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Abstract: Currently, antibiotics are often prescribed to children without reason due to the inability to
quickly establish the presence of a bacterial etiology of the disease. One way to obtain additional
diagnostic information quickly is to study the volatile metabolome of biosamples using arrays of
sensors. The goal of this work was to assess the possibility of using an array of chemical sensors with
various sensitive coatings to determine the presence of a bacterial infection in children by analyzing
the equilibrium gas phase (EGP) of urine samples. The EGP of 90 urine samples from children with
and without a bacterial infection (urinary tract infection, soft tissue infection) was studied on the
“MAG-8” device with seven piezoelectric sensors in a hospital. General urine analysis with sediment
microscopy was performed using a Uriscan Pro analyzer and using an Olympus CX31 microscope.
After surgical removal of the source of inflammation, the microbiological studies of the biomaterial
were performed to determine the presence and type of the pathogen. The most informative output
data of an array of sensors have been established for diagnosing bacterial pathology. Regression
models were built to predict the presence of a bacterial infection in children with an error of no
more than 15%. An indicator of infection is proposed to predict the presence of a bacterial infection
in children with a high sensitivity of 96%.

Keywords: piezoelectric sensor; microbalance; volatile organic compounds; biomarkers; urine;
bacterial infection; chemometrics; infection indicator

1. Introduction

It is currently quite common that antibiotics are prescribed to children, even when
there is no clear indication that a bacterial etiology is involved. This is because there is
no diagnostic tool that can quickly determine the presence of microorganisms and their
sensitivity to various groups of antibiotics. This is especially true for surgical patients,
for whom the use of antibiotics does not always prevent infection [1]. In some cases,
antibiotics are not recommended for surgery [2]. Abdominal infections, however, need
broad-spectrum antibiotics [3]. Their use is often insufficient to prevent the development of
bacterial complications or is accompanied by side effects [4,5]. It is known that long-term
use of antibiotics can reduce the risk of re-infection, although it can also cause addiction
and adaptation of microorganisms to them [6]. This, in turn, further leads to the need
to use groups of reserved drugs that are stronger; however, the list of complications and
contraindications is much wider, and many have an age limit. Furthermore, studies indicate
that the use of antibiotics to prevent postoperative complications is not effective [7].

Therefore, in May 2014, the 67th WHO Assembly adopted a resolution to fight an-
timicrobial resistance [8]. It is especially important to consider the impact on the normal
microbiota when treating children, since the increased resistance of the internal pathogenic
microbiota to antibiotics can lead to the disruption of the normal microbiota of the body
and cause digestive problems [9]. Therefore, it is vital to find out the etiology of the disease
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as early as possible to avoid unnecessary antibiotic therapy [10], and to use alternative
methods to prevent surgical infections [11].

Blood and urine tests are common clinical tests used to diagnose pathological con-
ditions. Recent research has focused on noninvasive methods for diagnosing disease,
especially in cases where initial symptoms are vague. Blood sampling for analysis is very
stressful for children, often accompanied by crying, screaming, and other negative emotions.
In comparison, the collection of urine for analysis is a more physiological and atraumatic
process. Moreover, the composition of urine reflects the condition of health of organs
and systems in the human body [12]. It is possible to increase the information content of
a general urinalysis by assessing the qualitative and quantitative composition of the gaseous
fraction of urine. The volatile compounds of urine change more significantly along with
the proteome during the development of the disease. Consequently, studies of the gas com-
position of urine were carried out [13,14], and methods for determining volatile biomarkers
in urine were proposed [15,16]. Bacterial metabolites secreted on nutrient media have also
been studied [17,18], including volatile compounds secreted during infection of tissues [17]
and exudates [19], lesion by Staphylococcus aureus [20], respiratory and gastrointestinal
diseases [21], bacteriuria [22–24]. A method for assessing the standard indicators of the
general urine analysis and other diagnostic parameters by the volatile fraction of urine
samples has been proposed [25,26]. The association of volatile compounds in urine with
diseases of the intestine, kidney, cancer of various locations [26,27], diabetes [28], genetic
diseases [29] has been shown. Differences were observed in urine samples from healthy
humans when infected with SARS-CoV-2 [30] and Mycobacterium tuberculosis [31,32].
Moreover, the gas composition of urine in relation to other biological fluids and samples
was investigated [33,34] to determine the characteristics of the metabolism. Particularly,
volatile markers associated with acetylcholine metabolism have been identified as a change
in the urinary proteome [35]. A change in the urinary proteome was also established
during infection of the abdominal cavity with Escherichia coli and Staphylococcus aureus. It
was shown that their combined presence causes significant differences from a monoinfec-
tion [36]. Based on these findings, it may be possible to assess the effect of an infectious
agent on the composition of urine, including volatile metabolites.

When analyzing the output curves of sensors to predict the presence of an infection,
various data processing methods are used, both with a preliminary selection of variables
and the entire original data, such as projection methods for data compression and decompo-
sition [26,37,38], including Internet of Things sensor systems [39]. The most commonly used
regression approaches (partial least squares regression, linear cross-correlation technique,
black box model) are applied to the output data of arrays of sensors and gas chromatog-
raphy. The new approaches were proposed to reduce the input data dimension and to
estimate the predicted indicators [40].

The purpose of the work is to evaluate the possibility of using an array of chemical
sensors with various sensitive coatings to determine the presence of a bacterial infection in
children by analyzing the equilibrium gas phase of urine samples.

