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Abstract: With tracking systems becoming more widespread in sports research and regular training
and competitions, more data are available for sports analytics and performance prediction. We
analyzed 2523 ski jumps from 205 athletes on five venues. For every jump, the dataset includes the
3D trajectory, 3D velocity, skis’ orientation, and metadata such as wind, starting gate, and ski jumping
hill data. Using this dataset, we aimed to predict the expected jump length (xLength) inspired by
the expected goals metric in soccer (xG). We evaluate the performance of a fully connected neural
network, a convolutional neural network (CNN), a long short-term memory (LSTM), and a ResNet
architecture to estimate the xLength. For the prediction of the jump length one second after take-off,
we achieve a mean absolute error (MAE) of 5.3 m for the generalization to new athletes and an MAE
of 5.9 m for the generalization to new ski jumping hills using ResNet architectures. Additionally,
we investigated the influence of the input time after the take-off on the predictions’ accuracy. As
expected, the MAE becomes smaller with longer inputs. Due to the real-time transmission of the
sensor’s data, xLength can be updated during the flight phase and used in live TV broadcasting.
xLength could also be used as an analysis tool for experts to quantify the quality of the take-off and
flight phases.

Keywords: wearable sensors; ultra-wideband; inertial measurement unit; performance prediction;
sports analytics; performance analysis

1. Introduction

In recent years, the use of tracking systems in sports has become more widespread.
As a result, a constantly increasing amount of data are becoming available for analysis.
The use of sensors in sports applications was first adopted in a research context, which
included studies with small-scale datasets. Over time, wearable devices and sensor systems
spread to everyday use and were adapted in professional sports to monitor athletes during
training and competition. Thus, data availability increased further, from single runs and
actions being analyzed to big data.

Initially, works in the area of sports analytics are mainly based on statistics that are
manually extracted during or after the match. Macdonald [1] proposed to train a ridge
regression model on variables such as hits, faceoffs, shots, missed shots, blocked shots, and
other statistics to predict each player’s contribution to the number of expected goals (xG)
in hockey matches. Subsequent work by Rathke [2] translated the approach to soccer and
observed that the distance to the goal and the shot angle are the most important variables
to predict the xG in soccer. The expected goals metric is a very active field in research [3–8]
and has found its way into the application. For example, in the Bundesliga, the highest
German soccer league, the expected goals are shown in live TV broadcasting for individual
goals and scoring moments and their sum as a conclusion of a match [9].

Instead of manually extracting statistics, later work utilized cameras and inertial mea-
surement units (IMUs) to detect and classify activities in sports automatically. Camera-based
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tracking systems are used for example in ball tracking [10–12] and pose estimation [13,14].
However, camera tracking systems are hindered by their expensive cost and are difficult
to use under bad weather conditions or in large areas. The other option is sensor-based
solutions, which circumvent some of these problems. One main advantage of sensor-based
solutions is that they can easily cover large volumes as the sensor is not restricted to a
specific area, depending on the technology used. For example, sensors based on IMUs
or Global Positioning System (GPS) work independently of reference stations. Sensors
based on UWB need a radio connection to reference stations in contrast to a camera-based
solution where an unobstructed view between the athlete and the cameras is needed.

Moreover, sensors perform independently from the current weather conditions.
Blank et al. [15] used IMUs to detect and classify strokes in table tennis. Kautz et al. [16] ex-
plored Deep Neural Networks (DNNs) to classify activities in beach volleyball.
Stöve et al. [17] used IMUs to detect individual shots and passes of soccer players with
machine learning. Cust et al. [18] provide an overview of model development and perfor-
mance for machine and deep learning for movement recognition in sports. Best practices
have been established in the literature regarding data aggregation, data cleaning, model
selection, and other components [16]. Claudino et al. [19] find that out of the 58 studies that
they analyzed in their review about injury risk and performance prediction, 26% were about
soccer, 22% considered basketball, 10% considered handball, 9% considered Australian
football, 9% considered baseball, 9% considered volleyball, 7% considered American foot-
ball, 5% considered ice hockey, 3% considered rugby, and the remaining 2% addressed field
hockey, cricket, and beach volleyball. While a considerable amount of studies have been
conducted in the area of performance prediction in sports, some disciplines, such as ski
jumping, remain understudied. To the best of our knowledge, no performance prediction
study has been conducted in the area of ski jumping so far.

