-
plained the feature selection and classification under the training phase. Elmasry et al. [11]
established a deep learning approach for the detection of intrusions in the network by
utilizing a double Particle Swarm Optimization (PSO) algorithm. The optimum features
were selected from datasets such as NSL-KDD and CICIDS2017 datasets to perform the
binary and multiclass classification tasks. The pretrained phase was used for the selection
of optimized features taking care of the automated hyper parameters. The upper level and
the optimized hyper parameters were estimated. They increased the accuracy by reducing
the datasets because of double PSO. The deep learning model Deep Belief Networks (DBN)
was utilized to investigate the performance differences during classification. However, the
developed approach showed a drawback that increases the time needed for training and
testing, which was not acceptable for all scenarios. Several studies were suggested by the
selection of relevant features for IDS that showed possibilities by considering improvement
in detection of performance and accuracy.

Jiang et al. [27] developed a PSO-Xgboost for IDS networks. The Improved model
demonstrated NIDS in detection accuracy. The existing PSO-Xgboost model generated
a classification model using Xgboost, and then PSO was used to adaptively search for
the best structure of Xgboost. The developed model suggested the model’s performance;
the created model employed the NSL-KDD dataset and showed improvement in the
results. The investigational outcomes show that the PSO-Xgboost outperforms in detecting
minority attack groups, such as U2R and R2L. However, when the iterations for the number
of particles is minimal and the algorithm falls under the local optimum solution, it lowers
the feature selection probabilities.

Alazzam et al. [28] developed a feature selection algorithm for IDS based on Pigeon
Inspired Optimizer (PIO). The developed algorithm performed the feature selection which
depends on pigeon behavior. The developed model utilized KDDCUP99, NSL-KDD and
UNSW-NB15 datasets for the evaluation of the results. The developed model performed a
discretization process to obtain a continuous swarm intelligent algorithm for solving the
problem. The developed model used the cosine similarity to find the fitness function. The
binaries processing limited the landmark operator effectiveness that lowered the accuracy
measures. Thus, the cyber-attacks mitigate the attacks in IoT devices and the present
research uses IDS in the IoT environment.

3. Proposed Methodology

NSL-KDD and UNSW NB-15 are the datasets utilized in this research work. The
unwanted data are eliminated in the datasets after data preprocessing has been performed.
In SMO-HPSO, SMO deliberate the features from which the leader determines whether to
divide or merge, resulting in the optimum feature value being selected. Similarly, HPSO
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will organize the particles hierarchically depending on their best function and then use
RFC to classify the attacks. The flow chart of SMO-HPSO is presented in Figure 2.
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3.1. Data Collection

The NSL-KDD dataset is applied to the IoT context, which is based on the original
KDD Cup 99 datasets that are obtained by removing the duplications and redundancies
presented in them. The NSL-KDD dataset has 41 labeled characteristics, which include
attack types. The NSL-KDD is proposed to alleviate the issues occurring in the KDD’99
datasets [29]. The training and test sets consist of a reasonable number of recordings. This
benefit makes it possible to perform the tests on the entire collection without having to
randomly choose a tiny piece. As a consequence, the assessment outcomes of various
research projects will be uniform and equivalent.

The NSL-KDD has four attacks, which are outlined as follows: DoS, U2R, R2L, and
probing Attack.

Probe attack:
During the scanning process, the probe attack occurs, which involved gathering abuse

of data and information from the network.
R2L: The packets acquired are sent and computer detects the flaws present in the network.
U2R: Once the ordinary account is obtained, U2R has access to the root account. Load

module, Buffer overflow, Xterm, Rootkit, Perl, Ps, and Sql attack are some of the assaults
in U2R.

DoS: Due to increased network traffic use, the system is unable to offer a service,
resulting in a DoS attack. DoS attacks include Back, Apache2, Udp Storm, Smurf, Neptune,
Pod, Land, Teardrop, and Worm, all of which which can steal data via the internet.

The dataset consists of 53,873 records for KDD Train+ for training and validation
of the subset. It has 6735 normal records, and 6735 for the test subset which contains
anomalous data.

