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Abstract: Spacecraft relative pose estimation for an uncooperative spacecraft is challenging because
the target spacecraft neither provides sensor information to a chaser spacecraft nor contains markers
that assist vision-based navigation. Moreover, the chaser does not have prior pose estimates when
initiating the pose estimation. This paper proposes a new monocular pose estimation algorithm that
addresses these issues in pose initialization situations for a known but uncooperative target spacecraft.
The proposed algorithm finds convexity defect features from a target image and uses them as cues
for matching feature points on the image to the points on the known target model. Based on this
novel method for model matching, it estimates a pose by solving the PnP problem. Pose estimation
simulations are carried out in three test scenarios, and each assesses the estimation accuracy and
initialization performance by varying relative attitudes and distances. The simulation results show
that the algorithm can estimate the poses of spacecraft models when a solar panel length and the
number of solar panels are changed. Furthermore, a scenario considering the surface property of the
spacecraft emphasizes that robust feature detection is essential for accurate pose estimation. This
algorithm can be used for proximity operations with a known but uncooperative target spacecraft.
Specifically, one of the main applications is relative navigation for on-orbit servicing.

Keywords: spacecraft pose estimation; vision-based navigation; uncooperative spacecraft;
convexity defect

1. Introduction

Relative navigation in rendezvous, docking, and proximity operations aims to find
the accurate relative position and attitude, known as relative pose [1], between a target
and a chaser spacecraft [2–4]. For cooperative spacecraft, relative navigation using GPS
measurement and inter-satellite communication has been widely used in multiple space
missions [5–8]. The studies presented in [9–11] introduce technologies relevant to opti-
cal communication. Another prominent technology is vision-based relative navigation,
which uses vision sensors to estimate accurate relative position and attitude [12]. Previ-
ous works [2,3,13,14] for vision-based relative navigation focused on determining the six
degrees of freedom relative pose between two spacecraft from an image. The cooperative
spacecraft considered in these works have a rhombus-shaped marker [13] or Position
Sensing Diode (PSD) sensors [14] on the surface.

Meanwhile, relative navigation for an uncooperative target is of great importance
for On-Orbit Servicing (OOS) [15,16] and Active Debris Removal (ADR) [17]. For such
missions, vision-based relative navigation can also be used for estimating the pose be-
tween an uncooperative target and a chaser [12]. However, uncooperative targets neither
employ fiducial markers nor transmit state information. For these reasons, feature point
identification is more complicated than the cooperative case [18].

Vision-based approaches are divided into stereo vision and monocular vision, depend-
ing on the number of cameras. Stereo vision uses more than two cameras, while monocular

Sensors 2022, 22, 8541. https://doi.org/10.3390/s22218541 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218541
https://doi.org/10.3390/s22218541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0941-0108
https://doi.org/10.3390/s22218541
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218541?type=check_update&version=2


Sensors 2022, 22, 8541 2 of 28

vision uses a single camera. Stereo vision can estimate depth using triangulation of the
same point that appears in multiple images taken from different viewpoints, but its opera-
tional range is limited [19]. On the other hand, although monocular vision has a broader
operational range and a faster computational speed, it cannot estimate depth from a single
2D image [20]. As a result, it cannot determine the six degrees of freedom pose because the
3D location of the feature point is unknown within a single image.

This issue is inherent in monocular vision and has been tackled by employing the
shape information of a target [1,4]. Relative pose estimation using monocular vision is
divided into model-based and model-free approaches [21]. In the model-based approach,
a chaser knows the model of a target in advance. Using the knowledge of the model, it
computes the relative pose by mapping points on the target model to points on its 2D
projection image [22]. On the other hand, the model-free approach is applied when a chaser
does not know the model of a target [21]. In this case, 3D model recovery precedes the pose
estimation process. For instance, the 3D point cloud of a target can be acquired by scanning
the model with laser radar [23], and the 3D model can be reconstructed by implementing
Structure from Motion (SfM) [24]. This paper adopts the model-based approach in which
the chaser has a priori information about the target model.

Model-based relative navigation goes through image processing, model matching,
pose determination, and pose tracking [24]. In particular, at the beginning of the navi-
gation, there is no prior pose information. This situation is known as pose initialization
or pose acquisition [24]. Pose initialization covers from the image processing to pose
determination [22], and the following pose tracking uses the initialized pose.

The image processing step, which is the first step of pose initialization, distinguishes
the spacecraft from the background to specify the target’s location and then detects the
features of the target [22,25–27]. Sharma, Ventura, and D’Amico [22] applied Weak Gradient
Elimination (WGE) to extract the foreground from the background and detected edges using
Hough Transform (HT) [28]. Likewise, Capuano, Alimo, Ho, and Chung [25] eliminated
the noise in the image using a Gaussian filter and depicted pixels representing spacecraft
using the Gaussian Mixture Model (GMM) [29]. Then, these pixels were processed in
parallel by HT, Line Segment Detector (LSD) [30], and Shi-Tomasi corner detection [31] to
obtain features.

Next, the model matching step finds mapping from the detected feature points and
the points on the target model. This mapping is also referred to as 3D–2D point correspon-
dence [20,22,24]. To find the 3D–2D point correspondences in this step, Capuano, Kim,
Harvard, and Chung [24] adopted RANSAC [32]. This algorithm iteratively hypothesizes a
match and evaluates the pose error computed from the assumed match to eliminate wrong
matches and find the accurate pose [24]. Nonetheless, this method takes a long time to
compare the pose error from all random matches [20,22]. As alternatives, for the reduction
of search space, Pesce, Opromolla, Sarno, Lavagna, and Grassi [20] used a RANSAC-based
approach with Principal Component Analysis (PCA) [33] to determine the distinctive
feature points. For the same purpose, Sharma, Ventura, and D’Amico [22] categorized
feature points into high-level features, representing figures such as an open polygonal triad
and a closed polygonal triad, and found a match from the target points belonging to the
same group.

After the model matching step, the pose determination step calculates the pose from
the point correspondences [20,22,24]. The pose determination has been handled with a
Perspective-n-Point (PnP) algorithm [22,27,34–36]. The PnP algorithm finds the relative
position and attitude, also known as the camera’s extrinsic parameters, from n-point
correspondences between the 2D feature points and known 3D points [37]. Depending on
the number of correspondences, the algorithm is categorized into a different algorithm. For
instance, a P3P algorithm [38] uses three-point correspondences, and a P4P algorithm [39]
uses four-point correspondences to estimate a pose. In addition, the Efficient PnP (EPnP)
algorithm [40] produces a pose using greater than or equal to four-point correspondences.
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In the related studies presented in [27,34], the EPnP algorithm is combined with RANSAC
to find a robust pose solution, even if outliers exist in correspondences.

Finally, the pose tracking step continuously estimates the pose from images after the
pose is initialized [20,24,36,41]. Capuano, Kim, Harvard, and Chung [24] adopted the
SoftPosit [42], and Pesce, Opromolla, Sarno, Lavagna, and Grassi [20] used non-linear
filtering techniques for pose tracking.

More recently, Sharma, et al. [43] adopted Convolutional Neural Networks (CNNs) [44]
for pose estimation for detecting robust features from images with a low signal-to-noise
ratio and high contrast. Related studies presented in [34–36] showed that CNNs can sim-
plify the feature detection and matching process while increasing estimation accuracy.
Furthermore, when using CNNs for pose estimation, reducing the domain gap between
space imageries and synthetically generated images is another critical topic to be consid-
ered [45–47].

In this study, we aimed to solve the pose initialization problem with uncooperative
spacecraft. The key motivation is that accurate pose estimation is critical for rendezvous,
docking, and proximity operations of uncooperative spacecraft, but it is difficult to identify
the feature points in an acceptable amount of time while achieving high accuracy. In addi-
tion, feature point identification becomes more difficult when there is no prior information
about the pose between the two spacecraft in the initial stage.

Earlier works in [20,22,24] also developed pose initialization algorithms, but they
have two significant limitations. First, the proposed algorithms in [22,24] are confined to a
specific spacecraft model. Pose estimation with the model-based approach exploits a set
of reference 3D points on a model, and these points are selected differently for different
spacecraft [20]. Although previous works in [22,24] examined the speed and accuracy of the
algorithms with the images of a target spacecraft, we cannot be certain that the algorithms
are flexible enough to be used for other space missions without verifying the performance
with different shapes of spacecraft.