2. Materials and Methods
2.1. Collection of Biosamples and Study Design

To determine differences in the composition of the equilibrium gas phase (EGP) in
urine samples from patients aged 1 to 16 years with bacterial contamination of the urogenital
tract or inflammatory processes of other tissues and organs of bacterial etiology, 90 urine
samples from patients from different departments of a children’s hospital were examined.
Additionally, if surgical intervention was necessary (furuncle, abscess, etc.), after removal
of the inflammation source, bacteriological investigation of the biomaterial was performed
in 33 patients to determine the presence and type of pathogen. The studies were conducted
based on the clinical laboratory of Region Hospital No. 2 in Voronezh, in accordance with
the voluntary consent of patients or their legal representatives, over the period 2017–2018.
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During the experiment, contact with patients was not carried out; special permission from
the ethical committee was not required.

2.1.1. Urine Sample Analysis

Urine sampling was carried out in the morning on an empty stomach in accordance
with the rules for sampling for bacterial culture at various stages of treatment. In the clinical
diagnostic laboratory of the hospital, urine samples from each patient were divided into
three portions. One portion (volume 20 cm3) was placed in a sealed bottle (volume 50 cm3)
with a propylene cap and kept at room temperature for 15 min, after which the equilibrium
gas phase was analyzed. The second portion was examined on the Uriscan Pro analyzer
(manufactured by YD Diagnostics, South Korea) with URISCAN 11 test strips to determine
levels of 11 analytes. The third portion was taken for examination of the sediment on an
Olympus CX31 microscope (Japan) using slide plates (Lachema, Czech Republic). The
indicators for general urine analysis (GUA) and sediment microscopy were determined in
accordance with standard methods and recommendations [41,42]. Some indicators of GUA
are presented in Table 1. To indicate semi-quantitative indicators of a general urine test,
the following designations were used: ~0—absent in the field of view, +—an insignificant
amount was present in the sample, ++—a moderate amount, +++—covered almost the
entire field of view (Table 1).

Table 1. Some indicators of general urine analysis (GUA) of patients and results of bacteriological
investigation of biomaterial after surgery.

No.
Indicators of GUA

Isolated Microorganism from Specimen for Biopsy
Mucus Leukocytes Bacteria

1 ~0 2 ~0 Staphylococcus aureus
2 + 9 ~0 –
3 ~0 2 ~0 – 1

4 ~0 2 ~0 Streptococcus b-haemophylus; Candida albicans
5 ~0 2 ~0 –
6 ~0 2 ~0 E. coli, Streptococcus b-haemophylus
7 ~0 16 ~0 E. coli
8 ~0 3 ~0 Staphylococcus aureus
9 ~0 4 ~0 –
10 ~0 7 + –
11 ~0 3 ~0 Staphylococcus aureus
12 ~0 3 ~0 –
13 + 2 ~0 –
14 ~0 4 ~0 –
15 ~0 16 + –
16 ~0 2 ~0 –
17 ~0 4 ~0 –
18 ~0 3 ~0 –
19 ~0 4 ~0 –
20 ~0 5 ~0 –
21 ++ 8 + –
22 ~0 6 ~0 –
23 ~0 5 ~0 –
24 ~0 4 ~0 –
25 ~0 2 ~0 Not determined
26 ++ 8 ~0 –
27 ~0 2 – E. coli
28 ~0 2 – –
29 + 9 ~0 Staphylococcus gallinarum
30 ++ 1 ~0 –
31 ~0 4 + –
32 ~0 6 + –
33 + 2 + –
34 + 2 + –
35 +++ 10 + –
36 +++ 1 + Staphylococcus aureus
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Table 1. Cont.

No.
Indicators of GUA

Isolated Microorganism from Specimen for Biopsy
Mucus Leukocytes Bacteria

37 ~0 1 ~0 –
38 ~0 1 ~0 –
39 + 1 ~0 –
40 ~0 3 ~0 –
41 + 2 ~0 –
42 ++ 10 + –
43 ~0 1 ~0 –
44 + 1 + –
45 ~0 1 ~0 –
46 +++ 1 + –
47 ~0 2 ~0 –
48 + 3 ++ –
49 + 2 + –
50 + 2 ~0 –
51 ++ 10 ~0 Not determined
52 ++ 7 ~0 –
53 + 3 ~0 –
54 + 3 ~0 Staphylococcus aureus
55 + 4 ++ Staphylococcus saprophysicus
56 ++ 2 ~0 –
57 ++ 1 ~0 Staphylococcus aureus
58 ++ 1 ~0 Streptococcus jaccicum
59 ++ 1 + –
60 + 25 + –
61 ~0 1 ~0 –
62 ~0 1 ~0 –
63 ~0 2 ~0 –
64 + 2 + –
65 ~0 1 ~0 Streptococcus viridans
66 ++ 1 ~0 Streptococcus b-haemophylus
67 ++ 20 +++ –
68 + 1 ~0 Staphylococcus aureus
69 + 1 ~0 –
70 +++ 4 + –
71 ~0 7 ~0 Not determined
72 +++ 4 ++ Not determined
73 ~0 1 ~0 –
74 ++ 4 + Not determined
75 ~0 1 ++ Not determined
76 ++ 1 + –
77 ++ 4 ~0 –
78 +++ 6 + –
79 ++ 1 + –
80 + 2 ~0 –
81 +++ 1 ~0 Staphylococcus epidermidis
82 ~0 3 ~0 Streptococcus b-haemophylus
83 ++ 1 ~0 Klebsiella pneumoniae
84 ++ 5 + Not determined
85 ~0 2 ~0 –
86 + 5 ~0 Staphylococcus haemolyticus
87 ++ 1 ~0 Streptococcus viridans
88 +++ 3 ++ –
89 +++ 2 + –
90 + 4 ~0 –

1 not applicable.

