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Abstract: Due to the amount of transmitted data and the security of personal or private information
in wireless communication, there are cases where the information for a multimedia service should be
directly transferred from the user’s device to the cloud server without the captured original images.
This paper proposes a new method to generate 3D (dimensional) keypoints based on a user’s mobile
device with a commercial RGB camera in a distributed computing environment such as a cloud
server. The images are captured with a moving camera and 2D keypoints are extracted from them.
After executing feature extraction between continuous frames, disparities are calculated between
frames using the relationships between matched keypoints. The physical distance of the baseline
is estimated by using the motion information of the camera, and the actual distance is calculated
by using the calculated disparity and the estimated baseline. Finally, 3D keypoints are generated
by adding the extracted 2D keypoints to the calculated distance. A keypoint-based scene change
method is proposed as well. Due to the existing similarity between continuous frames captured from
a camera, not all 3D keypoints are transferred and stored, only the new ones. Compared with the
ground truth of the TUM dataset, the average error of the estimated 3D keypoints was measured as
5.98 mm, which shows that the proposed method has relatively good performance considering that it
uses a commercial RGB camera on a mobile device. Furthermore, the transferred 3D keypoints were
decreased to about 73.6%.

Keywords: 3D keypoint; SIFT; stereo matching; scene change

1. Introduction

Generating 3D keypoints is an essential technique in computer graphics and vision.
Feature extraction and 3D keypoint generation can be used in many applications, such
as object pose estimation, reconstruction, object or space matching, and segmentation. In
addition, 3D keypoints can be used for interactive services in AR (augmented reality), VR
(virtual reality), and XR (extended reality) based on these applications.

Research to find the 3D features of objects has been conducted for a long time. Initially,
studies seeking to extract the features of 3D objects dealt with 3D data such as point clouds,
meshes, and depth images. This led to many kinds of research, including 3D Harris [1],
HKS [2], Salient Points [3], Mesh Saliency [4], Scale-Dependent Corners [5], CGF [6], and
SHOT [7]. Approaches such as these extract a local descriptor for a geometric feature of the
local reference frame. Because they consider only local geometric information, there are dif-
ferences following 3D feature extraction. Recently, deep learning-based methods and deep
functional dictionaries [8] have been developed for detecting keypoints. These methods
have weaknesses in circumstances involving rotation, and S2CNN [9] and PRIN [10] have
subsequently been proposed to overcome this issue.

Estimation of 3D keypoints using 2D RGB images has been studied as well. Occlusion-
Net, a model for classifying 2D keypoints according to depth, is one such proposal [11],
and 2D3D-MatchNet, a study to match the descriptor of 2D images with 3D keypoints of a
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point cloud captured by a 3D sensor, has been presented as well [12,13]. However, the deep
learning-based methods have weaknesses for various input images because of their depen-
dence on correct labels in training. It is important to consistently reflect the local features of
the image, rather than always finding the same location for the keypoint. Consistency in
finding features should always be maintained, even if the image is slightly changed.

Recently, various services for AR, VR, and XR services have been actively developed.
Recognizing 3D space and object features is essential for these applications [14]. However,
users do not have a device and method to capture 3D information directly. Therefore, a way
to estimate 3D keypoints on 2D images using a camera installed in a user’s smartphone
is required. In the case of practical service, an additional consideration for several issues
with 3D keypoint detection is needed, including security [15], computing power [16], and
the amount of transmitted data [17]. Transferring images captured by unadmitted users to
detect 3D keypoints in a cloud server is a legal problem [14,18]. In avoiding this problem,
however, operating all processes on the user’s device encounters limitations in terms of
computing power. Generating and storing all 3D keypoints of all frames is not reasonable
on the transferring side. Here, we avoid security problems by moving the 2D keypoint,
not the original images. Furthermore, the computing power is distributed by performing
only the amount of computation that is needed to solve the security problem on the mobile
device and the rest on the server. The overlapped keypoints are not stored, and only new
ones are used to update the keypoint database. Operational continuity is assured by scene
change detection.

Scene change detection is widely used in applications involving video sequence
segmentation for video coding, scene searching in videos, and video filtering for copyright
protection [19–21]. The methods used to detect scene changes can be classified into three
categories. The first are methods that use rules followed by media producers in scene
production; while these may enhance the results of scene change detection, they encounter
problems that limiting them to movies and drama [22]. The second group consists of
stochastic methods, which train probability variables using the Hidden Markov model and
the Markov Chain Monte Carlo Model after clustering color, edge density, and direction of
a scene. This approach detects scene changes by estimating the posterior probability with
the maximum value. Because this depends on the data used in training, a large amount
of training data are required [23]. The final approach involves method for classifying
scenes by modeling data in a graph in order to calculate, cluster, and arrange the similarity
between frames and then detect scene changes using a graph segmentation algorithm [24].
There are various methods that can calculate frame similarity. This paper uses descriptor
matching for keypoints on each frame, and tries to obtain frame similarity.