Second, the performance analyses in [20,22,24] did not consider the effect of the relative
pose. The analyses presented in [20,24] described the performance of the pose determination
algorithm either with an average time consumed or with pose estimation accuracy under
specific scenarios of relative motion. However, the pose determination algorithms depend
on the geometry of a target spacecraft, and thus some undesirable relative attitudes could
decrease the pose estimation accuracy. For this reason, we cannot evaluate the algorithm’s
performance from the average computational time and error. Further analysis of the cases
presenting unusual estimation errors was conducted by Sharma, Ventura, and D’Amico [22],
but more images are required to comprehensively assess the algorithm’s performance in
different relative poses.

The following summarizes the two main issues this paper tackles.

1. The existing pose estimation algorithms are developed and examined for a specific
spacecraft shape.

2. The pose estimation performance analyses often overlook the effect of the relative pose.

This paper proposes a pose estimation algorithm and overcomes these issues. The
algorithm detects features from an image, finds 3D–2D point correspondences, calculates a
pose, and assesses the reliability of the determined pose in order. The novelty of our work is
that it suggests a pose estimation algorithm as an integration of new and existing techniques.
The model matching step is newly designed to find 3D–2D point correspondences using
convexity defect features. On the other hand, it utilizes earlier works’ ideas for feature
detection [48,49] and for pose calculation [38,40]. This paper makes two contributions
as follows:

1. We introduce a novel pose initialization algorithm that can apply to target spacecraft
with different shapes. This algorithm utilizes a convexity defect to narrow down the
search space in the model matching step.
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2. The pose determination performance of the algorithm is assessed with various ranges
of relative pose and is described by a unique graphical expression of pose error. The
pose estimation error is computed for attitudes expressed in azimuth from −180◦ to
180◦ and elevation from −90◦ to 90◦ while maintaining the relative distance. This
process is repeated for five different relative distances.

The rest of the paper consists of five sections. Section 2 defines the pose estimation
problem, and Section 3 illustrates essential concepts used for the pose estimation algo-
rithm and a standard spacecraft model. Section 4 elucidates the algorithm in detail, and
Section 5 assesses the algorithm using images taken from every viewpoint. Finally, Section 6
concludes the paper.

2. Problem Statement

This paper deals with the pose initialization of an uncooperative spacecraft using
monocular vision. Pose estimation in this stage starts without an initial guess, and the
images acquired from a monocular camera are the only measurements used to find the
pose. However, uncooperative targets neither employ visual markers nor communicate
with a chaser spacecraft. Accordingly, we need to find the pose of the target spacecraft
solely depending on its natural features. Therefore, the pose estimation problem in this
paper is defined as determining the six degrees of freedom pose between the target and
chaser spacecraft given an on-board image of the target spacecraft and initializing the pose
when the determined pose is reliable.

The pose estimation problem is described in three reference frames in this research as
shown in Figure 1. The first is a target frame fixed to its body, and the origin is at its center
of mass. The spacecraft’s shape defines the axes of the target frame as shown in Figure 1.
For instance, the standard spacecraft model considered in this paper has a cuboid body and
a deployed solar panel that extends asymmetrically. With this model, the b̂3 axis directs the
opposite side of the solar panel, the b̂2 axis is parallel to the direction of the panel extension,
and the b̂1 axis is orthogonal to the b̂2 and b̂3 axes. We mark the vector expressed in target
coordinates with superscript T.
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Next, a camera frame is attached to the chaser body, and its origin is at the center of
projection, also known as a focal point, where pencils of rays are gathered. The ĉ3 axis
points to the image plane from the focal point, and the ĉ1 and ĉ2 axes are parallel to the
image plane and head to the right and downward, respectively. A vector expressed in
camera coordinates is marked with superscript C.

Lastly, an image frame is defined on the image plane. The û and v̂ axes of the image
frame are parallel to the ĉ1 and ĉ2 axes of the camera frame, while the origin is at the corner
of the image plane. On this plane, the center of the image plane, or principal point, is at(

px, py
)
, and a pinhole camera model describes the relationship between the two frames.

Here, the focal length f, principal point
(

px, py
)
, and pixel size are intrinsic parameters that

represent the internal property of the camera, and these parameters are obtained by camera
calibration. A vector expressed in image coordinates is marked with superscript I.
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The relative pose consists of the relative position and attitude, tC/T and RC/T , from
the target to the camera, where the target and camera frames are denoted as T and C,
respectively. This paper adopts a model-based approach assuming the chaser has informa-
tion about the 3D wireframe model of the target in advance. Using this assumption, we
determine the relative pose by mapping feature points on the image plane to the known 3D
points on the wireframe model of the target. Using the known position of the points on the
target expressed in the target frame (pt)

T , a 3D point on the model can be expressed in the
camera frame with the relative position and attitude as follows:

(pt)
C =

xcam
ycam
zcam

 = RC/T

(
(pt)

T − (tC/T)
T
)

(1)

Note that the upper-right superscript indicates a reference frame. This 3D point in the
camera frame is mapped to a point on the image plane following the pinhole camera model
mentioned above. The feature point on the image expressed with the camera coordinates
(xcam, ycam, zcam) is depicted by

(pt)
I =

[
ximg
yimg

]
=

[
f xcam

zcam
+ px

f ycam
zcam

+ py

]
(2)

Therefore, a point defined in the target frame can be projected to the image plane
through (1) and (2). These equations also suggest that we should know the correct 3D–2D
point correspondences to estimate the relative position and attitude.

Briefly, this paper addresses the monocular pose estimation problem of an uncoopera-
tive spacecraft without an a priori pose. The pose estimation process starts from finding
feature points on the image to matching the feature points with 3D target points and
calculating the relative pose from the predicted correspondences. The following sections
introduce the detailed method used in this research.

3. Concept and Model Description

This section provides an essential concept for pose initialization: a convexity defect.
The convexity defect assists pose initialization as a visual cue to identify which point on the
model is mapped to the feature point on the image in the model matching step. This step
usually takes a RANSAC-based approach combined with an algorithm to select the most
probable correspondence candidates among the detected 2D points and 3D target points.
The algorithm suggested by this paper also takes the RANSAC-based approach and uses
the convexity defect to narrow down the candidates. The following subsections explain the
concept of convexity defect and the concepts of a contour and a convex hull required to
define the convexity defect. In addition, the standard spacecraft model considered in this
paper and assumptions to extract the correspondence candidates on the target are given.

3.1. Contour, Convex Hull, and Convexity Defect

For a given image, let us denote the set of feature points on the image plane mapped
to the points on the target to C ⊂ R2. The concepts of contour, convex hull, and convexity
defect are described within this set C. First, the contour of a set C is a boundary that
encloses all points [50]. Some of the points inside the outline do not compose the contour.
Next, the convex hull conv C is the smallest convex set that encompasses all points. Its
mathematical definition given by Boyd, et al. [51] is written as

conv C = {a1x1 + . . . + akxk | xi ∈ C, ai ≥ 0, i = 1, . . . , k, a1 + . . . + ak = 1} (3)

If a set C is not a convex set, the convex hull is not identical to its contour. In this case,
gaps exist between the contour and the convex hull, and the two points that define each
gap are considered the start and end points of the convexity defect [52]. The start and end
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are determined according to the search order of the points in the program. Finally, the point
on the contour in the gap and farthest from the convex hull is called a convexity defect [50].
Multiple convexity defects can also exist depending on the contour’s shape. Graham’s
scan [53] and Jarvis’s march [54] are the typical methods to acquire the convex hull and the
convexity defect.

Figure 2 is an example of representing each concept using a star-shaped object. The
black line is the contour, the blue dashed line is a convex hull, the yellow points are the
convexity defects, and the red boxes are the start and end points of the convexity defects.