In addition, the UNSW NB-15 dataset is utilized to evaluate the suggested technique,
which is made up of 15 datasets generated based on the IXIA Perfect Storm tool. The Cyber
Range Lab of University of New South Wales (UNSW), Canberra, generates a mix of actual
and regular activities for identifying attack behaviors. The dataset comprises nine different
attacks, including backdoors and denial-of-service attacks. Generic, Exploits, Generic,
Shellcode, Reconnaissance, Fuzzers, and Worms are also examples of generics. The Argus
and Bro-IDS are exploited in 12 methods to create a total of 49 class-labeled features. The
Argus and Bro-IDS tools generate them using 12 methods, and a total of 540,044 records
are saved in CSV files. From the UNSW NB-1515 GT.csv, the ground truth images are
taken. The event list is known as the ground truth, also called UNSW NB-1515 GT.csv,
where the event list is called UNSW-NB15 LIST EVENTS.csv. For training and testing,
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the partition is taken from the configured dataset. There are a total of 175,341 training set
records and 82,332 testing set records from different sorts of attacks from regular attacks [30].
The information of UNSW and NSL-KDD dataset is provided in Table 1, which includes
statistical information.

Table 1. NSL-KDD dataset and UNSW dataset.

NSL-KDD Dataset
Abnormal

Normal TotalDoS Probing R2L U2R

KDD Test+ 7458 2754 2421 200 9711 22,544
KDD Train+ 45,927 11,656 995 52 67,343 125,973

UNSW Dataset
Type No. of Records

Normal 2,218,761
Attacks 321,283

3.2. Preprocessing

Several data preprocessing methods are used, including data cleaning, normalization,
and data integration. The data cleaning process involves actions such as removing dupli-
cated data points, standardized datasets, and syntax errors, as well as missing codes, empty
fields, and finding missing codes. The cleaning of the data from the datasets is standardized
to perform data analysis and it can be conveniently accessed for finding the appropriate
data. In normalization, data vectors are introduced as new vectors. The key advantages
of data normalization are enhanced consistency and a reduced risk of data inconsistency.
The Min–Max normalization model is critical for the integration and normalization process.
Every feature value has minimum value that converts to zero and one as the maximum
value. The normalisation procedure is expressed by Equation (1).

Xnorm =
Xi − Xmin

Xmax − Xmin
(1)

where Xi is the data point, Xmin and Xmax is referred as minimum and maximum value of
the data point with batch instances. The main importance of Recursive Feature Elimination
(RFE) is that it provides importance values by ranking the most important features. It is
supposed that data redundancy is eliminated and yields more compact feature subsets.
The features are arranged from high importance to low importance, and thus the ranking
of features will be obtained.

3.3. Feature Selection

After the data have been extracted, the feature selection process occurs to detect low-
rate attacks using a hybrid method combining SMO and H-PSO. The hybrid algorithm
enhances the accuracy and includes lower classification error, and classifies the attacks
among Probe, DoS, R2L, and U2R. The outcomes are verified using various performance
measures that are explained in the next section. In Hierarchical PSO (H-PSO), the motion
of H-PSO is affected by three aspects: movement induced by swarm individuals, foraging
activity, and physical diffusion motion, which are explained using the flow chart in Figure 3.
The HPSO is known as the meta-heuristic technique that is similar to Spider Monkeys (SM).
The SMs activities are found on social formation and foraging behaviour. The fission–fusion
features are extracted based on the algorithm where the leader is from the group dependent
on social organisation.
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3.3.1. Spider Monkey Optimisation Algorithm

SMO is an algorithm that is designed based on the swarm intelligence which has a
small group of SMs that are inspired by an intelligent foraging SMs behavior. The fission is
created for single group that contains fewer monkeys, which defines the time for fusion.
The algorithm is dependent on the social organization of a group of features from the
leader, which makes a decision whether to combine or split to search for food. The leader
of overall groups is the global leader and leader for each group is the local leader.

3.3.2. Particle Swarm Optimization

The social activities are stimulated through the fundamental and primary behavior of
fish schooling and bird flocking. The food searching is performed for the scattered data or
settled on the position based on the place where the food is found. The food is searched
for by the agents that move from one place to another, and the agents search the feature
subset from its position that moves towards it to find and managing it. The useful messages
are transmitted, and the food for the agent is searched from one location to another; thus,
it is found. The animals’ behavior calculated on the basis of optimization because of the
crowd or swarm is called the particle. For each partner’s position, the PSO algorithm
finds it from the crowd and searches for the space globally, and it is updated based on
Equations (2) and (3).

vk+1
i = vk

i + c1r1

(
pbest − xk

i

)
+ c2r2

(
gbest − xk

i

)
(2)

xk+1
i = xk

i + vk+1
i (3)

where, xk
i is the current position, vk

i is the current velocity for ith particle for kth iteration,
pbest − xk

i is the distance among its current and best position, gbest − xk
i is the distance
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among the current and global best position, xk+1
i is the upcoming position of the particle,

vk
i is the upcoming velocity of the particle. c1 and c2 are the positive constants, r1 and r2 are

the two random variables ranges between 0 and 1.