Approaches for end-to-end learning of 3D keypoints have been investigated previ-
ously [14]. Prior studies can be largely divided into methods of extracting 3D keypoints
from a 2D images and methods of extracting 3D keypoints from a 3D model (i.e., a mesh
or point cloud). Recently, various end-to-end models using deep learning have been pro-
posed to generate 3D keypoints [12,25–32]. Zhou et al. proposed a novel unsupervised
domain adaptation technique for the task of 3D keypoint prediction from a single depth
scan or image. The key idea is to utilize the fact that predictions from different views of the
same or similar objects should be consistent with each other [25]. Wu et al. proposed an
end-to-end framework named SK-Net to jointly optimize the inference of Skeypoints via
feature learning of a point cloud. These Skeypoints are generated by two complementary
regulating losses. A PDE module was designed to extract and integrate the detail feature
and pattern feature, allowing local region feature extraction and spatial modeling of a
point cloud to be achieved efficiently [26]. Supasorn et al. proposed Keypoint-Net, an
end-to-end geometric reasoning framework for learning an ordered set of 3D keypoints;
this discovery was guided by carefully constructed consistency and relative pose objective
functions [27]. Feng et al. proposed an end-to-end deep network architecture to jointly
learn the descriptors for 2D and 3D keypoints from an image and point cloud, establishing
2D-3D correspondence [12]. He et al. studied a novel data-driven method for robust 6DoF
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object pose estimation from a single RGBD image. Their method is a deep Hough voting
network to detect 3D keypoints of objects and then estimate the 6D pose parameters in
a least-squares fitting manner [28]. Liu et al. established an easy method for capturing
and labeling 3D keypoints on desktop objects with an RGB camera, and developed a deep
neural network called KeyPose that learns to accurately predict object poses using 3D
keypoints from stereo input; this approach even works for transparent objects [29]. Boyuan
et al. presented a framework for learning useful 3D keypoints without supervision for
continuous control. The key insight is the leveraging of multi-view consistency with a
world coordinate transform in the bottleneck layer in order to learn reliable keypoints [30].
Jakab et al. developed a method for controlling the shape of 3D objects through automati-
cally discovered semantic 3D keypoints and a deformation model learned jointly with the
keypoints. The resulting KeypointDeformer model provides users with a simple interface
for interactive shape control [31]. Ge et al. proposed a novel approach that directly takes
the 3D point cloud of hand as network input and outputs heat maps and unit vector fields
on the point cloud that reflect the per-point closeness and directions of the hand joints [32].

Most deep learning-based studies find 3D keypoints from 3D information (depth, point
cloud, mesh). On the other hand, our study is different in that it uses a signal processing-
based method that estimates the depth of 2D keypoints using the correspondence of 2D
keypoints from 2D images. It then generates 3D keypoints by applying the estimated depth
to the 2D keypoints.

This paper proposes a new 3D feature extraction method using keypoint-based stereo
matching based on a 2D RGB camera with a single lens. Because it estimates depth using
keypoints in a 2D RGB image, it does not require additional 3D data to extract 3D keypoints.
It proposes a new keypoint-based stereo matching method to overcome the low accuracy
of pixel intensity-based stereo matching. Because it requires only 3D keypoints, not depth
images, it does not need to calculate disparity with low accuracy for all pixels; that is, the
proposed method obtains disparity with high accuracy using the positions of keypoints. By
estimating the baseline using a gyro sensor of a mobile device such as a smartphone, it can
estimate the actual physical depth. Furthermore, by analyzing the similarity of keypoints
between frames, the amount of keypoints transferred and stored can be minimized, and
scene changes can be detected. In summary, the technical novelty of our paper can be
expressed as follows:

• A new method for 3D keypoint estimation with 3D coordinates from 2D videos
without using 3D information such as disparity, depth, 3D mesh, and 3D point cloud;

• A new stereo matching algorithm using the correspondence of a descriptor generated
from a SIFT-based 2D keypoint between continuous 2D frames;

• An AR service with security that does not transmit the user’s private and personal
image to the server, instead dealing with 2D keypoints that do not contain real feature
information;

• Efficient database management and minimized data transmission using 2D keypoint
overlapping and scene change detection between continuous frames.

The rest of this paper is organized as follows. Section 2 introduces the basic theory of
stereo matching and feature extraction along with relevant prior studies. Section 3 explains
the proposed algorithm, describing the entire process and each of its four steps in detail.
Section 4 shows the experimental results, and Section 5 concludes the paper.