Ski jumping is unique, in contrast to almost all other sports, because there are nearly
no amateur athletes. This makes data acquisition generally much more complicated and
costly. Therefore, all existing studies on ski jumping tracking are based on relatively small
datasets applying various tracking techniques. Elfmark et al. [20] use a differential Global
Navigation Satellite System (dGNSS) and video-based pose estimation for performance
analysis in ski jumping. They also use the data collected with the dGNSS to determine
the aerial phase in ski jumping [21] and assess the steady glide phase [22]. Camera-based
tracking was also widely used in ski jumping studies to analyze the take-off [23,24], flight
styles [25], ski jumping phases [26–28], dynamics [29], and aerodynamic forces [30].

Our research contributes in the following ways. Firstly, we acquired the first large-scale
study of ski jumping athletes using wearable sensors, including IMUs and ultra-wideband
technology. Secondly and mainly, we contribute the first ski jump length prediction
benchmark. Our dataset consists of position, velocity, and skis’ orientation measured
during the jumps and additional metadata, including the height of the jumping hill and
the weather conditions. We investigate the ability of different deep learning algorithms
to predict the jump length of 205 individual athletes on five different ski jumping hills.
Specifically, we use a fully connected neural network, two different convolutional neural
networks (CNNs), and an LSTM model. Our experiments demonstrate the feasibility of
predicting the jumping distances of athletes using deep learning. Here, we investigate the
ability of the different models to generalize to unseen athletes and jumping hills. Our results
indicate that a pretrained model could be used for new athletes and jumping hills without
requiring retraining of the model. Moreover, we explore the behavior of the prediction
error with respect to the duration of the time series input and observe a consistent increase
in the predictive power of the respective models.

A graphical summary of the proposed contribution is shown in Figure 1.
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Figure 1. Two wearable trackers are mounted on the athletes’ skis. They measure the 3D position, 3D
velocity, and 3D orientations of the skis. In a later application, the data are transmitted in real time
and are used to predict the expected jump length (xLength) using deep learning. Additionally, the
pipeline of the study methodology is summarized.

2. Materials and Methods

In the following section, the proposed methods are presented. Firstly, the acquired
dataset and the respective tracking system are introduced. Consecutively, the deep-learning
architectures and their training and hyperparameter tuning are described. Lastly, we
introduce the different experiments run in this study.

2.1. Dataset

The dataset was acquired using a wearable real-time tracking system (WRTTS). It con-
sists of trackers on top of the athlete’s ski bindings and mobile antennas next to the jumping
hill. The WRTTS combines an inertial measurement unit (IMU) with ultra-wideband posi-
tioning. Information about the working principle can be found in [31–33]. The accuracy of
the tracking system has been validated in a previous study [33].

The dataset consists of 2523 jumps acquired during competitions and training of
the world’s leading athletes. Every jump includes the 3D trajectory, 3D velocity, and 3D
orientation of both skis as well as the wind, wind compensation parameter, gate, gate
compensation, and gender. The wind in the dataset is the mean of the tangential wind
along the landing hill. This is used in the competitions of the Fédération Internationale
de Ski (FIS) to calculate the wind compensation, which is also included in our dataset.
The jump length is transformed into points to make competitions fairer, and the wind
compensation value is added to compensate for changes in the wind conditions during
the competition.

The gate corresponds to the location on the in-run where the athletes start. Since this
may change during a competition, this information is crucial since this affects the speed
of the athlete at the take-off. Like wind compensation, gate compensation is added to the
points of the reached jump length to compensate for changes in the starting gate during
a competition.

Additionally, parameters of the ski jumping venues are included and used for the
prediction. The venue geometry is described and named according to the ski jumping hill
construction standards of the FIS [34]. This involves the height difference (h) between the
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take-off table edge and the construction point (K), the hill size (HS), the end of landing area
(L), the horizontal distance between the edge of the take-off table and K (n), the start of the
landing area (P), the height of the take-off table (s), the height difference between the edge
of the take-off table and K (Uz), the inclination of the tangent at P (βP), the inclination of
the tangent at K (β), the inclination of the tangent at L (βL). Table 1 shows a summary of
the acquired dataset.