3.3.3. Proposed Hybrid Optimization Algorithm

There are various hybridization variants present for the heuristic algorithm. There are
two main variants that are low-level and high-level relay or evolutionary techniques which
would be heterogeneous of homogeneous techniques used to obtain the solution. The SMO
algorithm will represent the potential solutions for SM. The SMO usually comprises six
phases, such as Global Leader phase, Local Leader phase, Global Leader Learning phase,
Local Leader Decision phase, Leader Learning Phase, and Global Leader Decision phase.

Population Initialization

The population P from the SMO is initialized and distributed as 50, which is repre-
sented as SMp (where p = 1, 2 . . . P). The pth monkey is among the SMp population, and
the monkeys present have M dimension vectors. These vectors or the variables overcome
the problem as the SMp receives the solution. Thus, the problem option showed by the
initialized SMp is expressed as shown in Equation (4):

SMpq = SMminq + UR(0, 1)×
(
SMmaxq − SMminq

)
(4)

where SMpq is known as the pth SM with a qth dimension; SMminq and SMmaxq is known
as the upper and lower bounds that are moving in the direction of qth; the term q is equal
to 1, 2, . . . M and the random numbers range among UR(0, 1) as it is distributed uniformly
that it ranges between [0, 1].

Local Leader Phase (LLP)

The SM position is updated as a new position that assigns the fitness value to obtain
the higher value, which is compared with the previous locations. The location updated for
the lth local group for the pth SM is expressed as shown in Equation (5)

SMnewpq = SMpq + UR(0, 1)×
(

LLlq − SMpq

)
+ UR(−1, 1)×

(
SMrq − SMpq

)
(5)

where, LLlq is the qth dimension of lth local group leader location; SMrq is the qth dimen-
sion, which chooses randomly at the lth local group of SM and r 6= p.

Global Leader Phase (GLP)

The initialization of LLP is processed, and the SM’s location is computed by using
Equation (6). The updating of the location is calculated by using Equation (6):

SMnewpq = SMpq + UR(0, 1)×
(

GLlq − SMpq

)
+ UR(−1, 1)×

(
SMrq − SMpq

)
(6)

where GLq is called the GLL, which is the dimension of q = 1, 2, 3, . . . M that selects the
indexes arbitrarily. The calculation of fitness function for SM is evaluated based on prbp,
which is based on the location of SMp, is updated. The proposed method selects a total
of 11 features out of 43 features from the NSL-KDD and 11 features out of 49 from UNSW
dataset. The candidate’s location is better, and access to the number of possibilities is made
better. The proposed result selects a total of 22 features that are relevant to the 92 features
processed for feature selection. The 22 features are designated by means of proposed HPSO-
SMO, which identifies a features-based 80-20 rule. It finds inputs that most probably have
feature importance, which prioritize accessing the possibilities. The working of SMO is
based on Rule-based priority, which is expressed as ∑

iεS
f itness f eatureimportance

≥ 0.8 condition.
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From the mentioned condition, S is known as the chosen feature value that is obtained
by feeding the data to the tree. The features for attacks classifications are not deliberated.
The maximum feature value is obtained for fitness function that is based on the subse-
quent condition. The probability for the condition calculation is expressed as shown in
Equation (7).

prbp = fnp ∑ Np = 1 fnp (7)

where, fnp is called the pth SM fitness value, which is the fitness value as N further, and the
calculation of new location is calculated using Equation (6). The value obtained is related
by the old location, and it is implemented on the basis of fitness value function.

Global Leader Learning (GLL) Phase

Under the GLL stage, the selection of features is updated and undergone for the
selection using the greedy model. The value of fitness function is selected and generated
from the population. The location is based on its optimum value, which assigns the value
for the global leader. The update is not performed, and the value is incremented from one
to GlobalLimitCount.