Sensors 2022, 22, 8541 6 of 29 
 

 

𝐜𝐨𝐧𝐯 C = 𝑎 𝑥 + ⋯ + 𝑎 𝑥  | 𝑥 ∈ 𝐶, 𝑎 ≥ 0, 𝑖 = 1, … , 𝑘, 𝑎 + ⋯ + 𝑎 = 1} (3)

If a set C is not a convex set, the convex hull is not identical to its contour. In this 
case, gaps exist between the contour and the convex hull, and the two points that define 
each gap are considered the start and end points of the convexity defect [52]. The start and 
end are determined according to the search order of the points in the program. Finally, 
the point on the contour in the gap and farthest from the convex hull is called a convexity 
defect [50]. Multiple convexity defects can also exist depending on the contour’s shape. 
Graham’s scan [53] and Jarvis’s march [54] are the typical methods to acquire the convex 
hull and the convexity defect.  

Figure 2 is an example of representing each concept using a star-shaped object. The 
black line is the contour, the blue dashed line is a convex hull, the yellow points are the 
convexity defects, and the red boxes are the start and end points of the convexity defects. 

 
Figure 2. Contour, convex hull, and convexity defect examples. 

3.2. Model Description 
A standard spacecraft model used in this research is a simplified model of a typical 

spacecraft with a single solar panel on one side. The model replaces the spacecraft’s body 
and solar panel with a rectangular cylinder and a thin plate. Figure 3 shows the spacecraft 
model and graphical representations of its contour, convex hull, and convexity defects in 
three images. Note that the standard spacecraft model has no texture on the surface. The 
bold red line indicates the contour, the yellow line indicates the edge of the convex hull, 
and the blue dot indicates the convexity defect.  

 
Figure 3. Contour, convex hull, and convexity defect from standard spacecraft model images. 

Figure 4 shows a wireframe model of the spacecraft’s shape with labeled vertices. 
These vertices are the points we want to detect in the image and can be categorized as a 
body set B and a panel set P, depending on where they belong. These sets are expressed 
as P = 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥  B = 𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥 ,𝑥  

(4)

Figure 2. Contour, convex hull, and convexity defect examples.

3.2. Model Description

A standard spacecraft model used in this research is a simplified model of a typical
spacecraft with a single solar panel on one side. The model replaces the spacecraft’s body
and solar panel with a rectangular cylinder and a thin plate. Figure 3 shows the spacecraft
model and graphical representations of its contour, convex hull, and convexity defects in
three images. Note that the standard spacecraft model has no texture on the surface. The
bold red line indicates the contour, the yellow line indicates the edge of the convex hull,
and the blue dot indicates the convexity defect.
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Figure 4 shows a wireframe model of the spacecraft’s shape with labeled vertices.
These vertices are the points we want to detect in the image and can be categorized as a
body set B and a panel set P, depending on where they belong. These sets are expressed as

P = {x1,x2,x3,x4,x5,x6}
B = {x2,x3,x4,x5,x7,x8,x9,x10}

(4)
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The intersection of P and B contains the points belonging to the body and the panel,
and these points are x2, x3, x4, and x5. In contrast, the points belonging to either the body
or the panel can be depicted as

P∩ Bc = {x1,x6}
Pc ∩ B = {x7,x8,x9,x10}

(5)

These classifications are necessary to determine the candidates of 3D points that can
be the neighboring points of the convexity defect when the target model is projected to the
2D image plane.

3.3. Fundamental Assumptions

The convexity defect is utilized to reduce the search space for finding 3D–2D point
correspondences, and it requires four assumptions to select the candidate points on the
target. These four assumptions are as follows:

1. If the convex hull and the contour do not coincide, at least one convexity defect exists.
2. The convex hull and the contour become identical if there exist additional lines

connecting the points p and b, where p ∈ P∩ Bc and b ∈ Pc ∩ B
3. Given the simplified model of the spacecraft, the second assumption is further simpli-

fied as p ∈ P∩ Bc = {x1, x6} and b ∈ {x7, x10}.
4. The points p and b determine the start and end points of the convexity defect.

These assumptions effectively rule out the least possible points that map to the start
and end points of the convexity defect and thus reduce the search space for finding matches.
In addition, we demonstrated these assumptions with images taken from views. The
spacecraft model in Figure 3 also follows the assumptions. The first and second images
have p = x6 and b = x10 and the third image has p = x1 and b = x7.

4. Pose Initialization Framework
4.1. Overview of Pose Initialization

The pose initialization algorithm proposed in this paper is composed of five steps,
as shown in Figure 5. An image generated from a monocular camera first goes through
image processing. Next, the image processing step detects the target’s contour and checks
the spacecraft’s location in the image using a bounding box. In the following intermediate
pose estimation step, points composing the contour become feature points, and the contour
assists in finding the convexity defect. Then, based on the RANSAC algorithm, three points
near the convexity defect are chosen and assumed to be mapped to the predetermined 3D
points on the target. This step produces multiple correspondence sets between an image
and the standard model, which lead to multiple intermediate pose solutions computed
from the P3P algorithm. In the third step, each intermediate pose solution is exploited to
find additional correspondences, and a more precise pose is calculated by applying the
EPnP algorithm. The precise pose solutions are examined through error metrics, and the
pose with the minimum error is chosen as the image’s final pose. Finally, to make the initial
pose reliable, the pose initialization terminates when the reprojection error of the final pose
is smaller than the predetermined threshold.

We refer to the procedure from the image processing step to the initial pose verifica-
tion step as pose initialization and the procedure from the image processing step to the
pose selection step as pose determination. The pose initialization algorithm is given in
Algorithm 1. This algorithm comprises sub-algorithms for each step, and the details of the
sub-algorithms are presented in the following subsections.
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Algorithm 1: Pose initialization algorithm

Input: Image
sub-algorithm Image processing (Algorithm 2)
if the contour is detected and nonconvex then

sub-algorithm Intermediate pose estimation (Algorithm 3)
sub-algorithm Precise pose estimation (Algorithm 4)
sub-algorithm Pose selection (Algorithm 5)
sub-algorithm Initial pose verification (Algorithm 6)else
Go back to the beginning and read another image

end

Algorithm 2: Sub-algorithm for the image processing step

Blur the Image
Binarize the blurred image
Extract the contour from the binary image
Compute the bounding box from the binary image
if the contour is detected then

Get the simplified contour from the detected contour
Extract vertices from the simplified contour

else
Go back to the beginning and read another image

end

Algorithm 3: Sub-algorithm for the intermediate pose estimation step

Extract a convexity defect and the start and end points of the convexity defect
Check that the contour corresponds to case 1 or case 2
comb_2d = a set of 2D point combinations
comb_3d = a set of 3D point combinations
for num_2d = 1 to the number of triads in comb_2d

for num_3d = 1 to the number of triads in comb_3d
corr_set = correspondence between comb_2d[num_2d] and comb_3d[num_3d]
Compute intermediate poses using the P3P algorithm
Add the intermediate poses to the intermediate pose set, int_pose

end
end
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 end 

  

Algorithm 5: Sub-algorithm for the pose selection step

for l = 1 to the number of elements in prec_pose
Project the 3D points to an image plane using prec_pose[l]
Find the bounding box of the reprojected 3D points
Compute IOU
if IOU > 0.8 then

Compute rtotal,l
if rtotal,l < rtotalmin then

pose_solution = prec_pose[l]
rtotalmin= rtotal,l

end
end

end

Algorithm 6: Sub-algorithm for the initial pose verification step

if rtotalmin < rtotalthd
then

initial_pose = pose_solution
return initial_pose (end of pose initialization)

else
Go back to the beginning and read another image

end

4.2. Image Processing

Image processing aims to obtain features suitable to calculate the pose in the later
steps. We use OpenCV library functions [55] to detect the target’s contour in the image and
extract feature points from the contour.

The sub-algorithm for the image processing step is given in Algorithm 2. First, a
Gaussian filter applies to the raw image to blur it. The blurred image helps ignore the
surface texture that might induce the detector to find undesirable points. Second, image
binarization is used to detect the edges and points on the target. Although binarization
omits color and brightness information, the binarized image is suitable for extracting the
shape of the target in the image. Third, the bounding box and the contour are detected.

