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Abstract: When it comes to some essential abilities of autonomous ground vehicles (AGV), detection
is one of them. In order to safely navigate through any known or unknown environment, AGV must
be able to detect important elements on the path. Detection is applicable both on-road and off-road,
but they are much different in each environment. The key elements of any environment that AGV
must identify are the drivable pathway and whether there are any obstacles around it. Many works
have been published focusing on different detection components in various ways. In this paper, a
survey of the most recent advancements in AGV detection methods that are intended specifically
for the off-road environment has been presented. For this, we divided the literature into three major
groups: drivable ground and positive and negative obstacles. Each detection portion has been further
divided into multiple categories based on the technology used, for example, single sensor-based,
multiple sensor-based, and how the data has been analyzed. Furthermore, it has added critical
findings in detection technology, challenges associated with detection and off-road environment, and
possible future directions. Authors believe this work will help the reader in finding literature who
are doing similar works.

Keywords: autonomous ground vehicles; off-road environment; drivable ground; positive obstacles;
negative obstacles

1. Introduction

For years, industry and academia have been interested in developing autonomous
technologies, such as driverless vehicles. Driverless vehicles are also known as autonomous
ground vehicles (AGV) [1], unmanned ground vehicles (UGV) [2], autonomous guided
vehicles [3], or autonomous land vehicles (ALV) [4]. These terms refer to vehicles that
can navigate without or with minimal human assistance [5]. They are one of the first
modern applications in robotics research. From the early days, AGV has been constantly
being improvised to provide advanced driver assistance, road safety, and collision avoid-
ance [6–8]. However, research in the unstructured environment still falls behind compared
to structured environments. Many uncertain factors are responsible for this, like lack of
labeled dataset, accessibility of data, lack of applicable data [9], etc.

Off-road environments are regions of suburban or non-urban, non-structured, or
weakly structured road areas that lack well-defined routes and driving instructions like road
signs, traffic signals, etc. Some good examples of off-road environments are forests, country
roads, muddy or sandy roads, or terrain covered by emergent plants [10]. Oliver et al. [11]
defined unstructured environments as situations or environments that “have not been
previously adjusted to make it easier for a robot to complete a task”. In layman’s terms, an
off-road environment can be any environment that does not have basic driving facilities,
road instructions, and more challenging than usual conditions. Figure 1 shows some exam-
ples of off-road environments that have unstructured roadways and without proper driving
facilities. Figure 1a–c shows rocky, muddy, and sandy road environments, respectively.
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Figure 1. Examples of some off-road environments with unstructured roadways; The figure presents
(a) rocky, (b) muddy, and (c) sandy road environments. Images are collected from the autonomous
testing ground of the Center for Advanced Vehicular Systems (CAVS) at Mississippi State Univer-
sity (MSU).

The on-road environment is an urban area with structured roadways, along with
necessary driving instructions, e.g., road signs, street markings, etc. On-road detection
techniques involve lanes, traffic signals, road signs, pedestrians, vehicles, and building
detection. Most of the objects on-road are specific and identifiable with a vision-based
method. However, in off-road scenarios, there may not have any specific element. Therefore,
it is very difficult to sense the environment. In the off-road environment, two major
detections are essential to navigate smoothly. At first, it needs to identify the traversable
or drivable ground where nothing can block the movement of the vehicle. Secondly, the
vehicle needs to look for obstacles to find the appropriate path. Any prior knowledge about
the environment facilitates the vehicle system to reach its goal at the minimum cost with
the shortest distance.

Our fundamental goal is to present a brief overview of the primary methods of
detection applied in off-road environments. In this paper, we examine the state-of-the-art
detection techniques for AGV in the off-road environment. We have discussed the types of
detection that need to be considered by the vehicles in the off-roads and the sensors or the
methods used for those detections.

We have gathered and organized past works in a systematic way in which the problem
of detection can be identified. The authors do not claim to provide all solutions recorded
in the literature because doing so would be somewhat impossible. We hope that scholars
working on this area will get a clear picture of the most relevant methodologies currently
accessible in the literature by publishing this review.

The rest of this paper is structured as follows: Section 2 will provide a few related
works, the novelty of this work, and classifications. Sections 3–5 will detail each category
and the detection methods adopted by different works in the literature. Section 6 con-
tains a comprehensive discussion, including key findings, major challenges, and future
possibilities. Finally, Section 7 concludes the paper.

2. Related Works, Novelty, and Classifications

Many reviews and surveys are available in the literature covering the mobility of AGV
or mobile robots in both on and off-road environments. We are providing the works done
in off-road environments, as our research focuses on that.

The first review is presented by Chhaniyara et al. describing various terrain classifica-
tion methods based on the mechanical property of the terrains that had been applied in
previous planetary research in terrain trafficability analysis [12]. It is important to know
about the geometrical properties of its terrain surface and surroundings for planetary
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rovers. Their approach differs from traditional terrain identification methods, focusing on
remote and in situ sensing for terrain classification.

Conversely, Papadakis [13] provides a similar analysis but gathers different meth-
ods for analyzing terrain traversability based on sensory data. This paper classifies the
methodologies into three broad categories-proprioceptive, geometric, and appearance-
based. Hybrid approaches are also discussed with a brief overview of each category.

Few works highlight sensory information. A work presented by Ilas [14] summarizes
the major sensor technologies used by AGV, along with their scope of the evaluation. AGV
needs to observe its surrounding environment and make real-time decisions, requiring
advanced sensing. This work provides the sensor information used in different types of
environments in different vehicle prototypes and evaluates sensor development.

Babak et al. [15] reviewed the advancements in AGV technology, following brief history
and the sensor technologies utilized in AGV. They briefly explained the recent sensor fusion
techniques, advances in embedded software approaches, and the logic between sensory
data and actuation decisions.

The work by Lynch et al. [16] focused on the sensors needed for guiding AGV’s
navigation. They presented a brief overview of the sensors used for AGV navigation.
In addition, a comparison of different sensors with their sensing capabilities, cost, and
efficiency has been provided to guide the researchers.