Table 1. Summary of the dataset used in this study. Data were acquired during competition and
the training of world-leading athletes. The venue data are named according to the ski jumping hill
construction standards of the FIS [34].

Subjects (female/male) 205 (50/155)
Number of jumps 2523
Number of venues 5
Hillsizes (m) 106, 134, 137, 140
Jump length range (m) 50.5 to 138.5
Skill level Professional
Sampling rate 20 Hz
Time series data 3D position, 3D velocity, 3D orientation of both skis
Athlete data Athlete ID, gender
Venue data P, K, HS, L, Uz, n, h, βP, β, βL, s
Jump metadata Wind, wind compensation, gate, gate compensation

The jump length within our dataset, which is the regression goal, is determined
with the WRTTS and not the manually labeled video distance as in official competitions.
Nevertheless, in a previous study, we showed that the jump length determined by the
WRTTS and the official video distance differ by 0.31± 0.44 m [33].

Figure 2a shows the distribution of the jump length within the dataset. It ranges from
50.5 to 138.5 m and has two peaks at roughly 93 and 120 m. The median jump length is
97.3 m. In red, the kernel density estimate using Gaussian kernels is depicted.

The data were acquired on five different ski jumping venues ranging from a hill size
(HS) of 106 m to 140 m. Figure 2b shows a histogram of the number of jumps per venue
with the corresponding HS. The venue with the most jumps is Zhangjiakou, with an HS
of 106 m. The ski jumping hill in Zhangjiakou, with an HS of 140 m, has the second most
jumps recorded. Both have individually more jumps than the remaining three combined.

Figure 2c shows the distribution of the number of jumps per athlete in the dataset.
The median number of jumps per athlete is eleven, and the maximum number is 36 jumps.
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Figure 3 shows the exemplary position, velocity, and orientation of 20 ski jumps.
The data are shown for the time range from two seconds before to one second after the
take-off. This time range is also the input for the deep learning architectures to predict the
jump length.
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Figure 3. Example data for 20 ski jumps. The Figure shows the 3D position, 3D velocity, and the skis’
orientation. The x-axis of the subplots is shared along the columns and the y-axis along the rows.

Figure 3. Example data for 20 ski jumps. The figure shows the 3D position, 3D velocity, and the skis’
orientation. The x-axis of the subplots is shared along the columns and the y-axis along the rows.
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The origin of the coordinate system is the edge of the take-off table. With respect to
the jumping direction, the x-axis is defined as horizontal, forward, the y-axis as horizontal,
left, and the z-axis as vertical, upward.

Before the take-off, the position data are similar for the different jumps due to the
tracks along the in-run. The differences only occur due to different venues and varying
speeds. Due to the in-run, the vy is 0 before the take-off since the athlete cannot move in
the right–left direction.

2.2. Deep Learning Architectures

To predict xLength, we tested several deep learning architectures. This includes a
fully connected network (FCN), CNN, ResNet [35], and LSTM [36]. With the acquired
sensor data, we used the FCN as a baseline to explore the feasibility of predicting the jump
length. Furthermore, we explored two CNN-based architectures, a standard CNN and a
ResNet, to investigate whether the temporal information in the sensor data improves the
generalization of the models to different athletes and venues. Lastly, we used an LSTM
to model the temporal aspect of the sensor data more directly and assess if this further
improves the regression performance.

As a network input, we used the 3D position, 3D velocity, the orientation of both skis,
and the following meta information. As meta information, we used the gender/sex, wind,
wind compensation, gate, gate compensation, and the venue-related parameters stated
in Table 1. For the FCN, we concatenated all features, including metadata, into a single
vector and used it as the input for the neural network. In the case of the CNN and ResNet
architecture, we created a two-dimensional vector x ∈ RN×C, where N is the number of
sampled sensor values over time, and C is the number of different sensor signals (i.e.,
velocity in the x direction or position in the y direction). Additionally, we concatenated
the metadata information to the flattened feature vector after the last convolutional layer
of the networks, which is followed by fully connected layers. For the LSTM, we used all
the measurements for a single time point as an input and obtained the final prediction by
performing a sequential prediction over the whole time series. Here, we also included the
metadata information after the last LSTM layer, which is followed by fully connected layers.