The algorithm chooses feature points from the detected contour. However, the contour
usually contains successive points along the contour line, while the algorithm requires a
few points discriminable from the other points. Thus, the corners of the contour are selected
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as feature points. Then, the algorithm checks whether the simplified contour composed
of the selected feature points is convex. If the simplified contour is convex, the algorithm
stops finding the relative pose and starts from the beginning of image processing with the
next image. The reason is that this algorithm cannot find 3D–2D point correspondences
if the convexity defect does not exist. On the other hand, if the simplified contour is
nonconvex–which means that there is at least one convexity defect–the algorithm moves
on to the subsequent process. Figure 6 depicts the bounding box and feature points for a
nonconvex contour and pose estimation failure image with a convex contour.
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4.3. Intermediate Pose Estimation

The intermediate pose estimation step receives detected features as input and generates
intermediate pose estimates. An intermediate pose in this paper refers to a low-accuracy
pose necessary to find a more precise pose. In this step, the detected features go through
model matching and pose determination to compute an intermediate pose from the features.

The algorithm proposed in this paper is based on RANSAC, and a convexity defect
provides a clue for identifying the 2D projection of 3D points with fewer iterations. The
algorithm assumes group correspondences by constructing 3D and 2D point combinations.
Then, it employs the P3P algorithm to estimate an intermediate pose using the correspon-
dences. Since the P3P algorithm requires three correspondences, the 2D and 3D point
combinations have three elements.

Algorithm 3 shows the sub-algorithm for the intermediate pose estimation step. First,
to construct a 2D point combination, a convexity defect and its start and end points are
detected from the simplified contour. Then, two 2D points are selected from the start and
the end points of the convexity defect, and the other 2D point is selected from the point
near the start or end point.

Second, this 2D point combination is assumed to correspond to one of the 3D point
combinations. The 3D point combinations are predetermined before the algorithm runs.
Based on the assumptions introduced in Section 3.3, two candidate 3D points corresponding
to the start and end points of the convexity defect are assumed. In addition, a 3D point
corresponding to the other 2D point is assumed by considering the model’s geometry. The
2D and 3D point combinations used in this paper are given in Table 1.

When constructing the 2D point combination, the neighboring point of the start or
end point is determined by the number of detected corners between the start point and end
point, as shown in Figure 7. In this figure, the start and end points of the convexity defect
are designated as p1 and p3. If there are more than two points between them, which is case
1, the point not a convexity defect becomes p2 and completes the feature point combination.
Otherwise, in case 2, the neighboring point of the start point or end point, which is p2,1 or
p2,2, is selected to consider all possibilities. The number of feature point combinations is
one in case 1 since p2 is obvious, whereas the number of combinations in case 2 is two since
we cannot predict which neighboring point will provide a more precise solution.
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Table 1. 2D and 3D point combinations in two cases and the number of iterations to test correspondences.

Case 1 Case 2

2D point
combinations (p1, p2, p3)

(
p1, p2,1, p3

)
or
(

p1, p2,2, p3

)
3D point

combinations

{x1,x6,x7}, {x7,x10,x1}, {x6,x1,x10},
{x10,x7,x6}, {x7,x6,x1}, {x1,x10,x7},

{x10,x1,x6}, {x6,x7,x10}

{x1, x6, x10}, {x6, x1, x7}, {x1, x3, x10},
{x6, x4, x7}, {x7, x10, x6}, {x10, x7, x1},
{x10, x6, x1}, {x7, x1, x6}, {x10, x3, x1},
{x7, x4, x6}, {x6, x10, x7}, {x1, x7, x10}

Number of
iterations 8 2 × 12 = 24
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Finally, after assuming the 3D–2D point correspondences, intermediate poses are
calculated using the P3P algorithm. It gives four candidate poses at maximum, and each
pose is separately processed until their errors are compared to each other to rule out false
ones in the pose selection step. Section 4.5 provides more explanation for pose selection
and error metrics.

4.4. Precise Pose Estimation

The precise pose estimation step is designed to refine the intermediate pose. The
intermediate pose calculated in the previous step expands the 3D–2D point correspondences
to acquire a more precise pose. The target points are projected to the image plane using
the intrinsic parameters of the camera and the extrinsic parameters obtained from the
intermediate pose. This method is also known as reprojection, and the points on the image
generated from reprojection are considered reprojected points. Using these points, we
can define a reprojection error as the distance between a reprojected point and the nearest
feature point. It is given by,

rij =
√
(u3D,i − uimg,j)

2 + (v3D,i − vimg,j)
2, i = 1, 2, . . . , n, j = 1, 2, . . . , m (6)

where u3D,i and v3D,i represent the coordinates of the ith reprojected point, uimg,j and vimg,j
are the coordinates of the jth feature point, and n and m are the total number of target points
and feature points, respectively. If the intermediate pose is accurate, some reprojected
points coincide with the feature points–except the occluded ones. This situation can be
expressed as

rij = 0 (7)

Otherwise, if the reprojected point and the feature point are in correspondence but do
not coincide, the reprojection error has a value less than or equal to the reference value, rref:

rij ≤ rref (8)
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The 3D and 2D points combination is added to the existing 3D–2D point correspon-
dences in this case.

If the reprojection error is greater than the reference value, the two points are consid-
ered different:

rij > rref (9)

Figure 8 shows the feature points having a match before and after expanding
the correspondences.
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If the above process finds more than one correspondence, more than four pairs of
3D–2D point correspondences are known. These correspondences are used for precise
pose estimation. The EPnP, which gives a more accurate solution than the P3P by using
more correspondences, is employed this time since the requirement on the number of corre-
spondences is now satisfied. In this way, each hypothesized correspondence determines a
precise pose. The sub-algorithm for precise pose estimation is described in Algorithm 4.

4.5. Pose Selection

So far, the poses are estimated from the candidate correspondences to consider possi-
bilities. The pose selection step determines the best estimation of the pose using two criteria.
The first one is a bounding box similarity. To compare the bounding box similarity, we use
a precise pose estimate to reproject the target points onto the image plane and compute the
reprojected bounding box from these points. The similarity between the reprojected bound-
ing box and the feature point bounding box is determined using Intersection Over Union
(IOU), which is frequently used as a performance measure in object detection problems [56].
IOU represents the similarity as an overlapping percentage, which is depicted by

IOU =
(Area of the intersection)

(Area of the union)
(10)

This criterion rules out the pose estimates when reprojected points significantly de-
viate from the bounding box computed from the feature points. In Section 5, the pose
estimates with IOU less than 0.8 are regarded as inaccurate and are rejected in the final
pose candidates.

The pose estimates that satisfy the bounding box similarity criterion are examined
for the second criterion, a sum of reprojection errors. The formulation for a reprojection
error applies the same as in the previous step. However, in this step, we add the errors
from i = 1 to i = k correspondences to compare with other estimates’ errors. The sum of the
reprojection error is given by

rtotal =

k

∑
i = 1

√
(u3D,i − uimg,i)

2 + (v3D,i − vimg,i)
2, k < n (11)
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The reason for using k points is that the reprojection error might have a considerable
value when some of the points are occluded, even though the estimation is accurate.

For example, Figure 9, describing the reprojected points and feature points, indicates
that some reprojected points do not match when they are not at the corner of the contour.
Therefore, considering the possible occlusions, k points instead of the total number of target
points are used for calculating the sum of reprojection errors, and the points to be used are
selected in the order of smallest reprojection error. The number of selected points can differ
according to the camera’s angle and the target’s shape, and we use five points, half of the
total target points. Finally, the estimated pose with the smallest sum of reprojection errors
is determined as the final pose for the given image. Algorithm 5 shows the sub-algorithm
for the pose selection step.
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4.6. Initial Pose Verification

The last step of pose initialization is to examine whether the finalized pose is accurate.
This step is necessary to find a reliable initial pose in the pose initialization step and to
move on to the pose tracking. Algorithm 6 describes the sub-algorithm for the initial
pose verification step. The decision is made from the sum of the reprojection errors that
effectively represents the estimation quality. If the sum of the reprojection errors computed
at the previous step is smaller than a threshold, rtotalthd

, the determined pose is assumed to
be accurate, and the pose initialization is finished. On the other hand, if the determined
pose has a reprojection error larger than the threshold, the pose initialization steps are
repeated with the next image.