Hu et al. [17] presented a survey on obstacle detection using sensor fusion in an
off-road environment. A single sensor may have many limitations and cannot fully satisfy
the requirements of obstacle detection, and multiple sensors can overcome this challenge.
The authors have briefly described the state-of-the-art fusion techniques and suggested
selecting the sensors based on the performance and the environment.

Guastella et al. [18] provided an incredible work, discussing the recent works high-
lighting learning-based methods to resolve environment perception. Perception gives the
vehicle the information it needs to understand its own situation and its surroundings. They
classified the learning-based method into two broad categories- terrain traversability and
end-to-end method. Terrain traversability is further divided into classification, regression,
and mixed of both methods. They mainly want to deal with autonomous mobility in the
off-road environment.

Table 1 summarizes the review works presented in this section. These are the existing
review works published. In the table, we included when the works were published, what
areas had been covered, and what their work focused on. As shown, the existing literature
focused either on remote sensing, sensor technology, or learning-based methods. We have
also provided what we have presented in this work, how our work can contribute and how
it differs from the existing literature. This paper includes the related outcomes for detection
regardless of the detection method.

Table 1. The existing review works that have covered the mobility of AGV in off-road environments,
including this work.

Literature Published Year Area Covered Technology Focused

Chhaniyara et al. [12] 2012 Terrain trafficability analysis Remote sensing technology

Papadakis [13] 2013 Terrain traversability analysis Sensor technology

Ilas [14] 2013 Electronic sensing technologies Sensor technology

Babak et al. [15] 2017 The advancements in AGV technology Sensor technology

Lynch et al. [16] 2019 Sensor technologies Sensor technology

Hu et al. [17] 2020 Sensor fusion-based obstacle detection Sensor technology

Guastella et al. [18] 2021 Environmental perception Learning-based methods

This article 2022 Ground, positive, and negative
obstacles detection

Both sensor technologies and
learning-based methods
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2.1. The Novelty of This Work

As mentioned earlier, this work aims to present a high-level overview of the methods
adopted by researchers for detection techniques, specifically done in off-road environments.
According to the previous work, several attempts have been made to focus on the off-road
environment, traversability, sensing technologies, obstacle detection, and learning methods.
However, no such effort has yet been made, considering all the factors of detection. In our
work, we have not confined the detection to any specific object or technique; instead, we
believe detection has a broad category.

This work covers different elements of detection possibly found in the off-road envi-
ronment. We have considered all objects that need to be detected for smooth navigation.
Sensor-based techniques, including single and multiple sensors, and analyzing algorithms,
including machine learning, have been considered for the detection methods. This work
has not included the techniques applied in the on-road or urban environment. Furthermore,
this work has not looked for other factors that affect traversability, like path planning
algorithms, perception problems, and positioning systems. More specifically, our study has
not included surface roughness, slope, soil moisture, plasticity, and local position.

2.2. Classification

As we mentioned, we consider the detection analysis a broad study; therefore, group-
ing the same detection element helps readers connect similar works. In this section, we
have classified the literature into multiple segments based on the detection factor. Figure 2
shows the categorization of detection for traversing AGV in the off-road environment.
As shown in the figure, two major types can be identified within the scopes described in
the previous section of AGV for detection in the off-road environment- drivable ground
and obstacles.

The obstacles have been further divided into three categories-positive, negative, and
hanging obstacles. Figure 3 shows the different obstacles available in the off-road environ-
ment. We have found multiple papers for each major detection category. Each section has
been further subdivided based on its detection method. However, we could not find any
work that has been done solely for hanging obstacle detection in the literature. Therefore,
we have not included the hanging obstacles in this study; however, it is an important aspect
of the off-road environment. So, we have presented the hanging obstacle detection status
as a future possibility at the end of this work.

The sections and subsections of this work have been presented below:

1. Ground or drivable pathway detection

1.1 Single Sensor-Based Detection
1.2 Multiple Sensor-Based Detection

2. Obstacle detection

2.1 Positive obstacle detection

2.1.1 Single sensor-based detection
2.1.2 Multiple sensor-based detections

2.2 Negative obstacle detection

2.2.1 Missing data analysis
2.2.2 Vision-based detection
2.2.3 Other methods
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Figure 2. Classification of detection for AGV navigation in the off-road environment.

Figure 3. Different types of obstacles found in the off-road environment.

In Figure 4 we have demonstrated how the different detection works fit into each
category using a Venn diagram representation. Readers will clearly visualize how much
work has been published in each category. We have also found some works in the literature
that can fit into multiple categories at the same time. The Venn diagram clearly shows those
works where they fit. Therefore, it will be easy to understand which ones covered more
than one detection. To avoid repetition, we have included the paper in that group based on
the detection that has been emphasized.
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Figure 4. Distribution of the literature in different categories.

3. Ground or Drivable Pathway Detection

One of the most important criteria in autonomous driving is identifying drivable
regions. On-road pathways are easily identifiable because of their structure, color, smooth-
ness, and horizontality. Off-road areas are more challenging, requiring advanced sensing
equipment and techniques because, in off-road areas, roads are not the same in all areas.
Instead, certain areas of the ground may be unsmooth, sloppy, and bumpy. In addition, hav-
ing dense vegetation, grass, sand, or dirt, the driving pathway may not be distinguishable
by a visual identifier. As a result, the AGV may lose its autonomous navigation capability.

3.1. Single Sensor-Based Detection

Liu et al. [19] used only 3D lidar to detect drivable ground, positive, negative, and
hanging obstacles. They primarily detected obstacles to uncovering the traversable region
in their work. They used 3D lidar points and analyzed the radial and transverse features.
These features detect the obstacles, and then the leftover areas are defined as drivable
regions for traversing AGV.