The results of a complete analysis of urine samples by standard parameters are pre-
sented in Supplementary Materials, Table S1.

2.1.2. Biomaterial Analysis

During surgery, biomaterial was taken from the source of the inflammation according
to the recommendations [43]. The biomaterial was analyzed by the hospital staff in the
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clinical diagnostic laboratory using cultural, microbiological and biochemical methods in
accordance with the methodological recommendations [44].

2.2. Analysis of Volatile Compounds
2.2.1. Device and Sensor Array

Analysis of the equilibrium gas phase of urine samples was carried out on the
MAG-8 gas analyzer—piezoelectric nose (LLC “Sensorika–Novye Technologii”, Russia) [45]
(Figure 1). The detection cell of the device was equipped with a set of piezoelectric sen-
sors coated with films: polyethylene glycol sebacate (PEGSb—sensor 1), triton X-100
(TX-100—sensor 2), dicyclohexane-18-crown-6 (18C6—sensor 3), polyoxyethylene sorbitan
monooleate (Tween—sensor 4), methyl red (MR—sensor 5), bromocresol blue (BCB—sensor
6), multiwalled carbon nanotubes (MCNT—sensor 7). Piezoelectric quartz resonators with
initial frequency of oscillation 10.0 MHz (LLC “Piezo”, Moscow, Russia) were unsol-
dered. The electrodes of the resonator were degreased by organic solvents (acetone or
chloroform). The sorbents without preliminary preparation were dissolved in appropriate
solvent (acetone—for PEGSb, TX-100, MR, toluene—for 18C6, Tween, ethanol—for BCB,
chloroform—for MCNT) with concentration of 5 mg/mL. Then these solutions were used
to form the sensitive coating. Coatings on sensors were formed by drop casting (sensors
1–4) or dip-coating (sensors 5–7) according to the previously described techniques [46].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 20 
 

 

array should be effective for solving the problem. The mass sensitivities of selected sen-
sors to some VOC vapors, which were obtained in earlier studies [47–56], are presented 
in Table 2.  

Table 2. Mass sensitivity (Sm, Hz⋅m3/g) of selected sensor to VOC and reproducibility of sensor 
signals in their vapors. 

Coating Ammonia Diethylamine Butyric Acid Ethanol Acetone Sr* 
PEGSb 5.00 7.82 15.0 7.72 1.41 0.04–0.13 
TX-100 4.37 29.4 27.5 1.43 1.44 0.03–0.12 
18C6 6.17 1.90 77.5 0.98 1.27 0.12–0.20 

Tween 2.51 1.52 71.3 1.52 1.21 0.05–0.15 
MR 13.4 4.00 6.72 1.39 0.65 0.02–0.17 
BCB 16.4 10.2 7.12 1.16 0.83 0.05–0.20 

MCNT 14.3 3.74 7.52 0.98 0.39 0.07–0.17 
Sr*—relative standard deviation of sensor signals for the studied volatile compounds. 

Before starting research in the hospital, the array of sensors was trained on a set of 
volatile compounds: ethanol, butanol-1, acetone, acetic acid, butyric acid, valeric acid, 
isovaleric acid, ammonia, diethylamine, piperidine, hydrogen sulfide (from ferrous sul-
fide and hydrochloric acid), phenol, ethyl acetate, dimethylacetal dimethylformamide 
(classification puriss., LLC “OS Reachem”, Moscow, Russia). The relative standard devi-
ations of sensor signals for the studied volatile compounds are presented in Table 2. The 
limit of detection for the volatile compounds using the selected sensors was between 
0.012 and 135 mg/m3, as estimated earlier [48,53,56]. 

 

 

 

Figure 1. Photo of the MAG-8 device: (a) in the laboratory during analysis, (b) location of sensors in 
the detection cell; (c) chronofrequency grams of sensors during measurement. 

In the software of the device, the signals of the sensors (∆Fi, Hz) were recorded in 
time as chronofrequency grams. These signals were then analyzed to find the maximum 
sensor signal (∆Fmax,i), the area of a “visual print” of the maximum sensor signal (Smax), the 
kinetic “visual print” of the entire sensor signal (Ssum), and for each sensor (Si), the kinetic 
“visual print” of the time mask for the entire array (SsumMK) and for each sensor (SMK,i). 

(a) 
(b) 

(c) 

Figure 1. Photo of the MAG-8 device: (a) in the laboratory during analysis, (b) location of sensors in
the detection cell; (c) chronofrequency grams of sensors during measurement.

The choice of sensors for an array is influenced by their high sensitivity to various
classes of volatile substances, including volatile biomarkers of diseases in the urine [14–16].
Films of 18C6, Tween were chosen for the detection of carboxylic and hydroxy acids [47,48],
and MCNT, BCB, MR for ammonia and amines [49–51]. PEGSb was selected for detection
of acids, alcohols, ketones [52,53], and TX-100 for nitrogen- and sulfur-containing com-
pounds [54,55]. Moreover, the selected films are stable for at least a year when analyzing
small amounts of volatile substances [53]. Therefore, the resulting array should be effective
for solving the problem. The mass sensitivities of selected sensors to some VOC vapors,
which were obtained in earlier studies [47–56], are presented in Table 2.
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Table 2. Mass sensitivity (Sm, Hz·m3/g) of selected sensor to VOC and reproducibility of sensor
signals in their vapors.