5. Simulations
5.1. Simulation Environments and Performance Measures

Pose estimation simulations are conducted to examine the performance and analyze
the characteristics of the proposed algorithm. The simulations use image data generated
by 3D software, Blender [57], with the camera setting given in Table 2. The camera setting
is determined by referring to the Digital Video System (DVS) used for the PRISMA mis-
sion [58]. Since the simulations aim to analyze the performance depending on distances
and attitudes, the image data for the simulations are generated by rotating the camera
around a target spacecraft model. The camera is at (0, ρ, 0) in the target coordinates at the
beginning, where ρ represents the distance from the target to the camera. Then, it moves
10◦ per each axis: from 0◦ to 360◦ in b̂3 direction, from−90◦ to 90◦ in b̂1 direction, and from
0◦ to 360◦ in b̂2 direction with the rotation sequence of 3-1-2. In this way, 22,104 images are
generated for each test case.
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Table 2. Camera specification used in simulations.

Pixel Array Size Focal Length Pixel Size Field of View

2048 × 2048 30 mm 7.4 µm× 7.4 µm 14

As mentioned in Section 3, the standard spacecraft model is designed to represent
a spacecraft with one solar panel on a side, and its dimensions used in the simulations
are described in Table 3. For the given dimensions, the pose estimation with the camera
specifications in Table 2 shows relatively accurate results within 20 m to 75 m distance.

Table 3. Dimensional properties of a standard spacecraft model.

Body Solar Panel

3 m × 1.5 m × 1.5 m 3 m × 4.5 m × 0.05 m

We use the apparent angular size to describe the degree of proximity between the
spacecraft instead of the distance between them. When a specific target spacecraft for
a mission is determined, only the distance between the target spacecraft and the chaser
spacecraft affects the size of the target in an image because the dimensions of the target
spacecraft have fixed values. However, the standard spacecraft model used in this paper
does not represent a specific target spacecraft but a typical spacecraft with a single solar
panel, and it can have dimensions different from the values given in Table 3; accordingly, the
target’s size in an image can also change, even if the distance between the spacecraft is the
same. Therefore, we adopt apparent angular size to consider that the model’s dimensions
might change.

We use the apparent angular size from Woffinden and Geller [59], in which both
angles-only navigation and pose estimation for rendezvous missions have been studied.
This study modeled a target as a bounding sphere that shares the centroid with the target.
Using the known diameter of this sphere Dtarget and the apparent angular size θtarget in an
image plane, the relative distance ρ between them can be depicted by

ρ =
Dtarget

θtarget
(12)

As (12) suggests, the relative distance and the target scale influence each other. Thus,
we set the apparent angular size θtarget, which practically affects the pose estimation
performance, as a metric that shows the degree of proximity within the same spacecraft
model. This metric is expressed as

θtarget =
Dtarget

ρ
(13)

The performance of the algorithm is analyzed with four measures. A translation error
and an attitude error represent the performance of the pose determination. We follow the
definitions in Sharma and D’Amico [60], which are given by

ET =
|tC| − |t̂C|
|tC|

·100 [%] (14)

ER = 2 cos−1 qe,4 (15)

where
¯
qe =

¯
q⊗

ˆ̄
q
−1

=

[
qe
qe,4

]
(16)
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The other two measures are the pass rate and the outlier ratio, describing the perfor-
mance of the pose initialization algorithm given in Algorithm 1. The pass rate represents
the ratio of images that passes the pose initialization algorithm among all images taken
from the same relative distance. It is depicted by

npass

ntot
·100·[%] (17)

where ntot is the number of test cases that have the same relative distance, and npass is the
number of test cases that pass pose initialization.

Finally, the outlier ratio shows the percentage of faulty poses that passes the sub-
algorithm for initial pose verification described in Algorithm 6. It is expressed as

nout

npass
·100·[%] (18)

where nout is the number of faulty poses. When using this ratio as a performance measure,
the pose estimation result with more than 5% position error or more than 10◦ attitude error
is assumed to be the outlier.

The simulation is conducted based on four assumptions. First, the target spacecraft is
always in the image, even if some parts are out of view when the relative distance is short.
Secondly, any other celestial bodies and the Earth do not appear in the image; thus, the
image’s background is uniformly black. Thirdly, the light source is fixed to one location
when generating images. Finally, images have no distortion, and the camera’s intrinsic
parameters are known in advance.

5.2. Algorithm Effectiveness Assessment

Before analyzing the performance of the proposed pose estimation algorithm, a pre-
liminary simulation is designed to evaluate the effectiveness of the proposed algorithm.
This simulation is subdivided into two simulations. The first sub-simulation assesses
the effectiveness of model matching by comparing our algorithm’s results to that of the
RANSAC algorithm not employing visual cues. The second sub-simulation assesses the
effectiveness of our algorithm’s structure. For this sub-simulation, a simplified algorithm is
designed to analyze the effectiveness of the integration.

5.2.1. Effectiveness Assessment of Model Matching

Not using visual cues, the RANSAC algorithm compares all combinations of 3D
and 2D points in the first sub-simulation. This algorithm randomly selects four points
each from the given feature points and the known 3D points on the target model and
assumes a correspondence between them. Then, based on this correspondence, the EPnP
algorithm calculates a pose. Since the RANSAC algorithm uses the EPnP algorithm, we
use four correspondences, which is the minimum number of correspondences required.
Finally, when a pose has an IOU higher than 0.85 and the minimum reprojection error, it
is selected as the pose for the given image. Briefly, the intermediate pose estimation step
is removed from the proposed algorithm, and the precise pose estimation step considers
all correspondences.

The proposed pose estimation algorithm and the RANSAC algorithm are tested for
all viewpoints and the same apparent angular size of 15.7◦ corresponding to the relative
distance of 30 m. The accuracy of the pose determination is computed using (14) and (15).
However, if an algorithm fails to produce a pose from the given image, the relative pose
error is expressed with a threshold value for the pose error. We assume 10% for the position
error threshold and 100◦ for the attitude error threshold.

The resulting position and attitude errors from the two algorithms are shown in
Figures 10 and 11, respectively. “Convexity Defect-based Algorithm (CDA)” denotes our
algorithm, and “RANSAC” indicates the RANSAC algorithm. The graphical representa-
tions are generated by interpolating the pose errors at all viewpoints and plotting them on
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the 2D plane using the azimuth and elevation. As the error increases from 0 to the threshold
value, the color changes from blue to red.
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Figure 10 indicates that the RANSAC algorithm has a low pose determination error
in most viewpoints. However, there are regions with the maximum position error. The
maximum position error appears because the target’s panel occludes the body, and thus a
small number of points on the same plane are detected. This results in a low estimation
accuracy since the EPnP algorithm’s accuracy drops when detected points are coplanar in
3D, and the number of points is less than 5 [61,62]. In addition, in Figure 11, the relative
attitude error of RANSAC is inaccurate in more regions than the relative position error
in Figure 10 because of pose ambiguity. Compared to RANSAC, CDA shows inaccurate
results in more regions, as shown in Figures 10 and 11. It also has a particular error pattern
that appears when it fails to detect convexity defects. A more specific analysis of the pattern
is presented in Section 5.3.1.

Table 4 summarizes the estimation results. The time in the table is the execution time
when the algorithm runs on an Intel Core i7-10700 CPU @ 2.90 GHz with 16 GB RAM. The
relative position and relative attitude in the table represent the statistical values of relative
position and attitude errors. The statistic values consider the errors of poses that passed
the pose verification step, and outliers are excluded. As the pose determination results in
Figures 10 and 11 reveal, the pass rate for RANSAC is higher than for CDA, but the outlier
ratio is also higher.

Furthermore, RANSAC’s errors are similar to or worse than CDA’s since it uses only
four points in the pose calculation. If RANSAC uses more than four points to improve
its accuracy, the execution time will increase. In contrast, CDA requires about 50 times
less execution time than RANSAC while providing higher relative attitude accuracy and
similar relative position accuracy. Thus, the results indicate that CDA is an effective and
time-efficient algorithm.
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Table 4. Execution time, pass rate, outlier ratio, and error statistics for different algorithms.