2. Related Works

This paper uses stereo matching and 2D-based feature estimation to extract 3D key-
points using a camera installed in a mobile device. This section explains a new feature
estimation algorithm using 2D keypoint-based stereo matching and SIFT.

2.1. Stereo Matching

Generally, stereo matching calculates disparity using the relationship between two
images (the left and right images), where two photos of the same scene are simultaneously
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captured by two cameras installed in two different locations. Figure 1a shows a camera
setup for capturing a stereo image, and Figure 1b shows the disparity. A pixel (or a
region) in the left (reference) image is searched in the right (target) image, with the goal
to find a position of an object in the left image in the right image. The horizontal distance
(xl − xr) between the corresponding pixel (or region) of the two images is defined as the
disparity. The disparity is converted to depth using physical information from the capturing
equipment, and the 3D position is then estimated from the depth [33,34].

Two cameras in a system for capturing a stereo image are sufficiently calibrated and
rectified. However, the camera used in this paper is not aligned physically, and has a
different focal length according to the frame. Therefore, in this paper we use keypoint-
based rectification, which aligns two corresponding 2D keypoints on an epipolar line.
Then, if the disparity is calculated using pixels via stereo matching, the depth can be
calculated for the pixels. Although this process seems to be easy work, there are several
issues. The most significant problem is the difficulty of finding corresponding pixels with
robustness in the two images. Furthermore, although the two cameras are located in a
similar vertical position, there are differences in the lighting, lens aperture and exposure,
incident illumination, and scene visible to the camera. When an object has a surface with a
repeating pattern or high reflective ratio, stereo matching does not provide good results.
Several studies have attempted to solve this problem [35]. Recently, the convolutional
neural network approach has been introduced to extract the disparity [36–39]; CNN-based
stereo matching tries to extract the disparity in the ill-posed region [40].

(a) (b)

Figure 1. Stereo matching: (a) stereo camera configuration and depth definition and (b) disparity
calculation.

2.2. Feature Extraction

Feature extraction is a kind of computer vision technology similar to object recognition,
image matching, and image synthesis. In feature extraction, finding a robust position is
significant without influence about image feature and size, camera viewpoint, or light
variant. The well-known earliest method for finding a feature point is the Harris corner
detector, which finds a corner point in an image [41]. A corner point is a point that changes
rapidly in two or more directions. This method is somewhat weak because it is not robust
to changes in the image scale. A complementary method is Mikolajczyk’s Harris Laplacian
method [42]. This method finds Harris corner points in various scales and detects robust
points for scale variants. Shi and Tomasi proposed the Shi–Tomasi corner considering an
affine transformation [43,44]. The most well-known method is Lowe’s SIFT (Scale Invariant
Feature Transform) [45]. The SIFT calculates DoG (Difference of Gaussian) in both the
scaled and original images and finds points with considerable variance in all resolutions.

The SIFT has four steps: scale-space extrema detection, keypoint localization, orienta-
tion assignment, and keypoint description, as shown in Figure 2. The scale-space extrema
detection step produces keypoint candidates. The image is convolved with Gaussian filters
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at different scales, then the differences of successive Gaussian-blurred images are taken.
Keypoints are then taken as the maxima/minima of the Difference of Gaussians (DoG) that
occur at multiple scales. A DoG image D(x, y, σ) is provided in Equation (1):

D(x, y, σ) = L(x, y, kiσ)− L(x, y, k jσ) (1)

In Equation (1), L(x, y, kσ) is the convolution of the input image I(x, y) with the
Gaussian blur G(x, y, kσ) at scale kσ, where σ is the Gaussian blur scale factor.

Figure 2. The steps of the SIFT framework.

Scale-space extrema detection produces too many keypoint candidates, some of which
are unstable. The next step in keypoint localization is to perform a detailed fit to the nearby
data to find the accurate location, scale, and ratio of the principal curvatures. This step
consists of three processes: interpolation of nearby data for precise positions, discarding
low-contrast keypoints, and eliminating edge responses. The keypoint localization step
eliminates those keypoints with poorly determined locations and retains those with high
edge responses. In the orientation assignment step, each keypoint is assigned one or
more orientations based on local image gradient directions. This step provides invariance
to rotation, as the keypoint descriptor can be represented relative to this orientation,
thereby achieving invariance to image rotation. Finally, the keypoint descriptor computes a
descriptor vector for each keypoint in order to ensure that the descriptor is highly distinctive
and partially invariant to the remaining variations, such as illumination, 3D viewpoint, etc.
The final step is performed on the image closest in scale to the keypoint’s scale [46–48].