Coating Ammonia Diethylamine Butyric Acid Ethanol Acetone Sr*

PEGSb 5.00 7.82 15.0 7.72 1.41 0.04–0.13
TX-100 4.37 29.4 27.5 1.43 1.44 0.03–0.12
18C6 6.17 1.90 77.5 0.98 1.27 0.12–0.20

Tween 2.51 1.52 71.3 1.52 1.21 0.05–0.15
MR 13.4 4.00 6.72 1.39 0.65 0.02–0.17
BCB 16.4 10.2 7.12 1.16 0.83 0.05–0.20

MCNT 14.3 3.74 7.52 0.98 0.39 0.07–0.17
Sr*—relative standard deviation of sensor signals for the studied volatile compounds.

Before starting research in the hospital, the array of sensors was trained on a set of
volatile compounds: ethanol, butanol-1, acetone, acetic acid, butyric acid, valeric acid,
isovaleric acid, ammonia, diethylamine, piperidine, hydrogen sulfide (from ferrous sulfide
and hydrochloric acid), phenol, ethyl acetate, dimethylacetal dimethylformamide (classi-
fication puriss., LLC “OS Reachem”, Moscow, Russia). The relative standard deviations
of sensor signals for the studied volatile compounds are presented in Table 2. The limit
of detection for the volatile compounds using the selected sensors was between 0.012 and
135 mg/m3, as estimated earlier [48,53,56].

In the software of the device, the signals of the sensors (∆Fi, Hz) were recorded in
time as chronofrequency grams. These signals were then analyzed to find the maximum
sensor signal (∆Fmax,i), the area of a “visual print” of the maximum sensor signal (Smax),
the kinetic “visual print” of the entire sensor signal (Ssum), and for each sensor (Si), the
kinetic “visual print” of the time mask for the entire array (SsumMK) and for each sensor
(SMK,i). These numbers were calculated automatically by the software [57]. The description
of the basic version of the software was presented in [58]. The description of kinetic “visual
prints” and the principle of choosing a time mask were described in [46,59].

2.2.2. Technique of Measurement

The general technique of gas phase measurement over a urine sample can be presented
as a scheme in Figure 2.
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Figure 2. Process of measurement of gas phase of urine sample using sensor array.

With a sterile syringe, 5.0 cm3 of the equilibrium gas phase was taken from the sampler
over the urine sample and injected into the detection cell of the device. At the same time,
the measurement record was turned on in the software. The time for measuring the
sorption of volatile compounds of a urine sample was 2 min. Then, the measurement
was saved to the database, and the detection cell was purged with dehumidified air,
until the initial oscillation frequency of the sensor was restored (corresponding to the
oscillation frequency of the piezoelectric resonator with a selective coating before the
start of measuring urine samples). The restoration of the initial oscillation frequency
of sensors (F0, Hz) was a criterion for the degree of regeneration of sensor coatings to
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ensure metrological measurement reliability, as shown earlier [32,33]. The restoration of the
sorption layers was achieved within 1 min after the measurement under hospital conditions;
therefore, the total measurement time for one sample was 3 min.

2.2.3. Sensor Data Processing

The analytical signals of the sensors and chronofrequency grams were used to cal-
culate additional parameters of the sorption of volatile compounds of urine samples: the
parameters of the efficiency Ai/j and the stability γi of sorption and the geometry of “visual
prints” (mijn, αijn) according to the Equations [56,59]:

Ai/j = ∆Fmax,i/∆Fmax,j, (1)

γi = ∆Fi(5)/∆Fi(60), (2)

mijn =

√
∆F2

max,i + ∆F2
max,j − ∆Fmax,i·∆Fmax,j·

√
2√

∆F2
max,j + ∆F2

max,n − ∆Fmax,j·∆Fmax,n·
√

2
(3)

αijn = arcsin

(
∆Fmax,i·

√
2

2·
√

∆F2
max,i+∆F2

max,j−∆Fmax,i·∆Fmax,j·
√

2

)

+arcsin

(
∆Fmax,n·

√
2

2·
√

∆F2
max,j+∆F2

max,n−∆Fmax,j·∆Fmax,n·
√

2

) (4)

where i, j, n—numbers of sensors in the array, the j-th sensor is between the i-th and n-th;
∆Fi(5), (60)—is the signal of the i-th piezoelectric sensor at the 5th and 60th second of the
sorption of vapors of substances.

These parameters primarily reflect the qualitative composition of the equilibrium gas
phase. Some of them are used to identify volatile compounds. More information about
the use of sorption parameters can be found in [53,58,60]. Based on the calculated values
of these parameters, volatile compounds were identified in the equilibrium gas phase of
urine samples. The calculated values Ai/j, mijn and αijn for urine samples were compared
to the tabular values established earlier [59]. A substance was considered identified if the
values for at least one calculated parameter Ai/j, mijn, αijn coincided with the table value of
parameter within the coincidence criterion d.

The initial data for processing by the multivariate analysis method was formed from
the following output data of the sensors: analytical signals (∆Fmax,i), areas of “visual prints”
of maximal sensor signal (Smax), kinetic “visual prints” of the entire sensor signals (Ssum)
and for each sensor (Si), kinetic “visual prints” of signals by the time mask for the entire
array (SsumMK) and for each sensor (SMK,i), as well as the calculated parameters for all
combinations of sensors in the array without repetition. In total, the initial data matrix was
122 × 80 in size. The data matrix was processed using the module for Microsoft Excel and
Unscrambler X 10.0.1 (CamoSoftware AS, Oslo, Norway). The initial data were autoscaled
before applying principal component analysis and multivariate regression methods.

The method of partial least squares was used to build regression models. The full
cross-validation method was chosen as the model validation algorithm. The training and
test sets for building regression models were formed from the initial data matrix.