Algorithm Time
(s)

Pass Rate
(%)

Outlier
Ratio (%)

Relative Position Relative Attitude

µ (%) 1σ (%) µ (◦) 1σ (◦)

CDA 5449 80.86 2.37 0.96 0.22 0.68 0.38
RANSAC 303,963 86.06 3.27 0.94 0.32 0.78 0.57

CDA-simple 4696 80.75 2.45 0.97 0.42 0.83 0.48

5.2.2. Effectiveness Assessment of Algorithm’s Structure

In the second sub-simulation, the effectiveness of the Convexity Defect-based algo-
rithm’s structure is verified by comparing it to a more simplified algorithm. The simplified
algorithm does not have the precise pose estimation step. Accordingly, the pose is deter-
mined to be one of the solutions of the P3P algorithm with a minimum reprojection error.

The simplified algorithm is denoted “CDA-simple.” Figures 10 and 11 reveal that the
pose determination accuracy for CDA and CDA-simple is similar and has a similar error
distribution. A minor difference is that the CDA has a more homogeneous position error
distribution than the CDA-simple, as shown in Figure 10.

Table 4 explains why the precise pose estimation step, included only in CDA, is neces-
sary. The total execution time difference between the two algorithms is 753 s. Considering
that one set of simulations comprises 22,104 images, CDA takes about 0.034 s per image
more than CDA-simple by including the precise pose estimation step. By compromising
this time, CDA can achieve a more accurate pose estimation. The pass rate increases by
0.11% in CDA and has a lower outlier ratio. In addition, the statistical errors for relative
position and attitude reveal that CDA has a lower mean and standard deviation of errors.
Hence, the second sub-simulation shows that CDA can enhance pose estimation accuracy
without sacrificing computational efficiency as much as RANSAC.

5.3. Simulation Scenarios for Performance Analysis

After the preliminary simulation, three more simulations are designed to test the pose
initialization performance of our algorithm in different conditions. In the first scenario,
the performance is examined under five apparent angular sizes, from 47.1◦ to 6.3◦, and
all viewpoints. The second scenario tests the pose initialization and determination per-
formances using other spacecraft shapes. This scenario uses spacecraft models with a
panel shorter and longer than the standard model’s panel and models with two and four
panels. Finally, the algorithm is tested using a textured spacecraft model that generates
high-contrast images depending on the direction of light in the last scenario. The model’s
body is covered with MLI, and the solar panel is covered with a black reflective material.
Images representing the scenarios are given in Figure 12.

5.3.1. Pose Estimation Performance Depending on Relative Poses

The first test scenario analyzes our algorithm’s performance depending on relative
poses. It uses image data from five different relative distances. The tested apparent angular
sizes are 47.1◦, 23.5◦, 15.7◦, 9.4◦, and 6.3◦, and they correspond to the relative distances of
10 m, 20 m, 30 m, 50 m, and 75 m for the spacecraft with the scale given in Table 3.

We can notice the effect of apparent angular size on the pose determination accuracy
in Figures 13 and 14. The error grows as the angular size decreases due to the low pixel
resolution. In addition, the smaller the angular size, the more challenging it is for the
algorithm to distinguish the different orientations with 2D points in similar locations when
projected. This result appears because the algorithm uses the points on the contour, and the
standard spacecraft model has symmetry. Moreover, the sum of reprojection errors, which
reflects a few points’ reprojection errors, makes it difficult to determine an accurate pose.



Sensors 2022, 22, 8541 18 of 28

Sensors 2022, 22, 8541 18 of 29 
 

 

high-contrast images depending on the direction of light in the last scenario. The model’s 
body is covered with MLI, and the solar panel is covered with a black reflective material. 
Images representing the scenarios are given in Figure 12.  

    
(a) 

    
(b) 

    
(c) 

Figure 12. Example images for each scenario: (a) scenario 1 (images with different relative poses), 
(b) scenario 2 (images with different lengths and numbers of the panel), and (c) scenario 3 (images 
with textured-surface spacecraft). 

5.3.1. Pose Estimation Performance Depending on Relative Poses 
The first test scenario analyzes our algorithm’s performance depending on relative 

poses. It uses image data from five different relative distances. The tested apparent angu-
lar sizes are 47.1°, 23.5°, 15.7°, 9.4°, and 6.3°, and they correspond to the relative distances 
of 10 m, 20 m, 30 m, 50 m, and 75 m for the spacecraft with the scale given in Table 3. 

We can notice the effect of apparent angular size on the pose determination accuracy 
in Figures 13 and 14. The error grows as the angular size decreases due to the low pixel 
resolution. In addition, the smaller the angular size, the more challenging it is for the al-
gorithm to distinguish the different orientations with 2D points in similar locations when 
projected. This result appears because the algorithm uses the points on the contour, and 
the standard spacecraft model has symmetry. Moreover, the sum of reprojection errors, 
which reflects a few points’ reprojection errors, makes it difficult to determine an accurate 
pose. 

Figure 12. Example images for each scenario: (a) scenario 1 (images with different relative poses),
(b) scenario 2 (images with different lengths and numbers of the panel), and (c) scenario 3 (images
with textured-surface spacecraft).

Sensors 2022, 22, 8541 19 of 29 
 

 

(a) (b) (c) 

 

(d) (e) 

 

Figure 13. Relative position error for different relative poses. The position errors over 10% are inte-
grated into the maximum value of 10%. (a) 𝜃 = 47.1°, (b) 𝜃 = 23.5°, (c) 𝜃 = 15.7°, 
(d) 𝜃 = 9.4°, (e) 𝜃 = 6.3°. 
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Figure 14. Relative attitude errors for different relative poses. The attitude errors over 100° are inte-
grated to the maximum value of 100°. (a) 𝜃 = 47.1°, (b) 𝜃 = 23.5°, (c) 𝜃 = 15.7°, (d) 𝜃 = 9.4°, (e) 𝜃 = 6.3°. 

Figure 13. Relative position error for different relative poses. The position errors over 10% are
integrated into the maximum value of 10%. (a) θtarget = 47.1◦, (b) θtarget = 23.5◦, (c) θtarget = 15.7◦,
(d) θtarget = 9.4◦, (e) θtarget = 6.3◦.
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(d) θtarget = 9.4◦, (e) θtarget = 6.3◦.

In addition, the error also escalates if the two spacecraft are so close that the camera’s
field of view cannot capture every part of the target. More specifically, when the target has
an apparent angular size larger than about double the field of view, some parts are not
shown in the image, which makes feature point detection difficult. Further, the parts far
from the center can also be invisible when the target spacecraft appears at the periphery of
the image. Therefore, the distance between the spacecraft and the line of sight are essential
factors that affect the pose determination performance.

Furthermore, the relative position and attitude errors in Figures 13 and 14 show that
some regions have threshold values for position and attitude errors, which indicates that
the poses are not determined in these regions. These regions are categorized into four parts
according to the causes of pose determination failure, as shown in Figure 15. Firstly, the
error increases near ±90◦ of elevation marked ‘A’ in Figure 15. In this part, the b̂1 and
b̂2 axes of the target spacecraft are nearly parallel to the image plane, and it is difficult
to distinguish the body and the panel. Secondly, the error grows near ±90◦ of azimuth
marked ‘B’ since the target’s contour becomes convex and the line connecting p and b in
the assumptions presented in Section 3.3 is always inside or overlaps with the contour.
The third part, ‘C,’ is where the elevation is zero. In this part, the solar panel is nearly
perpendicular to the image plane and projected to a line. Lastly, a sinusoidal region is
discovered in Figures 13 and 14 and marked ‘D’ in Figure 15. The convexity defect is also
invisible in this part because a plane composed of the edge of the solar panel x1x6 and
the focal point contains the edge of the body x7x10. As a result, the two edges look like
a connected line in the image. These failure parts indicate that the pose determination
accuracy deteriorates when the convexity defect does not appear in the target image.
Moreover, it indicates which viewpoint fails to find the convexity defect. Figure 16 shows
example images from the failure parts.
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Figure 15. Pose determination failure parts with significant errors. A: ±90◦ of elevation region,
B: ±90◦ of azimuth region, C: zero elevation region, D: the sinusoidal region in the diagram.

Sensors 2022, 22, 8541 20 of 29 
 

 

In addition, the error also escalates if the two spacecraft are so close that the camera’s 
field of view cannot capture every part of the target. More specifically, when the target 
has an apparent angular size larger than about double the field of view, some parts are 
not shown in the image, which makes feature point detection difficult. Further, the parts 
far from the center can also be invisible when the target spacecraft appears at the periph-
ery of the image. Therefore, the distance between the spacecraft and the line of sight are 
essential factors that affect the pose determination performance. 