This paper extracts keypoints using the SIFT. Keypoints are extracted in each frame
captured by a camera installed on a mobile device. If using the SURF [16], the keypoint may
be quickly extracted; however, because the accuracy of the keypoints is more important
in this paper, we use the SIFT, which has more accuracy than the SURF. The keypoints
between two frames (left and right) are searched in each frame using the coordinate of a
keypoint and its descriptor. This process enables us to estimate the relationship between the
images. The disparity between the two images is calculated from the relationship between
the keypoints.

3. 3D Feature Extraction

An AR service provides various media services based on the user’s environment after
analyzing the environment. Therefore, it is essential for the AR service to analyze the 3D
space where the user is located or the 3D object at which the user is looking. In this context,
3D keypoints can be used to provide various user services after space analysis. If a 3D
keypoint is detected by the AR service, service within a three-dimensional space is possible.
Therefore, studies to create a 3D keypoint for AR service have been conducted, and many
seeking to create a 3D point cloud [14]. The most straightforward method for doing this
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is to estimate the 3D features of images in a server after capturing images using a user’s
mobile device and then transmitting them. The 3D keypoint generation technique requires
a large amount of calculation. Hence, a server is generally used for processing; the tendency
of this approach to use a lot of computing resources to extract 3D features complicate its
use in routine services. A mobile device lacks the computing power to estimate 3D features.
When transmitting images captured by users to a server, there are network bandwidth
problems with increasing data transmission and legal problem around information privacy
and security. Therefore, we propose a method for finding 2D keypoints on the user’s device,
with other processes implemented by the cloud server.

This section explains the 3D feature extraction algorithm through the method used to
estimate 3D keypoints for a 3D object. The 3D feature extraction process consists of four
steps: 3D keypoint-based stereo matching, scene change detection, 2D keypoint updating,
and 3D keypoint generation. After introducing the structure of the entire algorithm, we
explain each step in detail.

3.1. Full Process

The 3D feature extraction step consists of device and server operations. Device op-
eration consists of two steps: 3D image capture and intensity normalization. Figure 3
shows the proposed algorithm for the 3D feature extraction. First, 2D image capture with
camera motion captures 2D images according to the movement of a mobile device. This
step normalizes the image intensity. Intensity normalization is performed through a sim-
ple histogram equalization which enhances the image quality on the side of brightness.
Through intensity normalization, dark or bright images are changed to images with a
typical intensity scale. Next, 2D keypoints are calculated by stereo matching. This step is
carried out on both the device and server. A 2D keypoint generated on the user’s device
is transmitted to the server. Finally, the scene change is detected using the relationship
between the 2D keypoints of the frames, and the 2D keypoints to be stored are selected by
the server.

Figure 3. 3D Feature extraction algorithm.

Figure 4 depicts the flow of 3D keypoint generation from temporally continuous
frames with the order relative to the steps. The 2D keypoints are generated from input
images. The scene change is detected by observing 2D keypoints #0 and #1 in frames #0
and #1, respectively, and the depth is calculated using the disparity between the keypoints
matched in two adjacent frames, with the moving distance calculated using the output
value of the acceleration sensor of a mobile device. When the adjacent frames are regarded
as the left and right images, the moving distance of the device corresponds to the baseline
distance. When observing frames #2 and #3, if the similarity between the keypoints of the
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two frames is less than the predefined threshold, a scene change can be considered to have
occurred. Thus, the database used to store 2D keypoints is divided, and the keypoints are
newly updated.

Figure 4. Generation process of 3D keypoints.

3.2. Keypoint-Based Stereo Matching

The algorithm that generates 2D keypoints based on stereo matching has five steps, as
shown in Figure 5. Two continuous frames (left and right) are regarded as stereo images.
We use a FLANN-based matching algorithm for stereo matching. Stereo matching as used
here has the same meaning as keypoint matching. FLANN stands for Fast Library for
Approximate Nearest Neighbors; it contains a collection of algorithms optimized for fast
nearest neighbor searching in large datasets and for high dimensional features. It works
faster than brute force matching for large datasets. The FLANN-based matcher accepts two
sets of options which specify the algorithm to be used and its related parameters [49]. If a
device does not move when capturing images, it is hard to find the disparity. If this occurs
in keypoint generation, the stored depth is used for the current frame and the operation
moves on to the next frame. We explains the algorithm with the assumptions that two
frames are input and that they have movement.

An example of the operation using two continuous frames is shown in Figure 6 to
illustrate the keypoint-based stereo matching process. Figure 6a shows the two continuous
frames, Figure 6b shows the disparity between the two frames after overlapping, and
Figure 6c shows the result of the corresponding points by 2D keypoints between the
two frames.

The disparity is the distance of the x-axis between corresponding keypoints in two
frames. The disparity is adjusted by the user-defined zero parallax. The adjustment is
operated during the calculating process of depth. The equation to calculate disparity for
the nth keypoint is defined by Equation (2):

D = xn+1 − xn (2)
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Figure 5. Process of 3D keypoint generation.