To predict the presence of urinary tract infections, 18 samples were taken as a training
sample from patients from various departments. The value of the predictive factor was
coded: “1”—the presence of bacteria in the sample (n = 5); “−1”—absence of bacteria
(n = 13). As the initial set of variables, the output data from the array of sensors were
taken, which were selected by principal component analysis. Further, variables with small
regression coefficients and loadings for the first two principal components were excluded
from this set until the minimum RMSE value was reached.

Thirteen samples from patients in the surgical departments were selected as a training
sample to predict the presence of pathogenic microorganisms in the source of inflammation.
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The values of the predictive factor coded “1”—the presence of microorganisms (n = 8);
“0”—absence of microorganisms (n = 5). The selection of variables for the model was
carried out in the same way as in the previous model.

The sensitivity and specificity of the method for assessing the presence of a bacterial
infection based on the results of the analysis of the EGP of urine samples were calculated
as for variables with a binary response according to the Equations [61]:

Sensitivity = NCP/(NCP + NFN) (5)

Specificity = NCN/(NCN + NFP) (6)

where NCP—number of correct positive results, NFN—number of false negative results,
NCN—number of correct negative results, NFP—number of false positive results.

3. Results
3.1. The Results of the General Analysis of Urine and Bacteriological Culture

The presence of urinary tract infections was established in 29 patients, and the presence
of pathogenic microorganisms was found in 21 patients after surgery (Table 1). In half of
the cases, the pathogenic microorganisms belonged to the genus Staphylococcus, moreover
Staphylococcus aureus was found in 28% of cases. In the other cases, pathogenic E. coli
and microorganisms of the genus Streptococcus were found. Furthermore, in 26% of cases,
no pathogenic microorganisms were found in the biopsy by the bacteriological studies.
Microscopy of urine sediment in half of the samples revealed the presence of mucus, which
in 23% of cases was accompanied by leukocyturia.

3.2. The Results of the Identification of Volatile Substances in the Equilibrium Gas Phase of
Urine Samples

The results of the identification of volatile substances in the equilibrium gas phase of
urine samples by the parameters of sorption are presented in Table 3.

Table 3. Identified substances in the EGP of urine samples from patients in departments of the
children’s hospital (% of the total number of samples).

Substances Maxillofacial Surgery General Surgery Traumatology Burn Neurosurgery Purulent-Septic Orthopedic

Ethanol 85 100 83 100 100 100 75
Buthanol-1 85 100 83 100 100 100 75

Acetone 32 39 22 33 83 75 50
Hydrogen sulfide 15 22 13 – – – 25

Phenol 76 72 56 66 83 75 50
Ethyl acetate 20 28 17 33 83 75 50
Acetic acid 76 94 83 100 100 100 75
Butyric acid 76 94 83 100 100 100 75

Dimethylacetal
dimethylformamide 76 89 70 – 100 50 50

Piperidine 89 11 39 33 – 25 –
Diethylamine 70 67 39 66 50 100 50

Ammonia – * 67 52 100 33 100 100
Amines 100 67 52 100 33 100 75

Valeric acid 50 61 52 33 100 75 50
Isovaleric acid 50 61 52 33 100 75 50

* not identified.

It should be noted that the presence of volatile compounds in the equilibrium gas phase
above urine samples does not indicate a certain type of pathology. However, the presence
of their combination can be used to judge the course of inflammatory processes, including
bacterial etiology. The relationship between the numerical values of the identification
parameters and clinical indicators is shown using multivariate data analysis.
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3.3. Selection of Informative Sensor Output Data by Principal Component Analysis

It has already been established that out of the entire set of calculated parameters for
the selected array of sensors (98 parameters), only 32 were used to identify the substances.
The most significant diagnostic information was extracted from the set of identification
parameters using principal component analysis (PCA) (Figure 3). A satisfactory model
with five principal components and an explained variance of 85% was obtained.
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Figure 3. Scores plot of the PCA model for urine samples by identification parameters (sample num-
bers correspond to the number in Table 1,the plot with high resolution in Supplementary Materials,
Figure S5).

The first principal components were the most significant and could distinguish several
groups of samples. According to the first principal component (horizontal axis), two groups
of samples were distinguished: one was more dispersed (positive values), the second was
more crowded (negative values).

Samples from the first group (negative values for PC-1) were aseptic, or samples from
patients after a course of antibiotic therapy. Samples from the second group (positive
values for PC-1) referred to pathologies with a bacterial infection, including against the
background of taking antibiotics. It was also possible to separate samples located at
the top (highlighted by the area, Figure 1), which were characterized by the presence of
minor injuries and courses of physiotherapy, without taking antibiotics. The influence of
individual parameters on the grouping of samples was evaluated according to the loading
plot (Figure 4).

At the next stage, PCA modeling of all output data of the array of sensors was carried
out with full cross-validation. The model was characterized by overdetermination and
a strong correlation of input variables. Therefore, insignificant and strongly correlated
variables (low loadings > 0.1) were sequentially removed using the approach described
in [48]. After optimization, a model was obtained (Figure 5) with a high correlation between
the calibration and explained variances. The analytical signals of the sensors, the areas
of kinetic “visual prints”, the parameters of sorption efficiency and stability were left as
the optimal variables for modeling. There are several extreme points in Figure 5. For
samples Nos. 15, 56, the presence of a source of inflammation before the start of surgical or
therapeutic intervention was typical. For samples Nos. 62, 3, 2, in contrast, there were no
or completely treated pathologies.
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Figure 5. Scores and loadings plot of the PCA model for urine samples according to the optimal
output data of the array of sensors (the plot with designation of all points in Supplementary Materials,
Figure S7).

The microbiological contamination of urine samples was one of the main indicators
affecting the distribution of samples on the scores plot.