Gao et al. [20] also used lidar and proposed a deep-learning approach where they used
the vehicle trails as input and obstacle marks as the label for the network. The suggested
network topology was created considering the obscure and uncertain zone in the off-road
environment. For their network, no human involvement is required to label the obstacles
as it is done automatically. The main advantage of this network is that it takes data without
labeling or weakly labeling but still provides a satisfactory result.

Chen et al. [21] detected traversable road sections and obstacles in one unified model.
They collected lidar image data and converted it to a lidar point cloud. A histogram map
has been generated with the lidar point cloud, where the traversable road area can be
visible in front of the vehicle. Apart from the traversable path, the obstacles are also visible
around it.

Katramados et al. [22] created a “traversability map” by extracting color and texture
from images. For that, they collected camera data, mounted it on the top of the vehicle,
and removed some unnecessary information. Then, they generated the map and adjusted
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the image’s temporal filtering, which helped to detect edges from blurry images. They
removed lighting effects like shadows and reflections from the dataset, making the final
detection result accurate.

Shaban et al. [23] developed a deep learning model named Bird’s Eye View Network
(BEVNet). This model took aerial images from the lidar sensor and semantically segmented
them into four terrain classes- “free, low-cost, medium-cost, and obstacle”. The advantage
of this model is that it can fill any gap with information using previous knowledge, and
thus, it can overcome the problem of missing values for those areas where no lidar hits
are found.

In another work, Gao et al. [24] suggested an approach based on contrastive learning
using camera images. In contrastive learning, a single feature is trained for classification.
They used a set of human-labeled bounding boxes as features and detected different
traversable areas for this work. Those areas are semantically segmented to generate an
understandable map of the environment.

Overall, lidar and camera sensors have primarily been used for traversable ground
detection when using only a single sensor. Furthermore, the deep learning method is quite
interesting to the researchers, as they can overcome some limitations like uncertain zone,
missing data, etc.

3.2. Multi-Sensor-Based Detection

Zhu et al. [25] combined three lidars to detect three different types of obstacles and
traversable paths. They used lidar odometry, which converts the detection output into
a structured form. They recorded several findings, combining each with the following
result. This combination uses the Bayesian theory, which provides a reward. However, this
method will not work for long-distance traversability.

A drivable ground detection method in a dynamic environment has been presented
by Dahlkamp et al. [26]. This method has been applied to the vehicle that participated
and won in the “DARPA Grand Challenge robot race”. DARPA is the “defense advanced
research projects agency”. A “drivability map” is created by a laser range finder and camera
sensor with an appearance model. This vehicle was able to navigate through the desert
terrain very fast.

Mei et al. [27] designed an algorithm to detect the traversable area in the off-road
environment. They captured images with a monocular camera. The image of the same area
is also captured by a lidar-based and observed by a human. The far-field capability is also
measured. The final traversable region is defined by comparing the image data with the
three measurements.

An unsupervised learning-based method has been developed by Tang et al. [28] for
segmenting passable areas in unstructured environments. They used a deep convolutional
neural network to classify free, obstacle, and unknown road areas. They used both camera
and laser sensors for training data and generated automatic labeling. For testing data, only
a monocular camera is sufficient.

Semantic segmentation, also known as image segmentation, is the process of allocating
one of N predefined classes to every pixel of an image [29]. It is a deep learning algorithm
that depends on a large set of labeled datasets. Dabbiru et al. [9] published a labeled dataset
using semantic segmentation of three different vehicle types for an off-road environment.
They used two 2D cameras and a 3D lidar sensor for data collection and annotated them
based on the vehicle class.

Reina et al. [30] detected drivable ground by combining lidar and stereo data and
two classifiers. Each classifier takes data from each sensor, and then the classification
result is fused to get the final result. Likewise, Sock et al. [31] used lidar and camera
data to measure road boundaries and shape. They generated two probabilistic maps
with two different sensors and then classified the traversable region with a linear support
vector machine (SVM). The two classification results have been fused with the Bayes rule.
McDaniel et al. [32] proposed a method for detecting tree stems using an SVM classifier.
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They used a lightweight lidar scanner from a single point of view. This method has
two steps where the non-ground points have been filtered out in the first step, and then
SVM classifies the points that belong to the ground from the remaining.

In summary, fusing multiple sensors can provide a better detection result for drivable
ground. Lidar and camera fusion is the most common fusion method. The classification
result from two different sensors is being compared with the Bayesian rule. However, using
multiple sensors may be costly. Table 2 encapsulates the works presented in Section 3. To
keep this table simple and easily understandable, we have included the type of sensors and
techniques used by each literature and what they detected.

Table 2. The methods used for traversable ground detection.

Literature Sensors Method Detection

Gao et al. [20], 2019 Lidar Deep Learning Drivable ground

Chen et al. [21], 2017
Lidar

Lidar-histogram Obstacles and
drivable groundLiu et al. [19], 2019

Zhu et al. [25], 2019
Radial and Transverse feature

Bayesian Network

Katramados et al. [22], 2009 Camera Vision/Traversability map Drivable ground

Shaban et al. [23], 2021
Lidar

Camera
Semantic Segmentation Drivable groundGao et al. [24], 2021

Dabbiru et al. [9], 2021

Tang et al. [28], 2018 Laser + Camera Unsupervised Learning Drivable ground

Reina et al. [30], 2016
Dahlkamp et al. [26], 2006

Lidar/Laser + Camera Supervised Learning/SVM Drivable groundSock et al. [31], 2016
McDaniel et al. [32], 2012

Support Vector Machine (SVM).

4. Positive Obstacles Detection and Analysis

AGV considers any particle as an obstacle that obstructs its smooth driving. Nav-
igating securely without colliding with objects or falling into gaps is a key criterion for
AGV. Obstacle detection and navigation in an unknown environment are one of the major
capabilities of AGV. Obstacles are multiple objects that hinder the usual speed of the vehi-
cles or make it a complete stop. Dima et al. [33] defined obstacles as “a region that cannot
or should not be traversed by the vehicle”. Pedestrians, vehicles, houses, trees, animals,
boulders, giant cracks, vast quantities of water, snow, etc., can be considered obstacles.