(a) (b) (c)

Figure 6. Parallax (or disparity) analysis between stereo images: (a) stereo images, (b) parallax
analysis result, (c) keypoint generation.

3.3. Scene Change Detection

There is a similarity between images captured by a moving mobile device. However,
if a device moves too fast, the captured images differ. When the difference between the
captured images is too significant, this situation is regarded as the occurrence of a scene
change. Scene change detection is the process of dividing the database of keypoints based
on whether difference between the current image and previous images. If a new scene
is captured, the database for the previously stored keypoint cannot be updated with the
current information. In this case, a database is newly generated, and the new keypoints
are updated in the new database. Next, the 2D keypoints are estimated in the continuous
frames, and keypoint matching is executed using the corresponding 2D keypoints. The
method for differentiating two frames is by comparing the difference between their 2D
keypoints. Finally, the keypoints of the current frame are compared with the previous ones,
and the scene change is detected by comparing the result. This relationship is defined as
the matching rate in Equation (3). In Equation (3), the number of matched keypoints in the
numerator means the number of corresponded (or matched) keypoints between the current
frame and the previous frame. The method of matching keypoints between two frames is
to compare the descriptor of each keypoint. The number of the current frame’s keypoints
in the denominator is the number of all estimated keypoints in the current frame; that is,
Equation (3) indicates how many keypoints among the keypoints selected in the current
frame existed in the previous frame. We experimentally assumed that scene change occurs
in cases of difference over 25%.

Matching Rate(%) =
Number o f Matched Keypoints

Number o f Current Frame′s Keypoints
(3)
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3.4. Keypoint Updating

As described above, duplicate keypoints may exist between consecutive frames. It
is not reasonable to repeatedly process duplicate keypoints in terms of computation and
transmission. Therefore, the amount of transmission and storage is significantly reduced
by transmitting only newly extracted keypoints, excluding duplicate keypoints. As shown
in Figure 7, there are many similarities between continuous frames, and many keypoints
overlap. Therefore, all keypoints of the current frame can be estimated if there are only
duplicate keypoints of the previous frame and new keypoints of the current frame without
storing and transmitting all the keypoints of the existing frame. As shown in Figure 7, du-
plicate keypoints and new keypoints can be detected through keypoint matching between
two frames.

Figure 7. Keypoint matching and overlapped keypoint detect between continuous frames.

Keypoint updating is used to transmit and store new keypoints of the current frame
while not transmitting duplicate keypoints in the present and previous frames. The infor-
mation of the duplicate keypoints can improve the storage efficiency of the database. In
addition, the reduced number of keypoints decreases the amount of calculation required by
the unnecessary generation of depth and 3D keypoints. First, the keypoint coordinate and
descriptor of the current frame are compared with those of the previous frame. If the same
(overlapped) keypoint is detected, the previous keyoint is used and the new one is not
stored. Then, the keypoints which exist only in the current frame are processed to generate
a depth and 3D keypoint and stored in the keypoint database. Consequently, the keypoint
database is updated by only non-overlapped (unduplicated) keypoints. Figure 8 shows the
flow chart of the keypoint update algorithm.

Figure 9 illustrates the database of the 3D keypoints that are finally saved. As shown
in Figure 9, among the 3D keypoints updated by Frame #0, overlapped keypoints are
not stored in the database, as they duplicate the keypoints on Frame #1. Furthermore,
this relationship is maintained for the subsequent frames. In this way, the information of
keypoints and keypoints stored in the 3D keypoint database is minimized.
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Figure 8. Keypoint update algorithm.

Figure 9. 3D keypoint database update.

3.5. 3D Keypoint Generation

In this section, we propose a method of converting 2D keypoints obtained from each
2D image frame into 3D keypoints using the relationship between keypoints estimated in
each frame. The process of extending a 2D keypoint to a 3D keypoint is as follows. As
described above, keypoints make all disparities have negative disparities. Adjusting to
the negative disparity is calculated by adding the minimum disparity dmin to the original
disparity value; dmin can be calculated from the relationship between two frames, or it can
be calculated in advance using the horizontal resolution of the 2D image. Theoretically,
dmin can have the maximum width of the horizontal resolution of the 2D image. The z-axis
of a 2D keypint obtained from the 2D image corresponds to the depth z of the 2D keypoint.
The depth z is generated from the estimated baseline B using the parallax value changed in
the depth generation, the focal length f of the camera, and the acceleration of the mobile
device. The process is defined by Equation (2). Next, a 3D keypoint is calculated using the
estimated depth and the x and y coordinates of the current frame. Equation (4) is used for
the depth value of the 3D keypoint, and the x and y coordinates are normalized to 0∼1.