3.4. Prediction of Bacterial Infection by Sensor Data Using Multivariate Partial Least Squares

A model was built to predict the presence of bacteria in the urine using partial least
squares regression. The set of output data from the array of sensors, which had previously
been optimized by the method of principal components, was taken as variables.

It was found that two principal components were optimal with an explained variance
of 64%, while the value of the RMSE was 0.56 (R2 = 0.64, slope = 0.292). On the scores plot
(Figure 6), urine samples with microbiological contamination (red circle) and without it
(blue square) are separated.
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Figure 6. Scores plot of the PLS model for predicting the microbiological contamination of urine
samples based on the results of analysis of samples by an array of sensors.

The output data of the sensors array indicated that the optimal variables for the predic-
tion of microbiological contamination of urine samples were the signals from two sensors,
the area of “visual print” of sensors SMK,i, parameters of sorption Ai/j and γi. The most
important variables for this model were the signal of the sensor with the MCNT film and
the parameter A6/7 and γ4. Plots of regression coefficients for the PLS model are presented
in Supplementary Materials (Figures S1 and S2) The correctness of the resulting model was
checked by testing it on a new test set (Table 4).

Table 4. Results of prediction of microbiological contamination of urine samples based on the results
of analysis of samples with an array of sensors.

Sample No. Predicted Value Deviation Reference Value

5 −0.21 0.47 −1
10 0.29 0.47 1
20 −0.29 0.57 −1
21 −1.38 0.64 1
34 0.15 0.68 1
46 −0.56 0.52 1
48 0.26 0.65 1
54 −1.55 0.78 −1
55 0.14 0.62 1
71 0.24 0.80 −1
79 1.17 0.66 1
80 −0.78 0.40 −1
85 −1.04 0.71 −1
90 −1.14 0.44 −1

Note: the numbers of samples with false prediction results are highlighted in bold.

It has been established that almost all samples were adequately described by the
model, despite the significant values of the calculated deviations.

Further, a PLS model was built to predict the presence of pathogenic microorganisms
in biomaterial from an inflammatory source. The same set of output data from the array of
sensors was used as initial variables for modeling. This was carried out using principal
component analysis. It has been established that the use of two principal components with
an explained variance of 70% is optimal for modeling, the RMSE prediction error is 0.42
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(R2 = 0.68, slope = 0.306). Two groups of samples can be distinguished on the scores plot
(Figure 7).
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Figure 7. PLS-model scores plot for predicting the presence of microorganisms in biomaterial based
on the results of the analysis of EGP of urine samples by an array of sensors.

In this case, the optimal set of variables includes the signals of four sensors, the area of
“visual print” of sensors SMK,i, parameters of sorption Ai/j and γi, and the most significant
for the model are the analytical signal of the sensor and the area of the kinetic “visual
print” by the time mask for the sensor with the MCNT film, the parameters A3/5, A6/7
and the parameter γ6. Plots of regression coefficients for the PLS model are presented in
Supplementary Materials (Figures S3 and S4) The correctness of predicting the presence
of microorganisms in inflammation source was checked with samples from the test set
(Table 5).

Table 5. Results of predicting the presence of microorganisms in biomaterial based on the results of
the analysis of EGP of urine samples using an array of sensors.

Sample No. Predicted Value Deviation Reference Value

36 0.94 0.44 1
57 0.55 0.35 1
58 0.56 0.38 1
71 0.34 0.32 0
75 0.70 0.50 0
83 0.57 0.31 1

Note: the numbers of samples with false prediction results are highlighted in bold.

The use of mathematical processing for the results of the analysis of urine samples
by an array of sensors is very effective; however, it requires the availability of appropriate
software and computing resources. Therefore, for faster data processing and obtaining
screening information about the presence or absence of inflammatory processes and bacte-
rial infection in the body, an infection indicator (InfI) is proposed, calculated by the formula:

In f I = m217 · α417 + m234 ·A2/4

This formula is an analogue of the formula for the scalar product of vectors, if we
consider them in the plane of the identification parameters of the array of sensors. The
maximum contribution to the ranking of samples according to the first principal component
of the PCA model is the reason for the choice of precisely these identification parameters.
The calculated values of InfI for all the studied samples are presented in Table 6.
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Table 6. Calculated value of infection indicator (InfI) for urine samples.

Sample No. InfI No. InfI No. InfI No. InfI No. InfI

1 1.48 19 1.45 37 1.57 55 1.84 73 1.42
2 1.42 20 1.51 38 2.09 56 1.45 74 1.60
3 1.59 21 1.69 39 1.99 57 1.94 75 1.45
4 1.60 22 1.43 40 1.52 58 2.03 76 1.78
5 1.53 23 1.56 41 1.47 59 1.81 77 1.22
6 1.59 24 1.29 42 1.88 60 1.98 78 1.68
7 1.58 25 1.50 43 1.61 61 1.87 79 1.14
8 1.48 26 1.42 44 1.54 62 1.80 80 1.78
9 1.32 27 1.64 45 1.56 63 1.45 81 1.59
10 1.57 28 1.49 46 1.57 64 2.10 82 1.81
11 1.54 29 1.57 47 1.58 65 1.59 83 1.72
12 1.42 30 1.26 48 1.50 66 1.63 84 1.95
13 1.50 31 1.51 49 1.87 67 1.34 85 1.62
14 1.26 32 1.55 50 1.42 68 1.57 86 1.78
15 1.99 33 1.70 51 1.45 69 1.54 87 1.89
16 1.45 34 2.45 52 1.61 70 1.72 88 1.95
17 1.52 35 1.63 53 1.28 71 1.42 89 1.61
18 1.73 36 1.75 54 1.79 72 1.63 90 1.67

Note: Bold indicates sample numbers that are incorrectly assigned to diagnostic groups.