4.1. Single Sensor Based

Huertas et al. [34], determined the diameters of trees from the stereo camera image to
assess whether they constitute traversable obstacles using edge contours. Edge contours
are generated from the stereo pair (left and right) images, which is called 3D fragment
information. Then, this information is coded with orientation to confine processing to
object borders to match the edges on opposing tree trunk boundaries.

Maturana et al. [35] aim to differentiate small objects from large obstacles. They
built a 2.5D grid map where they labeled terrain elevation, trail, and grass information.
A 2.5D grid map is an image type where the height and depth information is provided.
That information has been collected through lidar and other image data. The semantic
map dataset is further trained and tested with a customized CNN for path planning and
cost calculation.

Manderson et al. [36] presented a reinforcement learning method using labeled images.
They collected images from the front end and overhead with various obstacles like vegetation,
different rock kinds, and sandy paths. These images are used as inputs, and the labeling
process is self-supervised. Value Prediction Networks (VPN) [37] have been used as a network.
VPN is a hybrid network consisting of model-based and model-free architecture.
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Nadav and Katz [37] presented a system with low computational cost. They used a
smartphone to collect images, and they converted the images into a 3D point cloud model
and processed it to detect obstacles and distance information. Another benefit of this
system is that it can operate individually without other sensors.

Broggi et al. [38] presented a system that provides real-time obstacle detection using
“stereoscopic images”. These images are collected from a moving vehicle through two
cameras on the left and right sides. Then, the system calculates “V-disparity”, which
determines the pitch oscillation of the camera from vehicle movement. V-disparity is a
method that uses a single pair of stereo pictures to determine the camera’s pitch angle
at the moment of acquisition [39]. The obstacles are then identified and mapped in real-
world coordinates.

Foroutan et al. [40] presented a different approach than typical obstacle detection.
They look into the effect of understory vegetation density on obstacle detection and use
a machine learning-based framework. For that, they take point cloud data from the lidar
sensor using an autonomous driving simulator. If the understory vegetation increases, the
classification performance decreases.

A laser-based system with the Sober algorithm and the Gaussian kernel function has
been applied by Chen et al. [41]. The goal is to group each obstacle’s point clouds, so
the super-voxel has been optimized with the Euclidean clustering technique. Then, “the
Levenberg–Marquardt back-propagation (LM-BP) neural network” has been applied to
extract the features of the obstacles.

Zhang et al. [42] provided a faster detection method using stereo images. The detection
method has two stages. In the first stage, it rapidly identifies the easily visible obstacles,
and then in the second stage, it uses space-variant resolution (SVR) [42] to improve small
obstacle detection. SVR is an algorithm that analyzes the geometric features and the level
of interest in each area. However, SVR has a very high computation cost.

Overall, cameras are widely used sensors for obstacle detection. However, lidar and
laser also provide good detection. While identifying the obstacles from the image, different
image processing techniques and detection algorithms have been applied in different works.
Some took different approaches by considering small objects.

4.2. Multi-Sensor Based

Kuthirummal et al. [43] presented an approach that can be applied to lidar and camera
sensors. They created a grid-based obstacle map to define traversability. To map the
obstacles in each cell, they calculate the elevation histogram and plot them on the graph
with the label. Thus, the information about obstacles can be known.

Manduchi et al. [44] presented a sensor processing algorithm using two sensors. A
color stereo camera is used for detecting obstacles based on color and terrain type. A
single-axis ladar classifies the traversable and large obstacles. The camera is mounted on
the vehicle’s top, while the ladar is placed in the lower portion. These two systems provide
better navigation together.

Reina et al. [45] built perception algorithms to improve the autonomous terrain
traversability of AGV. They presented two approaches. One deals with the stereo data to
classify drivable ground and uses the self-learning method. The other one uses a radar-
stereo integrated system to detect and classify obstacles. They have done field experiments
in different environments, including rural areas, agricultural land, etc.

A low-cost and multi-sensor-based obstacle detection method has been developed
by Giannì et al. [46]. They have unified three sensing technologies: radar, lidar, and sonar.
Then, the data is “sieved” and passed to the Kalman filter, and this technique estimates the
distance of the obstacle accurately. Meichen et al. [47] take a similar Kalman filter-based
approach. They have selected IMU (Inertial Measurement Unit) and lidar sensors to collect
the coordinates of the obstacle, and both coordinates are fused to get the obstacle position.

Kragh and Underwood [48] used semantic segmentation by fusing lidar and camera
sensors. The appearance information comes from a 2D camera, and the geometry infor-
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mation comes from 3D lidar data, and both information has been fused to get the final
detection result. The advantage of this model is that it can differentiate between traversable
overgrown grass or fallen leaves and non-traversable trees and bushes. Furthermore, using
this method, ground, sky, vegetation, and object can be classifiable.

Ollis and Jochem [49] used a set of sensors to generate a “density map” to detect
different obstacles and classify terrain. They used various ladar and radar sensors that can
update 70 times in a second. The terrain has been divided into six subclasses based on
the obstacle. They also classified traversable regions based on the difficulty level, such as
non-traversable, traversable, partially traversable, etc.

Bradley et al. [50] utilized the infrared ray for detecting vegetation that has previously
been used to detect chlorophyll. A near-infrared and a video camera are fused to capture
image data. The visible light has been removed from each pixel of the image by applying a
threshold value. Thus, the presence of chlorophyll or vegetation can be known.

A different approach has been adopted by Nguyen et al. [51]. They have not used any
visual method; instead, they used a motion compensator and motion detector by blowing
objects. They identified short or long grass and leaf branches in the front. However, this
method is restricted to identifying and weighing passable vegetation when the vehicle
is stopped.

For positive obstacle detection, researchers have fused different sensors in different
ways. Lidar and cameras are mostly used sensors, and neural networks are commonly
used algorithms. However, the Kalman filter, motion detector, and visual analysis are some
methods that have delivered a reasonable detection result. In Table 3, we have summarized
all the methods presented in Section 4, including the sensor, method, and obstacles that
have been detected. Some works covered drivable ground or negative obstacles, along with
positive obstacle detection.