The athlete or any past-performance-related features such as ranking in the world cup
or previous jumps were not included.

2.3. Training and Hyperparameter Tuning

For every deep learning architecture, we performed hyperparameter tuning. We
applied a nested 5-fold cross-validation for the hyperparameter tuning using the Bayesian
optimization tuning with the Gaussian process implemented in Keras [37]. The nested
cross-validation is chosen not to overfit the dataset while performing a hyperparameter
tuning and model selection and obtain optimistically biased performance estimations [38].
The search spaces for the different deep learning architectures are depicted in Table 2.

Table 2. Intervals of the search spaces during the hyperparameter tuning for the different deep
learning architectures. The number of specific layers corresponds to convolutional layers for the
CNN, LSTM layers for the LSTM and ResNet blocks.

Hyperparameter FCN CNN ResNet LSTM

Number of fully connected layers ∈ [2, 6] ∈ [2, 6] ∈ [2, 6] ∈ [2, 6]
Nodes per fully connected layer ∈ [16, 272] ∈ [16, 272] ∈ [16, 272] ∈ [16, 272]

Dropout rate ∈ [0.0, 0.3] ∈ [0.0, 0.3] ∈ [0.0, 0.3] ∈ [0.0, 0.3]
Noise ∈ [0.0, 0.1] ∈ [0.0, 0.1] ∈ [0.0, 0.1] ∈ [0.0, 0.1]

Batch size ∈ [16, 272] ∈ [16, 272] ∈ [16, 272] ∈ [16, 272]
Number of specific layers ∈ [1, 6] ∈ [1, 6] ∈ [1, 6]

Filters/LSTM units per layer ∈ [16, 272] ∈ [16, 272] ∈ [16, 272]
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Since the dataset contains strongly dependent data and physical processes, data
augmentation techniques are limited and must be chosen carefully. For example, the skis’
orientation affects the aerodynamic drag, which affects the speed and uplift. This again
influences the trajectory and the jump length. Therefore, standard augmentation techniques
such as random rotation are not applicable.

We, firstly, doubled the number of jumps in the training dataset by mirroring them at
the x–z plane. This is equivalent to swapping left and right from the perspective of the ski
jumper. Secondly, we added Gaussian noise to all input variables as data augmentation.
Apart from these data augmentations, we used standardization as another preprocessing
step, i.e., scaling all data to a mean of 0 and a standard deviation of 1.

For the training process, we use the Adam optimizer [39] in combination with a
reduction of the learning rate when the loss reaches a plateau. We use the mean squared
error as a loss function and terminate the training process via early stopping.

2.4. Experiments

Using the previously presented dataset, we perform several experiments. Firstly,
we compare the performance of the different deep learning architectures to predict the
jump length one second after the take-off. For the comparison, we evaluate the model
performances by investigating the following metrics. The residual r is, within this work,
defined as

r = xtrue − xprediction, (1)

where xprediction is the ski jump length predicted by a DNN and xtrue is the measured ski
jump length. To compare the networks’ performance on the whole dataset, we investigate
the mean of the residual also called bias

µ =
∑N

i=1 x(i)true − x(i)prediction

N
, (2)

where N is the number of investigated jumps. Additionally, we analyze the standard
deviation of the residual

σ =

√√√√ 1
N

N

∑
i=1

(
r(i) − µ

)2. (3)

The performance of the DNNs is summarized in terms of the mean absolute error
(MAE), which is calculated as

MAE =
∑N

i=1

∣∣∣x(i)true − x(i)prediction

∣∣∣
N

. (4)

Secondly, we test the generalization capabilities of the different deep learning architec-
tures on unseen athletes and venues. Therefore, we perform the outer split of the nested
cross-validation by athletes or venues, respectively. For example, we perform the hyperpa-
rameter tuning and model selection on four different ski jumping venues and evaluate this
model on the remaining venue.

In addition, we investigate the influence of the input length after take-off on the predic-
tion performance. Since, for longer inputs, the number of weights for the fully connected
network would drastically increase; we use a CNN for this experiment. Therefore, we run
a hyperparameter tuning for the ResNet for input lengths from 0.5 to 4.0 s after the take-off.