Z = f × B
D− dmin

(4)

4. Experimental Results

The proposed algorithm was implemented using C/C++, OpenCV, OpenMP, and
CUDA in Intel I7-7700K CPU @3.6 GHz, 64GB RAM, and 64-bit Windows 10 environment.
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The image used for the experiment was captured with a Galaxy S10, and the TUM Dataset
was used for the data to compare with the actual depth value [50].

Here, various parameters used in this paper are explained. When extracting 2D
keypoints, the number of feature points SIFT can output was set to at least 200 million. The
octave layer was set to 3, the contrast threshold to 0.04, the edge threshold to 10, and the
sigma to 1.6. Next, diagonal matching was considered an error in the process of matching
the descriptor, and they were removed. In the keypoint-based stereo matching, if the
matched two keypoints had a difference of 200 pixels or more in the x and y axes, this was
considered error matching. All of these parameters were obtained experimentally.

4.1. Baseline Calculation

The baseline represents the actual distance traveled by the camera. In general, stereo
cameras have a fixed baseline. In this paper, the baseline is estimated by measuring the
acceleration value of the gyrosensor according to the movement of the camera. Acceleration
values were obtained while moving the camera for 4.32 s, and the actual moving distance of
the mobile device was measured by 45.73 cm using a laser range finder. Figure 10a shows
the acceleration obtained from the gyrosensor, Figure 10b the velocity, and Figure 10c the
estimated distance. The distance obtained through acceleration showed a total movement
of 45.11 cm, and the error that occurred was 0.62 mm. These results verified that the distance
of the mobile camera estimated using the acceleration measured from the gyrosensor can
be used to estimate the baseline.

(a) (b)

(c)

Figure 10. Distance estimation result of the baseline: (a) accelerating value from the gyrosensor,
(b) speed, and (c) estimated distance.

4.2. Result of Keypoint-Based Stereo Matching

In this paper, we use the rear camera of Galaxy S10 with a focal length of 53.6 mm. The
baseline distance was calculated using the acceleration obtained through the accelerometer
of the same mobile device. We use an Intel RealSense Depth Camera D415 to verify the
estimated depth. To match the structure of this camera, the baseline was set to 55 mm. Then,
keypoint-based stereo matching was performed using the keypoint of the first frame and
the frame after moving 55 mm. Figure 11a shows the captured RGB image, and Figure 11b
shows the keypoint estimation result in the previous frame. Figure 11b shows the keypoint
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estimation result in the current frame taken after moving the camera by 55 mm. Figure 11d
shows the 3D keypoint generated by keypoint-based stereo matching.

(a) (b) (c) (d)
Figure 11. Keypoint-based stereo matching result: (a) RGB image, (b) keypoints of the previous
frame (the left image), (c) keypoints of the current frame (right image), (d) 3D keypoints result plotted
in a 3D space with RGB information.

4.3. Keypoint Update Result

After extracting the keypoint of the input image according to the movement of the
camera and matching it with the keypoint of the previous frame, a new keypoint is added
to the keypoint database by excluding the duplicated keypoint in the two images. Figure 12
shows the results of this process. The keypoint result extracted from the first frame and the
keypoint result after the mobile device moved as much as the 55 mm baseline are shown in
the upper part of Figure 12. When the descriptors of the keypoints of the two frames are
matched, updated keypoints for the current frame are obtained if duplicate keypoints are
excluded from matching keypoints.

Figure 12. Keypoint update algorithm: keypoint information of the first frame (left top), keypoint
information after 55 mm movement (right top), matched keypoint information (left bottom), and
newly generated keypoint information (right bottom).

Using five frames, we verified how the keypoint update algorithm quantitatively
contributes to the reduction of keypoint storage. The first frame stores all keypoints as the
start frame. From the next frame onwards, keypoints that overlap with the previous frame
are not saved, and only new keypoints are saved. When the second frame is input, only
220 keypoints are updated, and 645 duplicate keypoints are not stored in the database. After
comparing the third frame with the second frame, 754 keypoints are not saved and 221 new
keypoints are updated. When 2799 keypoints were matched for five frames (excluding
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the start frame), the average number of keypoints to be updated was only 27.67%. Table 1
summarizes the ratio of overlapped and updated keypoints for each frame in five frames.

Table 1. The ratio of overlapped and updated keypoints between frames.