Table 3. The methods used for positive obstacle detection.

Literature Sensors Method Detection

Huertas et al. [34], 2005,
Broggi et al. [38], 2005 Camera Stereo Algorithm

V-disparity Positive obstacles/vegetation

Maturana et al. [35], 2018,
Foroutan et al. [40], 2021 Lidar/Camera CNN/Machine learning Positive obstacles

Manderson et al. [36], 2020,
Nadav et al. [37], 2017 Camera Supervised Learning Positive obstacles

Kuthirummal et al. [43], 2011 Lidar/Camera Graph Traversal Algorithm Positive + Negative obstacles

Chen et al. [41], 2020 Laser (LM-BP) neural network Positive obstacles

Zhang et al. [42], 2014 Camera Stereo vision + SVR Positive obstacles

Bradley et al. [50], 2004 Infrared + Camera Vision Positive obstacles/vegetation

Reina et al. [45], 2017,
Manduchi et al. [44], 2005 Camera + Ladar/Radar Supervised Learning Positive obstacles

Giannì et al. [46], 2017 Radar+Lidar + Sonar Kalman filter Positive obstacles

Ollis and Jochem [49], 2013 Radar + Ladar Density Map Positive obstacles + drivable
groundKragh and Underwood [48], 2020 Camera + Lidar Deep learning

Nguyen et al. [51], 2012 Blowing object Motion compensation
and detection Positive obstacles/vegetation

Convolutional Neural Network (CNN); Levenberg–Marquardt back-propagation (LM-BP); Space-Variant Resolu-
tion (SVR).

5. Negative Obstacles Detection and Analysis

Positive obstacles are those objects with a positive height above the ground, while
negative obstacles are those with a negative height below the ground [4]. Positive obstacles
are easily visible and captured by the sensors. Because of the negative height and position
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below the ground, negative obstacles are somewhat challenging. Furthermore, a regular
vision-based system may not measure their depth and area. It could be unsafe for the
vehicle if the negative obstacles are not identified correctly.

5.1. Missing Data Analysis

A common practice in negative obstacle detection is dealing with missing data from
sensor signals. Many pieces of literature have worked with three-dimensional Lidar data.
For example, Larson and Trivedi [52] have presented an algorithm for negative obstacle
detection. They used a 3D laser to collect point cloud data. Two algorithms have been
used for the classification method—Negative Obstacle DetectoR (NODR) and support
vector machine (SVM). NODR, a geometry-based classifier, works by identifying missing
information, which can lead to a negative obstacle. On the other SVM classifies the rays
that return from Lidar.

Sinha and Papadakis [53] also considered the information gap from 2D morphological
images for negative obstacle detection. The advantage of their approach is that they
process in real-time and provide a high-level accuracy without analyzing the 3D scene. The
difference from other works is that they denoised the signals, extracted features through
principal component analysis (PCA), and classified them according to the area.

Similarly, Heckman et al. [54] have also considered missing data from a 3D laser. By
identifying areas where data is missing, they aim to detect the negative obstacles which
could be a reason for missing data. The benefit of this method is that it can be applied to a
complex environment even with sloped ground.

Analyzing missing data from the sensors has been a unique but effective method for
detecting negative obstacles. The data come from the point cloud, lidar, or laser sensor for
missing data analysis.

5.2. Vision-Based Detection

Much literature focuses on stereo vision to detect negative obstacles like the Lidar
sensor. Karunasekera et al. [55] utilized the stereo camera’s 3D and color information. They
generated a disparity map, where v-disparity and u-disparity have been applied to identify
road profiles. U-V-disparity is an algorithm for understanding a 3D road scene, where it
can classify different features of that scene [56]. Negative obstacles can be identified by
scanning through every pixel of the disparity map.

Shang et al. [4] also used Lidar to collect data about negative obstacles. They mounted
the sensor in an upright position in their work, which has a great advantage. The vehicle
collects more information about its blind spot and data in this position. The width and
the background information have been fused with the Bayesian network. Then, they used
SVM classifiers to get the final detection.

Bajracharya et al. [57] used stereo vision for a special vehicle to detect sparse vegetation
and negative obstacles. So, they build a terrain map and walk along with it. The system
uses spatial and temporal information, making detection results more accurate. This system
can work in dynamic locations and weather, like rain, snow, and even at nighttime.

Hu et al. [58] fuse different geometric cues from stereo cameras in the image sequence
to detect negative obstacles. The stereo images contain range, color, and geometric infor-
mation, and a Bayesian network calculates the probability of detection. The benefit of this
method is that the obstacles can be detected from a far distance.

In [59], the performance of seven obstacle identification methods with 21 obstacles has
been examined. Among these, two of them are negative obstacles. One was detected with
a stereo image, and another was on the local map through software.

Overall, negative obstacle detection using vision is a difficult task, which has been
possible with some image processing techniques and stereo vision.
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5.3. Other Methods

Dima et al. [33] presented a data fusion technique for various obstacle detection. They
fused information from multiple laser finder sensors and multiple machine learning clas-
sifiers. Different obstacles have different features, and different classifiers are suitable
for them. Therefore, they fused multiple information along with the classifiers, provid-
ing much better results. This approach provided good detection accuracy for thin and
negative obstacles.

The approach mentioned in [43] is also applicable to detect negative obstacles. As
this approach used the histogram elevation information to find the traversable region, the
negative elevation objects are identified as negative obstacles.

The negative obstacle detection at nighttime has been addressed by Rankin et al. [60].
This work combined geometry information from stereo and thermal information from
infrared. The thermal property is considered, and they considered that the interior of
negative obstacles remains warmer than its surroundings throughout the night.