Furthermore, the relative position and attitude errors in Figures 13 and 14 show that 
some regions have threshold values for position and attitude errors, which indicates that 
the poses are not determined in these regions. These regions are categorized into four 
parts according to the causes of pose determination failure, as shown in Figure 15. Firstly, 
the error increases near 90° of elevation marked ‘A’ in Figure 15. In this part, the 𝐛  
and 𝐛  axes of the target spacecraft are nearly parallel to the image plane, and it is diffi-
cult to distinguish the body and the panel. Secondly, the error grows near 90° of azi-
muth marked ‘B’ since the target’s contour becomes convex and the line connecting 𝑝 
and 𝑏 in the assumptions presented in Section 3.3 is always inside or overlaps with the 
contour. The third part, ‘C,’ is where the elevation is zero. In this part, the solar panel is 
nearly perpendicular to the image plane and projected to a line. Lastly, a sinusoidal region 
is discovered in Figures 13 and 14 and marked ‘D’ in Figure 15. The convexity defect is 
also invisible in this part because a plane composed of the edge of the solar panel 𝑥 𝑥  
and the focal point contains the edge of the body 𝑥 𝑥 . As a result, the two edges look 
like a connected line in the image. These failure parts indicate that the pose determination 
accuracy deteriorates when the convexity defect does not appear in the target image. 
Moreover, it indicates which viewpoint fails to find the convexity defect. Figure 16 shows 
example images from the failure parts. 

 
Figure 15. Pose determination failure parts with significant errors. A: 90° of elevation region, B: 90°of azimuth region, C: zero elevation region, D: the sinusoidal region in the diagram. 

  
(a) 

  
(b) 

Sensors 2022, 22, 8541 21 of 29 
 

 

  
(c) 

  
(d) 

Figure 16. Example images for failure sections: (a) failure section A, (b) failure section B, (c) failure 
section C, (d) failure section D. 

Next, the pose initialization performance is checked with the pass rate and the outlier 
ratio and analyzed according to apparent angular size. The pose initialization algorithm 
has a final step to verify the estimated pose, and the pose with less than a reprojection 
error criterion can pass this step. The reprojection error criterion is assumed to be 400 
divided by the five relative distances to reflect a change of reprojection error. However, if 
this criterion is expressed in a pixel unit, it filters out more poses when the relative dis-
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Next, the pose initialization performance is checked with the pass rate and the outlier
ratio and analyzed according to apparent angular size. The pose initialization algorithm
has a final step to verify the estimated pose, and the pose with less than a reprojection error
criterion can pass this step. The reprojection error criterion is assumed to be 400 divided by
the five relative distances to reflect a change of reprojection error. However, if this criterion
is expressed in a pixel unit, it filters out more poses when the relative distance is shorter.
With this distance-dependent criterion, the pass rate and the outlier ratio describe the pose
initialization performance according to relative poses.

The first measure, the pass rate, indicates the ratio of getting a good pose solution
that passes the sub-algorithm for the initial pose verification step given in Algorithm 6.
As Table 5 describes, the pass rate drops when the inter-satellite distance is too short to
picture the whole spacecraft or too far to recognize it in high resolution. These results are
consistent with the pose determination results.

Table 5. Pass rate and outlier ratio with different apparent angular sizes.

Apparent Angular Size 47.1◦ 23.5◦ 15.7◦ 9.4◦ 6.3◦

Pass rate (%) 6.91 84.36 80.86 66.86 46.10
Outlier ratio (%) 4.25 2.23 2.37 2.46 3.57
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The second measure is the number of outliers. Table 5 shows the percentages of
outliers among the initialized poses. For the analysis, the estimated pose with more than
10◦ of relative attitude error or more than 5% of position error is regarded as an outlier.
These values are much larger than three standard deviations of the mean for total errors,
including outliers’ errors. With these conditions, Table 5 implies that outliers increase when
the inter-satellite distance is extremely short or extremely far.

Finally, Table 6 shows the relative pose solutions without outliers depending on
apparent angular size. In this table, both the position and attitude errors have a larger mean
and standard deviation as the chaser spacecraft is farther apart from the target spacecraft.
The mean values for these results without outliers are smaller than 1.1◦ for the relative
attitude and 1.4% for the position.

Table 6. Pose initialization error statistics without outliers.

Apparent Angular Size 47.1◦ 23.5◦ 15.7◦ 9.4◦ 6.3◦

Relative position µ (%) 0.94 0.89 0.96 1.12 1.32
1σ (%) 0.30 0.19 0.22 0.27 0.34

Relative attitude
µ (◦) 0.55 0.62 0.68 0.85 1.10
1σ (◦) 0.60 0.37 0.38 0.45 0.57

5.3.2. Pose Estimation Performance Depending on the Shape of a Spacecraft

The third scenario is designed to verify whether the proposed algorithm can accurately
estimate the relative pose of a spacecraft that is different from the standard spacecraft used
for developing the algorithm. Specifically, this scenario analyzes the effect of the panel
length on the pose estimation performance and the effect of the number of panels on the
performance. First, the algorithm is applied to spacecraft with different sizes of solar panels.
The panel lengths are expressed as the width ratio between the solar panel and the body to
generate the value independent of the spacecraft’s size. The width ratio is expressed as

Wbp =
(Width of the panel)
(Width of the body)

(19)

The standard spacecraft model has a width ratio of 2, and the other two test cases have
a width ratio of 1 and 3. Figure 17 describes the position error, and Figure 18 describes the
attitude error for the three width ratios at a fixed relative distance. The most distinctive
difference between the results in these figures is the elevation range of the sinusoidal failure
line, marked as ‘D’ in Figure 15. The short-panel case has a higher maximum elevation
than the long-panel case: specific values are 46.5◦, 28◦, and 20◦ for each.

The statistical results in Table 7 indicate no significant difference in pose initialization
performance. The pass rate difference between the cases is less than 1.12%, and the outlier
ratio difference is less than 0.66%. Therefore, we can use this algorithm even though the
length of the panel is varied.

Sensors 2022, 22, 8541 22 of 29 
 

 

spacecraft used for developing the algorithm. Specifically, this scenario analyzes the effect 
of the panel length on the pose estimation performance and the effect of the number of 
panels on the performance. First, the algorithm is applied to spacecraft with different sizes 
of solar panels. The panel lengths are expressed as the width ratio between the solar panel 
and the body to generate the value independent of the spacecraft’s size. The width ratio 
is expressed as W = (Width of the panel)(Width of the body)  (19) 

The standard spacecraft model has a width ratio of 2, and the other two test cases 
have a width ratio of 1 and 3. Figure 17 describes the position error, and Figure 18 de-
scribes the attitude error for the three width ratios at a fixed relative distance. The most 
distinctive difference between the results in these figures is the elevation range of the si-
nusoidal failure line, marked as ‘D’ in Figure 15. The short-panel case has a higher maxi-
mum elevation than the long-panel case: specific values are 46.5°, 28°, and 20° for each. 

(a) (b) (c) 

Figure 17. Relative position errors with variable size solar panels (|𝒓| = 30 m): (a) W = 1, (b) W = 2, (c) W = 3. 

(a) (b) (c) 

Figure 18. Relative attitude errors with variable size solar panels (|𝒓| = 30 m): (a) W = 1, (b) W = 2, (c) W = 3. 

The statistical results in Table 7 indicate no significant difference in pose initialization 
performance. The pass rate difference between the cases is less than 1.12%, and the outlier 
ratio difference is less than 0.66%. Therefore, we can use this algorithm even though the 
length of the panel is varied. 

  

Figure 17. Relative position errors with variable size solar panels (|r| = 30 m): (a) Wbp = 1,
(b) Wbp = 2, (c) Wbp = 3.