3. Results

The following section presents the results obtained from the experiments described
in the previous section. We start with comparing the results of the different deep learning
architectures for the input interval of two seconds before to one second after the take-off.
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This also includes investigating the generalization to new athletes and venues. After that,
we present the results for the accuracy investigation as a function of the input length.

3.1. Prediction of xLength

Table 3 shows the MAE, mean and standard deviation of the prediction error. This
includes the folds split by athletes and venues and all tested deep learning architectures.
We can see that for the data split by athletes, the ResNet has the best prediction of the jump
length with an MAE of 5.3 m, a mean error of 0.1 m and a standard deviation of 6.8 m. The
LSTM has the same absolute value for the mean residual with −0.1 m, and the FCN has the
same standard deviation of the residual as the ResNet. In general, all architectures achieve
similar performance.

Looking at the performances when we split the data by venues, the performances of all
architectures decrease in terms of MAE. In addition, the performance of the ResNet decreases in
all three metrics. However, the ResNet still has the smallest MAE with 5.9 m compared to the
other deep learning architectures. The ResNet reaches a mean residual of 0.7 m, which is also
the smallest value among the different architectures. For the standard deviation of the residual,
in contrast, the FCN has the smallest value 7.4 m. The ResNet reaches a standard deviation of
7.6 m. Especially the LSTM has problems with the generalization over different venues, which
results in the largest MAE for the venue split 9.2 m.

Table 3. Mean absolute error, mean, and standard deviation of the residual of different deep learning
architectures. The prediction of an FCN, CNN, ResNet, and LSTM is tested for nested cross-validation
split by athletes and venues.

Athlete Split Venue Split

MAE (m) Mean (m) Std (m) MAE (m) Mean (m) Std (m)

FCN 5.4 0.5 6.8 6.0 1.3 7.4
CNN 5.5 0.8 6.9 6.1 2.3 7.5

ResNet 5.3 0.1 6.8 5.9 0.7 7.6
LSTM 5.5 −0.1 7.1 9.2 3.8 12.0

Figure 4 depicts the predictions of the ResNet with the folds split by athletes. Figure 4b
shows the predicted jump length as a function of the true jump length. The color represents
the points’ density, and a brighter color corresponds to a higher density. We can see
good agreement, so most points lie on or near the line with a perfect prediction. The
highest jump lengths are slightly underestimated, and the network overestimates the
lowest jump lengths.

Figure 4a shows the distribution of the true jump lengths, and Figure 4c shows the
distribution of the predicted jump lengths. Qualitatively, we can see a good agreement
between the two distributions.

Figure 4d shows the residual versus the true jump length. The absolute error is
relatively constant over the whole span of true jump length, and we do not observe
a relative error; i. e., an absolute error increases with increasing jump length. As the
left middle plot shows, the predicted jump length at both ends tends toward the mean
prediction. The projection of the residual is shown in Figure 4e. The residual follows a
Gaussian distribution.

3.2. Dependency of Prediction Accuracy on Input Length

In the previous subsection, we investigated the performance of different deep learning
architectures in predicting the expected jump length one second after the take-off. In this
section, we analyze how the accuracy of the prediction changes with the input length, i.e.,
the time after the take-off.

Figure 5 shows the residual for the ResNets trained on different input lengths. The
mean residual is depicted as a function of the input length of the time series data. The error
bars show the standard deviation of the residual.
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The standard deviation of the prediction error decreases from 0.5 to 4.0 s. The mean
prediction error is approximately constant for all input lengths.

Figure 4. Subplot (a) shows the distribution of the true ski jump length in the dataset. Subplot (c)
shows the distribution of the jump length predicted by the ResNet with the folds split by athletes. In
subplot (b), the prediction is plotted versus the true jump length. The color represents the density
of points calculated using a kernel-density estimate using Gaussian kernels. The brighter the color,
the higher the density of the points. Subplot (d) shows the residual as a function of the true jump
length. The color again represents the density of the points. Subplot (e) shows the distribution of
the residual.