Goodin et al. [61] presented a Lidar-based model for analyzing the performance of
negative obstacle detection. In this model, the sensor has to be installed on AGV to consider
vehicle movement and speed, as the detection algorithm is based on curvature. This model
has been cross-validated on Mississippi State University Autonomous Vehicular Simulator
(MAVS) [62,63].

Morton and Olson [64] presented a mechanism considering three features, height,
length, and density (HLD), for detecting both positive and negative obstacles. Height is
such a parameter that distinguishes positive and negative obstacles. The main contribution
of this work is that it can provide high accuracy with incomplete and noisy data.

Wang et al. [65] presented an obstacle detection method using a unique sensor, interfer-
ometric synthetic aperture radar (InSAR). InSAR has the ability to capture both scattering
images and coherence images. In the detection approach, the shadow and edge information
has been fused. The system differentiates the positive and negative obstacles by coherence
area and amplitude.

As negative obstacles are somewhat difficult to detect, different other approaches have
been taken to detect them. For example, color, height, thermal property, and curvature
analysis. In Table 4, we have summarized all the methods presented in Section 5, including
the sensors used, the methods, and the information about what they detected.

Table 4. The methods used for negative obstacle detection.

Literature Sensors Method Detection

Larson and Trivedi [52], 2011
Sinha et al. [53], 2013

Heckman et al. [54], 2007
Lidar/Laser Missing data analysis Negative obstacles

Shang et al. [4], 2014 Lidar SVM Negative obstacles

Rankin et al. [60], 2007 Infrared Thermal property analysis Negative obstacles

Rankin et al. [59], 2005
Hu et al. [58], 2011

Bajracharya et al. [57], 2013
Karunasekera et al. [55], 2017

Camera Vision Negative obstacles

Goodin et al. [61], 2021 Lidar Curvature analysis Negative obstacles

Dima et al. [33], 2004 Camera+ Lidar HLD
Positive + Negative

obstacles
Morton and Olson [64], 2011 Camera+ Infrared camera+ Laser Color and texture analysis

Wang et al. [65], 2016 InSAR Data Fusion

Negative Obstacle DetectoR (NODR); Principal Component Analysis (PCA); Height, Length, and Density (HLD).

6. Discussion

In this paper, we have discussed different detection approaches, including drivable
roads and obstacles, in off-road scenarios. The study of detection analysis is essential to
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ensure safety, smooth driving, and path planning [63] in an unknown environment. After
reviewing the papers on different detection elements, some common criteria have been
found. This section will explore and describe some key findings, challenges, and future
directions from the overall review of the works presented in the previous sections.

6.1. Key Findings
6.1.1. Sensors

Most works presented here are entirely or mostly dependent on one or more sensory
information. The sensor provides the necessary information from the environment to a
system; thus, the system learns about the environment from the data sensor provides and
acts accordingly. Several works of detection rely on images, like monocular cameras, RGB
cameras, or infrared cameras. Image-based sensors detect paths or obstacles based on
visibility. Some detection works rely on the 3D point cloud system, like 3D lidar or laser
sensors. In many off-road situations, 3D sensors have proven to be more dependable than
2D sensors for detection because the 3D sensor provides a clear picture of the surroundings,
from where the system gets the idea of an object’s size, shape, and height. Furthermore,
they are widely available at affordable prices.

Table 5 shows some of the sensors that are being used for detection, mostly on AVG,
and the types of data they generate. Data resolution is also important for detection as it
provides more detailed information about the objects/obstacles. Different types of sensors
can be utilized depending on the vehicle and environment.

Table 5. The sensors usually used for detection.

Sensors Data Type Resolution

Camera [66] Images High
Lidar [46] Point clouds High
Radar [46] Radio frequency Low
Laser [66] Signal reflectivity High
Ladar [67] Signal reflectivity High

Infrared [60] Electromagnetic radiation Low
Stereo [42] Radio frequency High

Sonar [46,66] Sound reflection Low

6.1.2. Sensor Fusion

The environment is continuously changing through weather, dust, and daylight con-
dition. Thus, the scene captured by a sensor change is not static. The variations in envi-
ronmental parameters exacerbate sensory data and sensing performance. Therefore, one
sensor may sometimes not be enough to adjust for these variations. Sensor fusion facilitates
the creation of a reliable model that can accurately sense the environment under diverse
environmental circumstances [68]. In addition, each sensor has its strength and weakness.
Multiple sensors can overcome this weakness by filling a single sensor’s information gap
and thus increasing detection accuracy. For example, obscured obstacles are challenging to
detect with visually dependent sensors. Hollinger et al. [69] solved this difficult task by
fusing lidar and radar. Both these sensors are based on radiofrequency. They tested this
method with four different obstacles by placing them concealed by vegetation. The camera
lidar fusion has been welcomed in much research, as a 2D camera alone cannot provide 3D
information about a scene, so an additional lidar sensor might be required. The Kalman
Filter and Bayesian reasoning are utilized to fuse the information from multiple sensors.
Fusion can be performed at different levels, like low, mid, and high. For object detection,
high-level information fusion may be required [70].

6.1.3. Learning-Based Model

Many works of literature offer detection based on learning algorithms. The learning-
based algorithms offer the system to have an understanding of the environment and allow
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it to get a better classification. As the system gets new data, it updates its logic automatically.
The two primary learning-based methods are supervised and unsupervised learning. The
training data are labeled in the supervised learning method, which is further used for
testing or detection. In unsupervised learning, data are not labeled; but the system can label
the data automatically with human involvement. The common part of these two algorithms
is that they can predict new input. Another type of learning-based system is reinforcement
learning, where the system learns from previous experiences by exploring the environment.
Apart from classical machine learning, researchers have accepted deep learning, enabling a
robust framework by adding more layers. However, increasing more layers to the network
may also increase the complexity and computational time [71]. The popular learning-based
model used in the literature for detection is SVM, CNN, deep neural network, etc. Some
works developed their customized learning algorithms

6.2. Challenges
6.2.1. Availability of Dataset

Autonomous technology has become an emerging technology. Researchers are contin-
uously publishing new datasets to enrich this field day by day. A large group of researchers
has devoted themselves to collecting and creating new datasets, but a huge portion of
them is only limited to on-road driving. Furthermore, it is easier to get data from an urban
environment instead of a rural atmosphere. Furthermore, only having the data may not be
enough; annotating is really important. There are many data labeling tools available, which
are mostly applicable to a structured environment. Therefore, many datasets are readily
available, which are also labeled [72–74]. However, there are very few labeled datasets
available in the off-road environment. Because of the lack of data availability, research in
this field is very limited. Moreover, labeling off-road data is difficult because data labeling
tools like ImageTagger [75] and OneLabeler [76] are sometimes challenging for unknown
objects. Table 6 presents some popular publicly available datasets for autonomous vehicles.
As we can see, many datasets are available for urban environments; off-road environments
have fewer datasets.