The presence of inflammatory processes and bacterial infection in the body was
established if InfI > 1.45. The value of the indicator was calculated according to the
scores plot (Figure 3) as the ratio of the average values of the coordinates for the first
principal component for two groups: samples with bacterial infections and samples with
aseptic diseases. The obtained InfI values were compared with all clinical parameters
of the samples. The presence of a bacterial infection and inflammation was established
in accordance with the clinical diagnosis, the presence of a pathogen in the biomaterial,
the presence of bacteria, mucus, or an increased content of protein and leukocytes in the
urine. If these laboratory parameters were within the normal range and InfI ≤ 1.45, then
this result was considered as correct negative; if a bacterial infection was diagnosed and
InfI > 1.45, the result was considered as correct positive.

Figure 8 presents general recommendations for using an array of sensors to increase
the diagnostic information of urine analysis, considering previous studies [25].

Sensors 2022, 22, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 8. Scheme of application of piezoelectric “electronic nose” in urine analysis. 

The use of the obtained models according to this scheme enables a quick and effi-
cient additional analysis of urine to be conducted without increasing the costs. 

4. Discussion 
Among the indicators of the general analysis of urine, the results of sediment mi-

croscopy are important. The presence of salts (oxalates, urates), mucus, protein, and 
erythrocytes in the samples will affect the redistribution of volatile substances at the 
gas–liquid interface, and, therefore, the results of analysis by an array of sensors. Mi-
croscopy of the urine sediment in half of the samples revealed the presence of mucus, 
which in some cases was accompanied by leukocyturia (more than five per field of view). 
This may indicate the presence of a nonspecific inflammatory process in the urogenital 
tract with other indicators within the normal range [62]. 

It is known that many types of pathologies are characterized by a certain odor and, 
consequently, by a set of volatile substances. Many substances that are metabolites in 
pathogenic processes are found in human secretions [14,15]. Therefore, volatile markers 
were identified in the EGP of urine samples according to identification parameters cal-
culated by Equations (1)–(4). It has been established that ethanol, butanol, and their oxi-
dation products (acetic and butyric acids) are present in almost all samples. The distri-
bution of the presence of other substances in the EGP of urine samples is heterogeneous 
by department and can be determined both by the processes occurring in the body and 
by the peculiarities of the metabolism of drugs under the standard treatment protocol. It 
was noted that the presence of hydrogen sulfide in the EGP of the urine is indicative for 
injuries and inflammatory processes that do not violate the integrity of the skin, but re-

Figure 8. Scheme of application of piezoelectric “electronic nose” in urine analysis.



Sensors 2022, 22, 8496 14 of 19

The use of the obtained models according to this scheme enables a quick and efficient
additional analysis of urine to be conducted without increasing the costs.

4. Discussion

Among the indicators of the general analysis of urine, the results of sediment mi-
croscopy are important. The presence of salts (oxalates, urates), mucus, protein, and
erythrocytes in the samples will affect the redistribution of volatile substances at the gas–
liquid interface, and, therefore, the results of analysis by an array of sensors. Microscopy
of the urine sediment in half of the samples revealed the presence of mucus, which in
some cases was accompanied by leukocyturia (more than five per field of view). This may
indicate the presence of a nonspecific inflammatory process in the urogenital tract with
other indicators within the normal range [62].

It is known that many types of pathologies are characterized by a certain odor and,
consequently, by a set of volatile substances. Many substances that are metabolites in
pathogenic processes are found in human secretions [14,15]. Therefore, volatile markers
were identified in the EGP of urine samples according to identification parameters calcu-
lated by Equations (1)–(4). It has been established that ethanol, butanol, and their oxidation
products (acetic and butyric acids) are present in almost all samples. The distribution of the
presence of other substances in the EGP of urine samples is heterogeneous by department
and can be determined both by the processes occurring in the body and by the peculiarities
of the metabolism of drugs under the standard treatment protocol. It was noted that the
presence of hydrogen sulfide in the EGP of the urine is indicative for injuries and inflamma-
tory processes that do not violate the integrity of the skin, but require surgical intervention
(furuncle, abscess, cyst, closed fractures with displacement) (surgical departments, Table 3).
Hydrogen sulfide is identified in urine samples from patients who are characterized by the
absence of pathogenic microorganisms during bacteriological studies of the biomaterial,
which indicates the occurrence of an aseptic inflammatory process. The presence of acetone,
ethyl acetate and isovaleric acid is typical for patients from the neurosurgical and purulent-
septic departments. The results indicate that metabolites associated with inflammatory
processes of bacterial origin are similar to those found in temporary metabolic disorders
associated with head injuries. Phenol is more often present in the EGP of urine samples in
neurosurgical pathologies (surgical departments, Table 3). The presence of aliphatic amines
and ammonia in the EGP of urine samples from patients with purulent-septic pathologies
and thermal injuries indicates a massive lesion. The presence of cyclic amines and acetals
in EGP of urine samples is difficult to differentiate depending on the pathology, since they
can be products of the metabolism of drugs used for treatment.

Upon performing the principal component analysis, it was found that the identification
parameters for hydrogen sulfide, valeric and isovaleric acids (m217, α417) and ethanol and
butanol (m234, A2/4) could be used to select aseptic samples. The parameters for ethanol
and butanol were found to be able to select samples with bacterial infection (Figure 4).
For the selection of samples with minor injuries, the parameters A4/7 and α317 are of
the greatest importance; according to which, ethanol, butanol, acetone, and the absence
of diethylamine were detected in the EGP of these samples. That means that not only
is the presence of any marker substance important, but conversely, so is the absence of
a specific marker or presence in a small concentration, below the detection limits for these
parameters, for ranking samples into groups.