Additionally, on the right y-axis, the number of jumps in the dataset with a duration
longer than the input length of the ResNet is shown. The number of samples is constant
until 2.5 s after the take-off. For 3 s after the take-off, the number of samples slightly
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decreases. For 3.5 s, the number is smaller, and for an input length of 4.0 s after the take-off,
there is a factor of more than two fewer jumps than directly after the take-off.
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Figure 5. The left y-axis corresponds to the prediction accuracy for ResNets trained on various input
lengths after the athlete’s take-off. In blue, the mean of the residual is plotted with the standard
deviation of the residual as the y-error bar. Additionally, the number of jumps with a minimum
duration, as shown on the x-axis, is plotted in red.

4. Discussion

This work aimed to develop the first ski jump length prediction. The dataset and the
prediction results are discussed in the following section.

4.1. Dataset

The dataset covers a wide range of jump lengths and athletes, which leads to good
prediction accuracy over jump lengths and generalization over athletes. Even though
the dataset has the largest number of different ski jumping venues and athletes used in
a tracking study [21,31,33,40–44], the number of venues is relatively small and unevenly
distributed compared to the number of athletes. This could be improved in the future.

Having only sensors on the skis is, on the one hand, unobtrusive and, therefore,
perfect for application in competition, especially for world-leading athletes in a dangerous
sport such as ski jumping. On the other hand, the tracking system does not cover much
information about the athlete’s movement. This would especially be important during the
take-off. Therefore, an additional camera next to the take-off table would be beneficial to
understand the take-off better and whether an athlete is jumping off too early or too late.
For example, pose estimation could be applied to measure knee and hip angles to improve
the prediction.

The time series data used in this study were sampled with 20 Hz, which is relatively
low considering the high speeds of the athletes at the take-off. The UWB measurements are
sampled with 20 Hz, but the internal sampling rate of the IMU sensor is much higher at
1000 Hz. Using this raw and highly sampled IMU data would probably be beneficial for
predicting xLength, since the take-off could be analyzed in much more detail. These raw
data, unfortunately, were not available in this study.

Future work could consider extending the dataset to ski flying and calculating xLength
for ski flying. One challenge is that the data acquisition is even more cumbersome since
fewer ski jumping competitions exist.

4.2. Prediction of xLength

First of all, we have to emphasize that having a perfect prediction of the ski jump
length shortly after the take-off would assume that the remaining flight and landing
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phase do not influence the jump length, which is, of course, not the case. Therefore, the
prediction accuracy of the jump length has a fixed limit. To get as close as possible to this
unknown limit is, therefore, the goal of such a prediction. Additionally, since this is the
first performance prediction in ski jumping, we cannot compare the prediction results to
previous studies.

Checking the generalization to new athletes, all deep learning architectures have a
similar prediction performance. The ResNet, however, has the most accurate prediction of
xLength in terms of MAE, mean and standard deviation of the prediction error. It could
be expected that the generalization to new athletes is no problem for the deep learning
architectures since the trajectories differ not much between individual athletes but rather
between individual jumps. In addition, the number of athletes is high in the dataset, which
benefits this generalization.

All deep learning architectures have worse performance in the MAE for the generalization
of new ski jumping venues. It could be expected that the generalization to new venues is worse
than to new athletes since the distribution over the venues is not uniform, and the vast majority
of jumps are from only two venues. Considering this, the generalization to new venues is
better than expected. Additionally, for a possible application, the generalization to new venues
should not be a problem since only a few professional ski jumping venues exist, which are thus
repeatedly used for competitions. Additionally, acquiring data would be possible during the
training runs, which are completed at every venue before the competitions.

Looking at the residual of the ResNet with the data split by athletes (Figure 4), we see
that the predictions tend toward the mean jump length. This is not surprising, since the
number of samples is much smaller at both ends of the jump length range.

In future work, we will investigate if methods from the area of out-of-distribution
generalization can further improve the algorithm’s precision to unseen venues and ath-
letes [45]. Other possibilities include using transfer learning to utilize IMU data from other
application areas, where data are more readily available, as completed in earlier work [46].

Another point to mention is that the WRTTS measuring the jump length accuracy
is 0.31± 0.44 m compared to the official video-based measurement, which is manually
labeled and rounded to 0.5 m [33]. Since the deep learning architectures were trained on
the jump length, determined with the WRTTS, this would affect a possible application in a
competition where the official video-based measurement is used.