Frame Overlapped Ratio Updated Ratio Total

1 - 0% 1048 100% 1048
2 645 74.56% 220 25.44% 865
3 754 77.33% 221 22.67% 975
4 394 72.70% 148 27.30% 542
5 270 64.74% 147 35.26% 417

Average 515.75 72.33% 184 27.67% 700

4.4. Result of Scene Change

An example of the results of scene change detection is shown in Figure 13. Figure 13a
shows a case where scene change does not occur, and Figure 13b shows the result when
a scene change occurs. In the two figures, the upper two figures are the original RGB
images, and the lower two figures are the keypoint extraction results. In Figure 13a, the
overlapped keypoint between the previous and current frames is 74.57%, a result that can
be considered as no scene change. In Figure 13b, the overlapped keypoint between the
previous and current frames is 5.76%, a result that can be considered a scene change. When
visually confirming Figure 13a, it seems that the change between the two frames is large;
however, there was no significant change in the keypoints. Figure 13b shows the same
scene shot from different angles. However, if the characteristics of the keypoint descriptor
are different depending on the angle, it may be judged to be a different scene. Because this
paper proposes a method for obtaining keypoints, the similarity of the descriptors of the
keypoints is more important than the visual similarity.

(a) (b)
Figure 13. Scene change detection result: (a) 74.57% overlapped keypoints, (b) 5.76% overlapped
keypoints, indicating a scene change.

4.5. Comparison of Results with TUM Dataset

This experiment compares the proposed method with data from the TUM Dataset
and checks whether the three-dimensional keypoints extracted by the proposed algorithm
are similar to the true depth value. In the experiment, 3D keypoints were extracted with
our algorithm using the focal length and gyro sensor values of the TUM dataset. The
depth images of the TUM dataset are shown in Figure 14a, and the RGB images are shown
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in Figure 14b. Figure 14c plots the results of the 3D keypoint against the result when
converting the TUM Dataset to the original point cloud.

Table 2 shows the coordinates between the 3D keypoint generated by the proposed
algorithm and the ground truth of the original point cloud from the TUM dataset as a result
of obtaining the Euclidean distance of the original coordinates. In actual 3D space, the
maximum Euclidean distance between frames was 16.32 mm and the minimum distance
was measured to be less than 0.03 mm. The average maximum Euclidean distance in
five frames had a difference of 13.00 mm, and the overall keypoint had an average difference
of 5.98 mm compared to the original. This confirms that the appropriate depth can be
estimated by stereo matching using the baseline obtained by estimating the coordinates of
the 3D keypoint.

(a) (b) (c)

Figure 14. TUM dataset: (a) depth map, (b) RGB, (c) point cloud and 3D keypoints.

Table 2. Comparison of Euclidean distances between the 3D keypoints of the proposed algorithm
and the TUM dataset (unit: mm).

1 2 3 4 5 Total

Min 0.11 0.11 0.04 0.03 0.10 0.07
Max 16.32 12.56 10.21 11.33 14.62 13.00

Average 7.45 6.10 5.78 4.37 6.21 5.98
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4.6. Performance Comparison with Previous Study

This paper estimates 3D keypoints from 2D images. The actual distance difference
between the 3D keypoint information generated from the 2D image and the 3D point cloud
of the ground truth was calculated, and the estimated keypoint was validated. Because the
point cloud x, y, and z coordinates of the ground truth for the 3D keypoint are matched to
the 2D feature point, there is no difference in coordinates between 2D and 3D. To maintain
2D–3D correspondence, 2D–3D MatchNet [12] was used to project ISS (Intrinsic Shape
Signatures) keypoints to all images in the view. Next, the nearest neighbor of the SIFT
keypoint in each image was found; the keypoint was considered valid if it was within three
pixels. The 3D keypoint extracted from the proposed algorithm has an average difference
of 5.98 mm from the original ground truth. In the TUM dataset, the difference of three
adjacent pixels in the 2D image corresponds to an average error of 15 mm in the 3D point
cloud of the ground truth. In our results, all keypoints were within three pixels in 2D space.
Most previous studies estimating 3D keypoints use 3D meshes, depth images, and 3D point
clouds as inputs. These use 3D information to find 3D keypoints in 3D space. Because
most studies have different input domains and methods of defining 3D keypoints, the
comparison of results between them may be somewhat limited. In addition, because our
study is a method for finding 3D keypoints in 2D videos, there may be limitations when
comparing the results with such studies.

The results of our study and previous studies were compared using AE (Average Error)
and PAE (Pose-invariant Distance Metric) [25]. Because certain experimental conditions
and environments were different, it is difficult to determine the superiority of each method
solely by comparing these results. The AE can provide the relationship between each
predicted keypoint configuration and the corresponding annotation, and the PAE can offer
a new metric [25]. The AE and PAE are shown in percentages, and represent the relative
ratio to the diagonal length of the 3D bounding box. Our method is rule-based, while
all other methods are deep learning-based. Table 3 compares the results. In the results,
although the difference in error is very small, the result with our proposed method showed
the lowest error. In Table 3, the default method uses the vanilla ResNet [51] based on
the method proposed by [25], while the ADDA method uses the generative adversarial
network based on [25].

Table 3. Comparison of results between previous studies and our method [25].