Sensors 2022, 22, 8541 22 of 28

Sensors 2022, 22, 8541 22 of 29 
 

 

spacecraft used for developing the algorithm. Specifically, this scenario analyzes the effect 
of the panel length on the pose estimation performance and the effect of the number of 
panels on the performance. First, the algorithm is applied to spacecraft with different sizes 
of solar panels. The panel lengths are expressed as the width ratio between the solar panel 
and the body to generate the value independent of the spacecraft’s size. The width ratio 
is expressed as W = (Width of the panel)(Width of the body)  (19) 

The standard spacecraft model has a width ratio of 2, and the other two test cases 
have a width ratio of 1 and 3. Figure 17 describes the position error, and Figure 18 de-
scribes the attitude error for the three width ratios at a fixed relative distance. The most 
distinctive difference between the results in these figures is the elevation range of the si-
nusoidal failure line, marked as ‘D’ in Figure 15. The short-panel case has a higher maxi-
mum elevation than the long-panel case: specific values are 46.5°, 28°, and 20° for each. 

(a) (b) (c) 

Figure 17. Relative position errors with variable size solar panels (|𝒓| = 30 m): (a) W = 1, (b) W = 2, (c) W = 3. 

(a) (b) (c) 

Figure 18. Relative attitude errors with variable size solar panels (|𝒓| = 30 m): (a) W = 1, (b) W = 2, (c) W = 3. 

The statistical results in Table 7 indicate no significant difference in pose initialization 
performance. The pass rate difference between the cases is less than 1.12%, and the outlier 
ratio difference is less than 0.66%. Therefore, we can use this algorithm even though the 
length of the panel is varied. 

  

Figure 18. Relative attitude errors with variable size solar panels (|r| = 30 m): (a) Wbp = 1, (b)
Wbp = 2, (c) Wbp = 3.

Table 7. Pass rate and outlier ratio with the variable size of solar panels (|r| = 30 m).

Wbp 1 2 3

Pass rate (%) 79.74 80.86 79.77
Outlier ratio (%) 2.87 2.37 2.21

Second, the pose initialization algorithm is examined using images of the spacecraft
with two and four panels, as shown in Figure 10. Due to symmetry along the b̂3 axis, some
attitudes generate the same image. Unless the model embodies a recognizable structure
that breaks the symmetry, the pose initialization algorithm cannot determine the attitude.

Although the shape of the target spacecraft is changed, the algorithm can estimate the
pose of these spacecraft because we can observe the convexity defect on the contour between
the panel and the body. Thus, the same 2D and 3D point combinations in Table 1 are used
for model matching. The only difference is that we need to match and compare more
cases than we do with the standard model because more than two convexity defects can
be detected from these spacecraft. Accordingly, the number of feature point combinations
increases. To improve the pose determination accuracy for symmetric spacecraft with four
panels, we also considered convexity defects detected between panels. This convexity
defect is not observed in the other two cases. Accordingly, the search space increases more
than in the other two cases, which is checked through the increased execution time, and
Table 8 shows the results, averaging the five repetitive execution times.

Table 8. Computational time, pass rate, and outlier ratio for symmetric spacecraft (|r| = 30 m).

No. Panels 1 2 4

Total execution time (s) 5449 6477 9666
Pass rate (%) 80.86 73.76 68.89

Outlier ratio (%) 0.34 1.39 2.02

Figures 19 and 20 depict the pose determination accuracy depending on the number of
panels. The most distinctive change is that both figures’ relative attitude determination re-
sults described in (b) fail in most regions. This change occurs due to the symmetry along the
b̂3 axis. On the other hand, if we investigate pose determination errors along the b̂1 and b̂2
axes, the relative attitude errors are significantly decreased, and their distribution is similar
to the position error distribution, as shown in (a) and (c). These results indicate that the
pose initialization algorithm can find a three degrees of freedom relative position and a
two degrees of freedom relative attitude when applied to a symmetric spacecraft.
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The pose determination failure regions in 2-panel and 4-panel cases can also be
categorized into four parts, as in the standard spacecraft model’s result in Figure 15.
Figures 21 and 22 represent the images of the target spacecraft from the pose determination
failure parts. The 2-panel case has the same failure parts as the 1-panel case except for
part D because more than one convexity defect can be observed in this shape, and when
one panel fails to provide a convexity defect, the other panel can generate it. Similarly,
the 4-panel case also has failure parts corresponding to parts A, B, and C, as shown in
Figure 20. In this case, part D is not observed, and the areas in part B with elevations from
approximately 10◦ to 60◦ and −10◦ to −60◦ have smaller errors. It is because other panels
provide valid convexity defects, which is for the same reason as in the 2-panel case.
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section B, (c) failure section C, (d) failure section D.

5.3.3. Pose Estimation Performance with Textured-Surface Spacecraft

The final scenario uses textured spacecraft to quantify the performance degradation
due to the light conditions. The textured model in this research includes a solar panel
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with black gloss on each side and a body covered with MLI, as shown in Figure 10. These
textures give high contrast to images depending on the arrangement of the light source, the
model, and the camera. The texture of the solar panel is designed to have zero transparency
and a roughness of 0.4 using the principled BSDF shader in the 3D software Blender, and
the texture of MLI is obtained from the IceSat2 model provided on the NASA 3D Resources
website [63].
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Figure 22. Example images for failure sections of 4-panel spacecraft: (a) failure section A, (b) failure
section B, (c) failure section C, (d) failure section D.

The pose determination error is shown in Figure 23. The results indicate that the
spacecraft’s surface characteristic decreases the pose estimation accuracy. In particular,
the relative attitudes about −60◦ to 60◦ of azimuth and about 0◦ to −90◦ of elevation
have noticeable degradation in the pose determination accuracy. The pass rate also drops
because of the degradation, as Table 9 suggests. The cause of these results is that the feature
detector cannot distinguish the solar panel and the spacecraft’s body from the image’s
background when the sunlight does not reach them. On top of that, the rough surface of
the spacecraft, covered with MLI, causes undesired extraction of MLI patterns instead of
the spacecraft’s contour in image processing. Table 9 also describes the outlier ratios of this
scenario, which increase from the ratios in the first scenario. However, the increase of the
outlier ratios is less than 1%, which suggests that the pose initialization algorithm correctly
filters out the wrong pose solutions.
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Pass rate (%) 51.41 56.04 50.63
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In summary, the pose determination accuracy decreases due to the surface material’s
reflectance and roughness. In contrast, the pose initialization algorithm can verify the
correct poses to finish the initialization process.

6. Conclusions

This paper proposed a pose initialization algorithm to determine the relative pose of
an uncooperative spacecraft without prior pose information. This algorithm was developed
for a chaser spacecraft employing a monocular camera. Based on the assumption that the
chaser spacecraft knows the model of a target spacecraft, the relative pose from the target
to the chaser is computed using a convexity defect as a visual cue for finding 3D–2D point
correspondences. The algorithm determines a relative pose from an image and finishes
pose initialization when the pose has a small sum of reprojection errors.

A preliminary simulation demonstrated the effectiveness of the designed model
matching algorithm and the structure of the algorithm. Then, the pose determination
accuracy of the algorithm was tested with five relative distances and all attitudes. The
error increased when the distance between the spacecraft was extremely short or extremely
far. Furthermore, pose determination failed when a convexity defect was not detected.
In the second test scenario, the algorithm correctly estimated the relative pose of other
spacecraft models in which the panel’s length or the number of panels was modified from
the standard spacecraft model. The panel length did not affect the pose estimation accuracy.
However, the increased number of panels caused symmetry in a spacecraft model, and the
algorithm failed to estimate the symmetric model’s attitude accurately. Instead, attitudes
along the other two asymmetrical axes were initialized with less than 2.1% of outliers. This
two degrees of freedom attitude can be used to obtain the target’s pointing direction and
capture the target with a robotic manipulator.

The proposed algorithm has three major weaknesses that will be improved in future
work. First, the algorithm is sensitive to illumination change, as we can check from the
third test scenario. To improve the accuracy under harsh illumination conditions in the
space environment, we can design a more robust image processing step to distinguish the
spacecraft body from the background or use CNNs for robust feature detection. Second,
the proposed algorithm cannot determine a pose if the contour in an image is convex. In
order to determine a pose in this situation, we can also consider possible 3D–2D point
correspondences when the contour is convex. Third, the algorithm was assessed with
simplified spacecraft models. In real situations, a target spacecraft might have a more
complex structure, and the algorithm will need an additional preprocessing step to simplify
the target’s contour detected in an image.
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