When comparing the scores and loading plots of the PCA model built by the entire
set of output data of the array of sensors (Figure 5), it was found that to select samples
corresponding to inflammatory conditions (samples No. 15, 56), the most important
variables were the stability parameters (γi) of sorption (signed in Figure 5). For evaluating
the effectiveness of the treatment of bacterial infections (samples No. 2, 62), the primary
data of the array of sensors had the greatest importance—the analytical signals of the
sensors (∆Fmax,i) and the areas of kinetic “visual prints” by the time mask (SsumMK и SMK,i)
(shown in Figure 5).



Sensors 2022, 22, 8496 15 of 19

It was found, upon analysis of the score plots of the PLS model for predicting the
bacterial contamination of urine samples (Figure 6), that the group of samples without
bacteria in the urine was more dispersed, which is associated with additional factors,
such as the presence of mucus and salts in the urine, which affects the redistribution of
volatile substances at the “gas–liquid” phase boundary. Therefore, it influences the results
of analysis by an array of sensors. At the same time, the presence of mucus in the urine,
as an indicator of inflammation, will significantly affect the prediction results, with the
possibility of a false positive prediction.

According to the values of weighted regression coefficients, it was found that the most
important and significant for predicting the microbiological contamination of urine samples
were the output data of the sensors with films sensitive to amines and ammonia—BCB and
MCNT (Supplementary Materials, Figures S3 and S4).

It was found that almost all samples were adequately described by the model from
the results of the prediction for the test set (Table 4). The best prediction results were
achieved for samples in which other clinical indicators confirmed the presence of inflam-
mation (presence of the protein, leukocytes or mucus). Overestimation of the results of
the prediction, and as a result, false positive results, could be observed for urine samples
with the presence of mucus and other compounds that cause the presence of turbidity.
False-negative prognostic results were associated with the presence of erythrocytes or
ketone bodies in the urine.

One sample was assigned to a different diagnostic group based on the score plot,
(blue square among red circles, Figure 7) for a model to predict the presence of pathogenic
microorganisms in the body. The patient from whom this urine sample was taken (No. 25 in
Table 1) was diagnosed with lymphadenitis, and it was aseptic according to microbiological
studies. However, in the results of a blood test from this patient, an elevated erythrocyte
sedimentation rate was observed, which indicated the presence of inflammatory processes
in the body, with possible bacterial damage to other organs. Therefore, this sample was not
excluded from the sample.

The most important variables for predicting the presence of microorganisms in the
source of inflammation are the signals of the sensor with the MCNT film (absolute analytical
signal and the area of the “visual print”), which is sensitive to light base gases (ammonia,
amines), as the most specific markers of bacterial inflammation. It has been established that
there is an overestimation of the prediction results; therefore, the results are false positives
for samples with the presence of mucus and fungi in the urine.

The resulting models can be used to analyze urine samples as a screening. When
using a calculated indicator of infection (InfI), based on the results of comparing its values
and clinical indicators, the sensitivity was 96%, the specificity was 50%. The relatively low
specificity may be due to the lack of a complete clinical picture and patient history. So,
sample No. 23 was taken from a patient with a diagnosis of closed epiphysiolysis of the
right femur, and was classified as a false positive according to InfI. However, the patient
was subsequently transferred to the purulent-septic department for surgery and isolation
of Staphylococcus haemolyticus from the source of inflammation (sample No. 86), which
confirmed the correctness of the assessment of the presence of a bacterial infection in the
body according to InfI.

Thus, based on the results of the analysis of the EGP of urine samples with an array
of sensors and a simple calculation of the infection indicator, it is possible to quickly
establish the presence of bacterial diseases in children with a sufficiently high sensitivity
and specificity.

5. Conclusions

The work involved identifying substance markers of pathogenic processes in the EGP
of urine samples by the parameters of the array of sensors. Correlations were given between
the presence of substances and types of pathologies (department of the hospital). The most
informative output data of an array of sensors for diagnosing bacterial pathology was
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established. The possibility of predicting the presence of a bacterial infection based on
the results of the analysis of the equilibrium gas phase of urine samples with an array of
sensors with selective film coatings was positively assessed. There are several ways to
improve the metrological characteristics of PLS models using sensors arrays. One way
could be to use the features of sorption kinetics of the EGP of a urine sample as numeric
parameters. Another way is the consideration of the multiplication of sensor signals as
variables of the model. The specificity of the way to identify bacterial diseases could
be improved by a more accurate selection of parameters for calculation after analysis of
a bigger sample. The use of an array of sensors in addition to traditional methods of
analysis enables a quick assessment of the state of the body and the adjustment of the
treatment tactics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22218496/s1, Figure S5: Scores plot of the PCA model for urine
samples by identification parameters; Figure S6: Loadings plot of the PCA model for urine samples
by identification parameters; Figure S7: Scores and loadings plot of the PCA model for urine samples
according to the optimal output data of the array of sensors; Figure S1: Regression coefficient of
PLS model for prediction of bacteria in urine for factor 1; Figure S2: Regression coefficient of PLS
model for prediction of bacteria in urine for factor 2; Figure S3: Regression coefficient of PLS model
for prediction of bacteria in biomaterial for factor 1; Figure S4: Regression coefficient of PLS model
for prediction of bacteria in biomaterial for factor 2; Table S1: Indicators of general urine analysis
for samples.
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