Target Metric AE PAE

Default [51] 27.59 13.44
ADDA [52] 26.16 12.31
Supervised 11.96 7.67

Unsupervised 25.24 11.38
Ours 11.42 7.60

4.7. Ablation Study

We performed an ablation study to evaluate each component of our approach. We
dealt with three ablation studies. The first is for the processing time in Section 4.7.1, the
second is for the searching range in Section 4.7.1, and the third is for the baseline distance.
Section 4.7.1 shows how the processing time changes depending on whether keypoint
updating and scene change detection are included. Section 4.7.2 shows the degree to which
the accuracy of the corresponding point varies depending on whether the search range is set
using 2D keypoint-based stereo matching. We obtained the highest accuracy experimentally
using a setting around 200 pixels. In Section 4.7.3, we present the experimental results on
the accuracy of 3D keypoints depending on whether the baseline distance was set.
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4.7.1. Processing Time

The processing time required to calculate a new 3D keypoint was observed for the
keypoint update and scene change algorithm. The experiment was conducted using a
sequence with ten frames, with a scene change in the 6th frame. Ifthe keypoints are updated
without the keypoint update and scene change algorithm, all new keypoints are stacked
in the database. Furthermore, when a new scene starts, new keypoints are matched with
the previous ones with totally different features. The first frame has a processing time of
8.68ms. The calculation time for five frames is 15.03 ms and 101.86 ms during the scene
change when using and not using the keypoint update algorithm, respectively. After the
scene change, the processing time is 37.4 ms in both cases. If all keypoints are stored
in the database, it takes 383.68 ms. When using the keypoint update algorithm, it takes
186.75 ms. When the database is initialized and divided by the scene change algorithm, it
takes 11.43 ms at the 6th frame and 234.45 ms for the other frames. The processing times
for ten frames are 383.68 ms, 186.75 ms, 234.35 ms, and 37.41 ms. These results translate to
a performance enhancement of 10.25 times. Figure 15 shows the processing times in the
case of not using the keypoint update and scene change, the case of only using the keypoint
update, the case of only using the scene change, and the case of using all algorithms.

Figure 15. Processing time reduction through scene change detection and duplicate keypoint removal.

4.7.2. Search Range

In 2D keypoint-based stereo matching, we experimented with using a search range.
Considering the movement distance per frame of the mobile device, performing stereo
matching over a limited distance may cause an error. Because stereo matching may cause
errors in the estimation process, the probability of generating errors should be reduced as
much as possible. If the search range is extensive, more errors may occur by performing
many checks on unnecessary positions. Through experiments, we found that 200-pixels
is the most suitable search range. Figure 16a shows the result of performing 2D keypoint-
based stereo matching without limiting the search range. As can be seen from the figure,
the stereo matching result includes many errors. Figure 16b shows the result when the
search range is limited to 200 pixels or less. In this case, relatively few errors occur. In
addition, in comparison with Figure 16a the corresponding point in the diagonal direction
does not occur.
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(a) (b)
Figure 16. Estimation result of corresponding points (a) without search range and (b) with search
range of 200 pixels.

4.7.3. Baseline Distance

Setting the baseline is very important when converting the estimated disparity into
depth. It is necessary to generate the z-axis coordinates of the 3D keypoint as well. We
conducted an experiment according to the method of setting the baseline. Based on the
experimental results, the baseline in our experiment was fixed at 55 mm. The experiment
was performed to check how the 3D keypoint is positioned in space. For this experiment,
3D keypoints were extracted while adjusting the length of the baseline in three ways.
Figure 17a shows the result when the baseline is 10 mm, Figure 17b shows the result when
the suggested distance is 55 mm, and finally, Figure 17c shows the result when the baseline
is 150 mm. Observing the three results, correct 3D keypoints were not generated when an
appropriate baseline was not set. In the case of Figure 17a,c, the space was compressed and
severe distortion occurred. In the case of Figure 17b, the space was normally formed by the
3D keypoint.

(a) (b)

(c)

Figure 17. 3D keypoint results according to baseline length (top-view) of (a) 10 mm, (b) 55 mm, and
(c) 150 mm.

5. Conclusions

This paper proposes a 3D keypoint extraction method using a single mobile device. 3D
keypoints were extracted using a monocular camera and keypoint-based stereo matching.
Using the keypoint update algorithm for 3D keypoint generation improves the amount of
computation and storage required for the database. In addition, scene change detection was
performed using the keypoint matching rate. Finally, we verified whether the proposed
keypoint extraction method is valid. Through comparison with actual depth values from
the TUM dataset, it was confirmed that the proposed method correctly expresses 3D
information. As a follow-up study, we intend to use a keypoint extracted by the proposed
algorithm with object recognition algorithms.
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