Table 6. Some publicly available datasets for autonomous vehicles.

Dataset Name Purpose Data Type Application

Astyx Dataset HiRes2019 [77] 3D Object detection Radar-centric information On-road

Berkeley DeepDrive [78] Obstacles, drivable areas, and
lane detection Video sequence On-road

Landmarks [79] Landmark detection Camera images On-road and Off-road

Level 5 [80] Traffic agent and
path detection Camera and lidar images On-road

nuScenes Dataset [81] Object detection Camera and lidar images On-road

Open Images V5 [82] Object detection Camera images On-road

Oxford Radar RobotCar [83] Path planning Radar route On-road

Pandaset [84] Understanding scenarios Camera and lidar images On-road

Waymo Open Dataset [85] Understanding scenarios Video sequence On-road and Off-road

RELLIS-3D Dataset [86] Object detection Camera and lidar images Off-road

CaT: CAVS Traversability
Dataset [87] Traversability Camera images Off-road

Off-road Terrain Dataset [88] Understanding scenarios Camera images Off-road

Freiburg Forest [89] Understanding scenarios Camera images On-road and Off-road

ROOAD [90] Localization Camera images Off-road

RELLIS Off-road Odometry Analysis Dataset (ROOAD).
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6.2.2. Hanging Obstacles Detection

Besides positive and negative obstacles, different types of obstacles can also be identi-
fied. They are hanging or dangling obstacles. Some good examples of hanging obstacles
found in off-road environments are tree branches, rope, moss, etc. It is very important to
identify such obstacles; otherwise, they can disrupt sensor vision and potentially damage
vehicles. It is often mixed with positive obstacles, but they are not similar to other obstacles.
A typical presumption is that an obstacle would always be on the same ground plane. How-
ever, hanging obstacles have been positioned some level above the ground. Though it is an
important parameter, almost any work has been focused exclusively on hanging obstacle
detection. Only Liu et al. [19] mentioned hanging obstacles that can be detected with other
parameters using their technique. Some other works can be found to detect hanging obsta-
cles for blind people using ultrasonic sensors [91]. Likewise, hanging obstacle detection
for the industrial vehicle has been presented in [92]. Though their method is intended for
indoor environments, it can experiment if those apply to outdoor off-road scenarios.

6.2.3. Sensor Issues

A well-performed sensor system is very important for any detection. A suitable sensor
is associated with cost, configuration, alignment, and sensor driver. Furthermore, mounting
a sensor into the vehicle is a challenging task in maintaining all the requirements of the
manufacturer. Many complexities may arise regarding inadequate sensor mounting. For
example, while collecting data from the sensors, the alignment should be correct so that
they can provide appropriate information to the system. Taking data from an incorrect
position or an incorrect distance may deliver improper readings. As a result, it may not
provide the right detection result, which may further cause false detection. In state-of-the-
art, most of the sensor capabilities have been measured by the detection accuracy without
considering incorrect measurements. Apart from the sensor alignment or the reading
error, there are some other reasons for which a false detection may occur. For example,
reflection from an object can mislead the sensor detection capability. A work presented
by Peasley and Birchfield [66] considered this issue, and so they proposed a projection
scheme and control strategy to solve this problem. Their techniques can work well in any
uncertain environment.

6.2.4. Environmental Challenges

As the environment is dynamic and its parameter continuously changes. Therefore,
sensors sometimes fail to cope with this transformation. The environmental challenge is an
important factor both in an on-road and off-road environment. However, environmental
factors make the off-road vehicle more challenging. For instance, sometimes, the drivable
path becomes very hard to detect because the road may not be visible in case of heavy rain
or snow. In the on-road scenario, the vehicle may get information based on the structured
environment or road signs even if the road marks are not visible, which is not possible in the
off-road environment. Limited lighting conditions or nighttime becomes a problem when
the system depends on only a vision or camera-based system. If the camera cannot capture
clear images adequately, detecting objects and moving forward might be challenging. In
addition, moving objects due to the high wind or waving trees/leaves need to be considered
while driving because it would be challenging to learn about a moving object’s shape, size,
and height.

6.2.5. Real-Time Detection

In order to achieve a robust detection system, only sensor effectiveness and ability
may not be enough. Getting the detection result at a perfect time is very crucial. The
real-time analysis allows the system to react immediately. A slow reaction time may cause
a collision, collapse, or damage. AGV detection systems must be real-time if we want
vehicles to move fast and smoothly. So, the computational time and system memory should
be at a considerable level. The majority of works primarily emphasize detection accuracy
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and not the processing time. The reason is that if the number of input samples grows,
the computational cost also grows. Therefore, the method struggles to meet real-time
restrictions. Furthermore, some data like stereo or RGB images have large sizes, which
takes a long calculation time, and requires powerful GPUs. There is no doubt about the
importance of detection accuracy but getting the detection result at the right time helps
to make decisions at the right time. An algorithm SVR developed in [42] can reasonably
reduce the computational time. There are many real-time object detection algorithms
available for the structured environment, like YOLO (You Only Look Once) [93], deep
CNN [94,95], etc. Few attempts have been made to try these algorithms in off-road datasets.