Local Leader Learning (LLL) Phase

For the local group, the LLL is updated in SM location based on the fitness values
from a local group and the location is optimum. It has the value which is assigned for the
local leader. A further update is not provided, as it increments to one and will be added
with the LLC.

Local Leader Decision (LLD) Phase

The leaders from the local groups were fixed and updated the local group is present
and the candidates randomly modifies location. From the step 1, the local leader and leader
group uses the information using Equation (8)

SMnewpq = SMpq + UR(0, 1)×
(

GLlq − SMpq

)
+ UR(0, 1)×

(
SMrq − LLpq

)
(8)

Global Leader Decision (GLD) Phase

The global leader position is not updated due to GlobalLeaderLimit. Populations are
split into groups based on the global leader decision. The process of splitting is continued
up to the groups until maximum group numbers are reached. For every 10 iterations,
the selection of local leader is performed to shape the newly formed group. The groups
are allowed at the maximum number to create the global leader, which does not allow
a position update unless the boundary decides the entire group from one group. The
population from the SMO is based on the actions performed by SMs, which improve the
efficiency and deal with the complexity in the real world. In the real world, an optimization
algorithm uses a fitness function which is represented pictorially in Figure 4.

The value of fitness is computed using the value of feature importance. This assigns
scores for each of the input features on the basis of target variables to perform the predic-
tion. The importance of the feature is computed on the basis of node impurity with the
weights, which decreases the probability before the node is reached. The probability for the
node is calculated with the ratio of sampled numbers for the overall number of samples.
Equation (9) is used to compute the fitness function to select the best features.

f itness f eatureimportance
=

Number o f samples that reaches the nodes
Total number o f samples

(9)
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The hybridization of SMO with the PSO algorithm generates the hybrid mixed func-
tionality based on the low-level co-evolutionary features. The low-level hybrid functionality
features merge and combine variants. The co-evolutionary is used because the variants are
used one after the other, running in parallel. The two distinct variants are mixed and are
involved in the generation of solutions to overcome the problems. Based on this modifica-
tion, the hierarchical PSO has the ability to explore SMO to produce the variants with its
strength. The PSO and SMO variants are combined, updating the velocity as proposed in
Equations (10) and (11)

vk+1
i = w ∗

(
vk

i + c1r1

(
x1 − xk

i

)
+ c2r2

(
x2 − xk

i

)
+ c3r3

(
x3 − xk

i

))
(10)

xk+1
i = xk

i + vk+1
i . (11)

The value of the fitness function is utilized to select the best optimum value. The
Rosenbrock function, which is known as the objective function, is used in the suggested
approach. The Rosenbrock function is efficiently optimized using a suitable coordinate sys-
tem without exploiting the gradient data, and uses the built-in local without approximation
model using Equation (12)

f (x) = ∑N−1
i=1 [100

(
xi+1 − x2

i

)2
+ (1− xi)

2] (12)

where x =(x1,...,xN) ∈ RN .
The objective function from each variable is contributed, which optimizes the value.

The general form for the objective function is expressed as shown in Equation (13)

Minimize or Z or gbest = ∑n
i=1 ciXi (13)

where, ci is known as the objective function coefficient for the ith variable and Xi is known
as the ith decision variable.

The following Algorithm 1 represents the proposed Hybrid SMO-HPSO algorithm.
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Algorithm 1: Hybrid SMO-HPSO

1: Input: Intrusion detection feature set and population size
2: Output: Optimal feature set
3: Initialize SM Population, Probability, Parameters, Local Leader limit and Global leader limit
particles with hierarchy in the population.
4: Calculate the importance of each feature.
5: Evaluate the fitness of all SM.
6: Compute leaders of global and local level leader agents for feature subset.
7: While iteration I > Maximum iterations
8: For I = 1 to n
9: Calculate fitness for every particle using Equation (9).
10: Update particle’s local best position as per hierarchical position.
11: Based on hierarchical particle velocity update position of all spider monkeys.
12: End for
13: Select group members by applying greedy selection method
14: Update SM’s global optimal position
15: For I = 1 to n
16: Perform local and global leader learning phase using Equations (5) and (6).
17: Update particle’s velocity with hierarchy using Equation (2).
18: Update SM’s global best position.
19: End for
20: End while

Therefore, the selection of best set of features from the subset is functioned and if any
uncertainty among the features is present, then information gain is evaluated.