In addition, to the prediction of xLength, we also tested interpreting the deep learning
models using SHAP (SHapley Additive exPlanations) [47] but did not obtain consistent
results over the different folds and deep learning architectures. Future work could further
address explainable AI approaches or extracting features to calculate feature importance.
This would benefit the athletes, coaches, and sports scientists to better understand the
complex sport of ski jumping.

Coaches and sports scientists could use xLength directly after take-off to quantify
the quality of the take-off. This would make the evaluation of the take-off objective and,
therefore, comparable between athletes.

4.3. Dependency of Prediction Accuracy on Input Length

The expected jump length is predicted more precisely with longer inputs, as one would
expect, since more flight trajectory data are available and the time to the predicted location
is shorter.

Naively, one would expect that the prediction becomes more and more precise. How-
ever, the prediction accuracy is almost constant for inputs larger than three seconds. A
reason for the performance might be that the jump length is harder to predict due to
far fewer data. Additionally, for large jump lengths, which correspond to high jumping
durations, the athletes land in the curvature at the bottom of the landing hill, which is not
in detail described in the ski jumping hill data input into the network.

Coaches and sports scientists could use xLength of different input lengths to analyze
and compare individual jumps. For example, if xLength becomes smaller at a specific time
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during the jump, this indicates that the athlete made an error during the flight phase. In
contrast, if xLength enlarges during the ski jump, this indicates that the athlete performs
well in the flight phase. In addition, it might be possible to differentiate between athletes
with a better take-off versus athletes with better flight phases.

Additionally, due to the live data transmission of the sensors, the predicted jump
length could be updated during the whole jump. In combination with the calculated
distance to beat, which is calculated before the athlete starts, this could be used to determine
a live probability of reaching a specific position in the ranking or a determination of jump
length given away compared to the take-off.

Another possible application could be to use it in a live visualization showing the
expected landing corridor, which with increasing prediction accuracy, becomes smaller. So,
this feature might, on the one hand, help experts analyze jumps and, on the other hand,
make TV broadcasting more interesting for laypersons.

5. Conclusions

This work aimed to develop the first ski jump length prediction. Therefore, we
analyzed the first large-scale ski jumping dataset included in a research study. The data are
measured by wearable trackers on the athletes’ skis, measuring the 3D position, 3D velocity,
and the skis’ orientation. Using the ski jump length also determined with the tracking
system, we performed a hyperparameter tuning for different deep learning architectures.

Firstly, we compared the performance of the deep learning architectures for a predic-
tion one second after the take-off. Here, we obtain the best results for the generalization
to new athletes using a ResNet. This achieves an MAE of 5.3 m, mean residual 0.1 m, and
a standard deviation of the residual of 6.8 m. For the generalization to new venues, we
obtain slightly different results. Therefore, the ResNet has the smallest MAE with 5.9 m
and a standard deviation of the residual of 7.6 m.

Another question was how the prediction accuracy changes with the input time after
the take-off. Therefore, we investigated different ResNets trained on various input lengths
from 0.5 to 4 s after the take-off. Thereby, the standard deviation of the residual becomes
smaller with increasing input lengths.

We think that the proposed xLength can be used for live broadcasting due to the live
data transmission and for the retrospective analysis of jumps by experts. This includes the
quantification of the take-off, thus comparability between jumps and athletes, as well as
the analysis during the flight to determine errors when xLength decreases.

Future work should also consider more explainable approaches than neural networks
to obtain a better understanding of ski jumping. Additionally, a camera at the take-off
might be beneficial to obtain more information about the take-off process, since the sensors
on the skis do not provide any information about the body’s movement.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural network
FCN Fully connected network
FIS Fédération Internationale de Ski
h Height difference between take-off table edge and K
HS Hill size (distance between edge of take-off table and L)
IMU Inertial measurement unit
K Construction point
L End of landing area
LSTM Long short-term memory
MAE Mean absolute error
n Horizontal distance between take-off table edge and K
P Start of landing area
s Height of the take-off table
Uz Height difference between take-off table edge and the lowest point
WRTTS Wearable real-time tracking system
βP Inclination of the tangent at P
β Inclination of the tangent at K
βL Inclination of the tangent at L
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