6.3. Future Possibilities

In the last part, we have mentioned the major challenges of the existing detection works
in unstructured environments. The future target could be overcoming or minimizing these
challenges. For example, publish more off-road data to society so that more experiments
can be done in this field. Hanging obstacle detection could be a potential area of interest, as
any work in this sector has rarely been done. Sensors mounting in different positions may
impact capturing data and thus the detection.

As we have seen, sensor fusion has proven to be a useful method. However, more
sensor fusion can be a complex problem and not cost-effective. Finding an optimal solution
is essential for this case. Training different machine learning models is also challenging
due to the lack of labeled data. The recent development of semi-supervised learning [96] or
active learning [97] has become popular as labeling data is time-consuming and difficult.
Existing algorithms that work for an on-road environment may not be directly used in off-
road scenarios. However, existing algorithms can be improved or apply transfer learning to
off-road environments. Using a complex algorithm may have been valuable, but a complex
algorithm requires a lot of processing time, and having a computational cost may not
fulfill the real-time analysis requirement. So, research on how to reduce computational
complexity would be beneficial to autonomous society.

As we mentioned, sensor fusion and advanced machine learning algorithms can
help overcome driving difficulties in off-road environments. Some popular deep learning
networks for object detection are YOLO [93], R-CNN [98], SSD (Single Shot multi-box De-
tector) [99], Mobilenet [100], SqueezeDet [101], etc. Besides these networks, CNN-based 3D
object detection is very popular for autonomous driving [102–104]. Those techniques have
been applied in on-road circumstances, which should also be applied in an unstructured
environment. Artificial intelligence (AI) plays a significant role in perception, path plan-
ning, and control techniques in various complex environments. Yet, there is much scope
to improve the performance of AGV [105]. However, implementing vehicular algorithms
requires high computing to meet this demand. Few works have addressed the issue of
communicating vehicles with different domains [106,107]. These methods can be tested in
off-road environments.

Introducing more intelligence and using localization sensors such as Global Nav-
igation Satellite Systems (GNSS) [108] or global positioning systems (GPS), AGVs get
information about their positions and then can localize themselves in known and unknown
environments. As wireless physical layer technologies can generally adapt to the wireless
environment, their combination with reconfigurable surfaces and deep learning approaches
can open up new paths to secure 6G vehicular-aided heterogeneous networks [109,110].
Vehicular edge computing can reduce computational time via optimal computational and
communication resource allocation [111].

Real-time processing for sensor data has become challenging in the automotive indus-
try as it requires more computational power and time. Computationally intelligent and
energy-efficient data sharing among various onboard sensors need an advanced optimiza-
tion framework to minimize the total transmit power of the vehicle-to-everything (V2X)
networks [112]. Besides, sensor data can be corrupted by different noise models [113], so
the noisy data need to be removed for better detection [114]. YOLO with adaptive frame
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control has been used for real-time object detection in AI-embedded systems [115]. In
the case of navigation, the active learning algorithm [116] shows good potential for low
infrastructure and the off-road environment for automated driving [117].

This work has not included environment detection in any entirely unknown environ-
ment as it is out of scope for this work. However, environment detection is important
for planning a framework for the trajectory of AGV. Some research works are going on to
address environment detection [118]. In the future, this topic would be a great addition to
the off-road environment study for autonomous vehicles.

7. Conclusions

Detection is a key capability of AGV. This work provides a detailed overview of the
detections of AGV in off-road environments. The off-road environment has some limitations
over the on-road; therefore, detection in an off-road environment is more challenging. For
detection, we classified some significant features for unstructured settings. The drivable
ground and the obstacles are two primary components that need to be detected for safe
navigation. Obstacles themselves can be divided into multiple categories. In this study,
positive and negative obstacle detection has been studied. We found no paper in the
literature solely based on hanging obstacle detection for off-road environments.

Most of those detection techniques mainly depend on different sensing technologies
and learning algorithms. Lidar, camera, radar, infrared, laser, and stereo are commonly
used for detection procedures. CNN, supervised learning, unsupervised learning, SVM,
and deep learning are some frequently used algorithms. There are many advancements
have been made in detection techniques. However, we highlighted some challenges that
still need to be solved. For example, the lack of available data, sensor alignment and
false detection, the complexity of real-time analysis, environmental difficulties, etc., must
be addressed.

There are many scopes to improve detection performance, using sensor fusion, AI,
remote sensing, applying new algorithms, and reducing computational complexity. Fur-
thermore, real-time analysis, 3D object detection, and V2X connectivity have good potential.
We look forward to more emphasis on overcoming these challenges by the researchers in
the upcoming days. Furthermore, we believe this work will help the reader in finding
literature who are doing similar works.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AGV Autonomous Ground Vehicle
ALV Autonomous Land Vehicles
BVNet Bird’s Eye View Network
CaT CAVS Traversability Dataset
CNN Convolutional Neural Network
CAVS Center for Advanced Vehicular Systems
DARPA Defense Advanced Research Projects Agency
GNSS Global Navigation Satellite Systems
GPS Global Positioning Systems
HLD Height, Length, and Density
IMU Inertial Measurement Unit
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InSAR Interferometric Synthetic Aperture Radar
LADAR Light and Radio Detection and Ranging
Laser Light amplification by stimulated emission of radiation
LIDAR Light Detection and Ranging
LM-BP Levenberg–Marquardt back-propagation
MAVS Mississippi State University Autonomous Vehicular Simulator
MLP Multilayer Perceptron
NODR Negative Obstacle DetectoR
PCA Principal Component Analysis
SONAR Sound Navigation and Ranging
SSD Single Shot multi-box Detector
SVM Support Vector Machine
SVR Space-Variant Resolution
RADAR Radio Detection and Ranging
ROOAD RELLIS Off-road Odometry Analysis Dataset
R-CNN Region-based Convolutional Neural Network
TTA Terrain Traversability Analysis
UGV Unmanned Ground Vehicle
YOLO You Only Look Once
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