3.4. Classification Using Random Forest

The best results from the feature selection process are provided to the RF classifier,
which uses them to classify the attacks. The decision trees in the RF, an ensemble classifier
designed to increase accuracy of the model, operate with smaller classification errors than
the models that are currently being used. The number of trees with the smallest node size is
also taken into account, and each node is split based on the number of features. The usage
of RF classifier in the research work is given as follows:

• The trees are grown and are saved as a future reference.
• The RF classifier overcomes the problem of overfitting.
• The important features developed in the model show improvements in accuracy that

are generated automatically to classify the attacks.

Each tree is built from scratch using a bootstrap sample that contains the raw data.
Every object that makes up the developed forest is referred to as a tree. Following the
values of a tree, decisions are made. In order to classify things, the optimal decision for the
tree is made, and every object is then voted on. The class is chosen from the forest with the
highest amount of object votes. For the selection of the random variables used to construct
the tree, the RF employs both the bagging and boosting processes. The characteristics of RF
are as follows:

The generalization error is bound in the RF as it is dependent on the tree strengths
among them with a correlation. Preceding the source of maximum voting approach, the
maximum number of votes for the RFC is conducted, which classifies the attacks based on
Equation (14)

prox(i, j) = ∑ntree
t=1 I (ht(i) = ht(j))

ntree
(14)

From Equation (14), I(·) is known as the indicator function, and ht is tree from forest.
ht(i) is a predicted value.
If prox(i, j) = 1 then i and j are of the same classes for classification, the RF provides

important ranks or the variables for important feature selection.
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4. Results and Discussion

The proposed hybrid SMO-HPSO uses Python 3.6 tool with Anaconda Navigator. The
windows 10 version with 128 GB RAM running with intel i9 operating at 3GHz and the
hardware drive capacity of 4TB is preferable. The following are the performances evaluated
for the proposed SMO-HPSO represented by Equations (15)–(22).

Accuracy

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(15)

Precision
Precision =

TP
TP + FP

(16)

Recall
Recall =

TP
TP + FN

(17)

F1-Measure
F1−measure =

2 ∗ Precision ∗ Recall
Precision + Recall

(18)

Error Rate

Error Rate =
|approx− exact|

exact
(19)

Area Under the Curve

AUC =
∫ b

a
f (x)dx (20)

y = f (x) is the curve equation; where, x = a and x = b.
False Alarm Rate (FAR)

FAR =
FP

FP + TN
(21)

Matthews Correlation Coefficient (MCC)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(22)

FN—False Negatives.
TP—True positives.
FP—False Positive.
TP—True Positive.

4.1. Quantitative Analysis for NSL-KDD Dataset

The results obtained of the proposed Hybrid optimization model in terms of perfor-
mance are tabulated in Table 2. These outcomes are for binary classification with respect to
the NSL-KDD-experiment.

Table 2. Performance evaluation for the proposed SMO-HPSO for NSL-KDD dataset to binary
attack classes.

Methods Precision (%) Recall (%) F-Score (%) Accuracy (%) FAR (%) AUC
(%)

MCC
(%)

SVM 88.81 82.41 85.48 84.06 0.28 91.70 0.51
Decision Tree 98.22 98.18 98.21 97.95 0.45 97.96 0.22

RFC 98.56 98.27 98.49 98.17 0.21 99.68 0.61
Proposed 98.61 98.41 98.56 98.31 0.21 99.87 0.17

Table 2 displays the performance measure values attained for the proposed Hybrid
optimization method, which is related to the existing models such as SVM, DT, and RFC.
For example, the value of Precision is obtained as 88.81%, 98.22%, 98.56%, and 98.61% for
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the SVM, DT, RFC, and the proposed model. Figure 5 shows the evaluation of performances
for the proposed SMO-HPSO model, SVM, DT, RFC, for NSL-KDD. The overall outcomes
presented that proposed hybrid optimization attained superior outcomes when related to
traditional methods, which is shown in Table 2.
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Figure 5. Evaluation of performances for the SVM, DT, RFC, and the proposed method for the
NSL-KDD dataset.

In Table 3, we show the multi attacks classification evaluated for the NSL-KDD dataset,
which validates results attack types such as DoS, Probe, R2D and U2R. The results are
evaluated for the attacks in terms precision, accuracy, F-measure, and recall. The SVM
was used to evaluate the results, as it uses the hyper plane parameters to tune, which fails
to perform well. The dataset that has more targets overlaps the class with the NSL-KDD
dataset. The RF classifier uses the data to consider the feature sets that are irrespective of
scales, which shows better performances. The RFC overcomes the multi class problems that
are dependent, and it considers the factors of the dataset. For example, the tabulations show
that the U2R attack achieves better accuracy of 99.96% values compared with other attacks.
Similarly, the DoS attack achieves better precision of 99.89% when compared with other
Probe, R2L, and U2R attacks. Figure 6 shows the performance evaluation for SMO-HPSO
for NSL-KDD dataset to multiple attack classes.
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Table 3. Performance evaluation for the proposed SMO-HPSO for NSL-KDD dataset to multiple
attack classes.

Methods Class Precision (%) Recall (%) F1 Measure (%) Accuracy (%) AUC (%)

SVM

DoS 97.44 82.88 89.56 91.61 97.17
Probe 87.62 91.48 89.33 92.82 97.1
R2L 89.31 64.09 67.11 83.37 67.2
U2R 89.2 72.2 77.27 99.51 97.37

DT

DoS 99.46 99.67 99.57 99.63 99.63
Probe 98.83 98.72 98.77 99.22 98.69
R2L 96.79 96.24 96.51 97.55 97.58
U2R 86.77 83.71 84.41 99.58 83.71

RFC

DoS 99.86 99.71 99.82 99.81 99.96
Probe 98.92 98.71 98.81 99.26 99.67
R2L 97.26 96.55 96.79 97.77 99.41
U2R 96.64 85.21 89.13 99.7 97.62

Proposed

DoS 99.78 99.66 99.72 99.75 99.98
Probe 99.34 99.3 99.29 99.34 99.89
R2L 97.19 96.64 96.69 97.85 99.66
U2R 99.75 97.74 99.78 99.76 99.87

4.2. Quantitative Analysis for UNSW NB-15 Dataset

The classification of attacks for overall attacks are evaluated for the UNSW NB-15,
which validates the results, as shown in Table 4. The evaluation of the results is in terms
of AUC, FAR, and MCC. The SMO-HPSO achieves better results compared to the existing
methods SVM, DT, RFC, and SMO-HPSO classifier. The tabulations attack achieves better
accuracy of 92% values when compared with other attacks. Similarly, 89% of accuracy was
obtained via SVM classifier. The DT has obtained 99% accuracy and AUC of 95%, 99% of
accuracy by the RFC classifier and AUC of 95%. The small changes in DT affect the overall
structure; therefore, it provides inaccurate results. Similarly, the large number of trees in
RFC causes ineffective predictions and reduced accuracy. The SMO-HPSO attained higher
accuracy of 99% and AUC of 99.9% values better when compared with other attacks, which
is shown in Figure 7.

Table 4. Performance evaluation for the proposed SMO-HPSO for UNSW NB-15 Dataset.

Methods Precision (%) Recall (%) F-Score (%) Accuracy (%) FAR (%) AUC (%) MCC (%)

SVM 89.36 85.93 88.73 85.88 0.88 94.25 0.43
Decision Tree 90.77 88.85 90.40 88.87 1.10 95.53 0.11

RFC 92.57 91.33 91.84 91.65 0.21 98.44 0.22
Proposed 94.19 93.32 94.12 99.18 0.15 99.78 0.19
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Similarly, Table 4 displays the performance evaluation metrics for SMO-HPSO for the
UNSW NB-15 dataset. The proposed SMO-HPSO obtained better FAR and MCC values of
0.15 and 0.19 compared to existing SVM, DT, and RFC models.

4.3. Comparative Analysis

Table 5 shows the comparison results of Hybrid SMO-HPSO with the existing classi-
fiers such as DNN, LSTM-RNN, BAT-MC, ensemble learning, stacking-ensemble technique,
optimized deep neural network architecture, LSTM-based CNN, integrated rule based
model, and pigeon-inspired optimizer. The existing models utilized a deep learning DBN
model to investigate the performance differences during classification [11]. However, the
increments in training and testing are not acceptable for all scenarios [12]. Similarly, the
BAT algorithm showed the most misclassification instances because they failed to appear
often in both the training and test datasets [19]. Similarly, an ensemble-based algorithm
was developed that showed effective feature representation and not extracted features [20].
The existing Optimized deep neural network architecture obtained accuracy of 98%, pre-
cision of 98%, Recall of 98%, and F-measure 98% as the features vanished and exploded
the gradients [26]. LSTM-Based CNN [28] easily over fitted the data, and thus obtained
an accuracy of 98.64%. However, the large datasets required time to process the model,
which was prolonged to obtain the best performance. This means that the more you train
your data on the same points, it will start to treat the noise as data and will just imitate
the entire pattern, since it is the same structure dataset used for training and testing and
the imbalance in the classes results in an increased detection rate. Similarly, the results
are evaluated for the UNSW NB-15 dataset with the existing models, as shown in Table 5.
In Kumar et al. [22], an integrated rule-based classifier was used for the classification of
attacks. Moreover, feature selection based on the PIO algorithm [25] was used for feature
reduction that obtained better accuracy values of 86.9% when compared with the classifier
model that obtained 83.8%. The accuracy of the hybrid SMO-HPSO for NSL-KDD dataset
outperformed the other existing methods. The F-measure of the hybrid SMO-HPSO was
98.87% for the NSL-KDD dataset, whereas the LSTM-RNN [11] achieved the F-measure of
98.94%. This F-measure analysis shows that the hybrid SMO-HPSO achieves acceptable F-
measure with better classification accuracy, even though it is processed with fewer features.
The proposed hybrid SMO-HPSO obtained better accuracy of 99.18% for the UNSW NB-15
dataset, which is high when compared to existing models. The classification accuracy
for SMO-HPSO increased because of the optimal feature subset selection from overall
features. Redundant and irrelevant features that cause the misclassification are avoided
by considering the feature importance with the Rosenbrock function as the gradient in the
Hybrid SMO-HPSO. The searching process of Hybrid SMO-HPSO for optimal features
is improved by combining the hierarchical PSO’s velocity with SMO’s searching process.
Therefore, the proposed Hybrid SMO-HPSO provides better classification in the intrusion
detection over IoT.

Table 5. Comparative analysis.

Authors Dataset Method Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Elmasry et al. [11]

NSL-KDD

DNN 97.72 99.6 96.38 97.96
LSTM-RNN 98.8 99.7 98.18 98.94

Su et al. [12] BAT-MC 84.25 - - -
Gao et al. [19] Ensemble Learning 85.2 86.5 85.2 84.9

Çavuşoğlu [20] Stacking-ensemble
technique 99.78 90 - 92.68

Ramaiah et al. [23] Optimized Deep Neural
Network Architecture 98 98 98 98

Hsu et al. [25] LSTM-based CNN 98.64 - - -
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Table 5. Cont.

Authors Dataset Method Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Kumar et al. [22]
UNSW NB-15

Integrated rule based
Model 83.8 - - 87.95

Alazzam et al. [28] Pigeon-Inspired
Optimizer 86.9 - 86.6 86.4

Proposed Method NSL-KDD
SMO-HPSO

99.175 99.015 98.335 98.87
UNSW NB-15 99.18 94.19 93.32 94.12

5. Conclusions

The present research work performs a hybrid SMO-HPSO algorithm to detect the
attack and is classified based on the UNSW NB-15 and NSL-KDD datasets. A hybrid
feature selection model is developed using Hybrid SMO-HPSO, which solves the massive
intrusion detection on improving the accuracy. The hybrid SMO-HPSO selects the optimal
feature subset from overall features based on the incorporation of feature importance with
the Rosenbrock function. The searching process of SMO-HPSO is improved by integrating
the velocity of hierarchical PSO with SMO’s searching process. Therefore, the developed
Hybrid SMO-HPSO enhances the classification accuracy and achieves a lower classification
error while classifying the attacks. The SVM model obtained accuracy of 91.82%, DT of
98.99%, and RFC of 99.13%, and the proposed model obtained 99.175% for the NSL-KDD
dataset. Similarly, SVM obtained accuracy of 85.88%, DT of 88.87%, RFC of 91.65%, and
the proposed model obtained 99.18% for the UNSW-NB 15 dataset. The proposed SMO-
HPSO obtained accuracy of 99.175% compared to the existing Deep (DNN) of 97.72%.
The Ensemble Learning model showed 85.2% for the NSL-KDD dataset. Additionally, the
proposed SMO-HPSO showed average better accuracy of 99.178% and an integrated model
that obtained accuracy of 86.9% and 83.8%. However, the soft computing of the hybrid
optimization process showed complexity in the system. Yet, identification of the new
unknown activities for overcoming the system complexity problem is needed in the future.
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