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Abstract: In order to provide intelligent and efficient healthcare services in the Internet of Medical
Things (IoMT), human action recognition (HAR) can play a crucial role. As a result of their stringent
requirements, such as high computational complexity and memory efficiency, classical HAR tech-
niques are not applicable to modern and intelligent healthcare services, e.g., IoMT. To address these
issues, we present in this paper a novel HAR technique for healthcare services in IoMT. This model,
referred to as the spatio-temporal graph convolutional network (STGCN), primarily aims at skeleton-
based human–machine interfaces. By independently extracting spatial and temporal features, STGCN
significantly reduces information loss. Spatio-temporal information is extracted independently of the
exact spatial and temporal point, ensuring the extraction of useful features for HAR. Using only joint
data and fewer parameters, we demonstrate that our proposed STGCN achieved 92.2% accuracy on
the skeleton dataset. Unlike multi-channel methods, which use a combination of joint and bone data
and have a large number of parameters, multi-channel methods use both joint and bone data. As a
result, STGCN offers a good balance between accuracy, memory consumption, and processing time,
making it suitable for detecting medical conditions.

Keywords: Internet of Medical Things (IoMT); healthcare; human action recognition (HAR); graph
convolutional network (GCN)

1. Introduction

With the emergence of the Internet of Medical Things (IoMT), the continuous moni-
toring of patients has become increasingly accessible in everyday life [1–3]. IoMT enables
the integration of IoT communication protocols with medical equipments and systems,
enabling remote, real-time, and intelligent patient monitoring and treatment [4,5]. Physi-
cians are able to treat more patients with real-time patient monitoring, and patients are
reassured that someone is always watching out for them. A rapid improvement in wearable
technologies has helped to develop intelligent and real-time healthcare services, including
Parkinson’s disease monitoring, Alzheimer’s disease monitoring, and fall detection [6–9].
It is possible to immediately and accurately detect physiological states with wearable tech-
nologies, but some acute and dormant illnesses, such as lumbago and neuralgia, remain
indefinable or prohibitively expensive to treat [10].

Computer vision (CV) methods are capable of excavating these symptoms for standard
medical measures if comfort and functionality are taken into account [11]. Real-time patient
monitoring systems can use human action recognition (HAR) as a context-aware application.
With HAR in smart healthcare environments, action recognition will be easier from visual

data as well as sensor data, such as Microsoft skeleton data. It is necessary to deploy
HAR models on GPU-enabled edge devices, such as Jetson Nano, Jetson TX2, and Jetson
AGX Xavier.

Most hospitals, clinics, and healthcare centers today have video cameras that can be
used to monitor patients. Monitoring patients and manually detecting their conditions
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in real time is time-consuming and expensive, and informing the appropriate authority
in case of an emergency is time-consuming and expensive. Moreover, in the event of an
emergency, informing the appropriate authority may take some time. On the other hand,
an automated action recognition system can do so almost immediately in an intelligent
healthcare environment.

An intelligent patient monitoring ecosystem is illustrated in Figure 1. For example,
Microsoft Kinect can be used to collect skeleton points from a visual sensor. Once the
information is passed to the CV module, an HAR model predicts an action. Using sensor
data, the CV module can recognize actions in real time. A router connects the whole system
to the cloud so that it can notify the authorities in case of an emergency. By doing so,
it will be possible to implement a vision-based real-time monitoring system for patients.
Notifications can also be sent to a mobile application in a home surveillance system.
In addition to storing predicted footage, the CV module also includes a storage system.

Visual 
Information

Cloud

HAR 
ModelStorage

Computer Vision 
Module

Detected Action

NotificationNotification

Transmit

Router
Mobile 

ApplicationAuthority

Visual Sensors

Alert

Figure 1. A smart healthcare system for real-time patient monitoring.

The skeleton data consist of 3D points from motion cameras or pose estimation tech-
nology that can be used to analyze human behavior. Since skeleton data contain fewer
dimensions, it is computationally more efficient than traditional RGB videos for represent-
ing human dynamics. Furthermore, it is resilient to illumination issues, flickering clips,
motion blur, and complex backgrounds [12]. We present our method for skeleton-based
action recognition, which can be used in smart healthcare systems to monitor patients.

In order to solve this problem, different deep learning (DL)-based approaches have
been proposed. Skeleton points are traditionally represented by joint-coordinate vectors
and passed to recurrent neural networks (RNNs) [13,14] or pseudo-images from skeleton
data are passed to convolutional neural networks (CNNs) [15,16]. If skeleton points
are represented as graph structures, then their full potential can be exploited. Graph
convolutional networks (GCNs), which perform convolutional operations on graphs, have
also gained considerable attention [17,18].

In recent years, GCNs have been successfully applied to skeleton-based recognition
tasks with success [19,20]. The existing methods, however, are computationally inefficient
and suffer from a slow execution speed and large model sizes. Some methods combine
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multiple input streams, such as bone and joint data, which make the models even heavier
and restricts their application to real-life applications, including patient monitoring. Mod-
ern GCNs construct spatial graphs from skeleton data and pass them into spatial GCNs.
In order to obtain temporal features, they are passed to a temporal convolutional layer.
It is possible that spatial GCN does not extract any significant temporal features during
sequential feature extraction. There is therefore a loss of information because spatial and
temporal features are not extracted from the same spatio-temporal feature state.

This paper introduces a novel architecture called a redefined spatio-temporal graph
convolutional network (STGCN) for skeleton-based HAR, which independently extracts
relevant spatial and temporal information, merges them, and detects action. We propose a
spatial and temporal adaptive graph convolution operation [20] that extracts significant
spatial and temporal features independently from skeleton joint data, as illustrated in
Figure 2. In the proposed model, spatial, and temporal adaptive graph convolutional
layers are combined to extract significant spatial and temporal features from the same
spatio-temporal position. A further benefit of our model is that it uses only one stream
of input, as opposed to other multi-channel methods, which use multiple input streams.
As compared to other multi-channel methods, our method ensures better feature extraction
since the same type of layer is applied multiple times to multiple input streams and then
combined later.

Spatial GCN

Temporal GCN

Combine 
and 
Reduce

Action Prediction

Softmax

Spatio-Temporal Graph 
Convolutional Layers

Figure 2. The end-to-end pipeline of STGCN.

In order to demonstrate the effectiveness of our proposed model, we performed
extensive experiments on a skeleton-based action recognition dataset, namely the NTU-
RGBD [13] dataset. Based on the NTU-RGB dataset, our model achieves state-of-the-art
results. Furthermore, we demonstrate the applicability of our model in a real-world
environment by measuring its performance on edge devices, such as the Nvidia Jetson
Nano. Due to its low computational complexity, reduced parameter size, and fast processing
speed, our model is ideal for dynamic detection and deployment in the real-time monitoring
of patients in intelligent healthcare ecosystems.

Our main contributions are summarized as follows.

• In the context of IoMT, an efficient spatial and temporal feature extraction framework
for HAR is introduced, together with a framework for utilizing the features.

• A novel architecture, STGCN, is proposed to enable the independent extraction of
spatial and temporal features. Due to its reduced number of parameters and efficient
feature extraction method, our model extracts spatial and temporal features from only
joint-level information.

• Finally, we provide a strong framework for skeleton-based HAR. We demonstrate
with extensive experimentation and analysis that our models achieve competitive
accuracy with state-of-the-art models. The baselines we established should be useful
to future research on skeleton-based HAR and vision-based patient monitoring.

The rest of the paper is organized as follows. Section 2 represents an overview of
the related work. Section 3 explains the detailed architecture of STGCN. Details of our
experimental setup are described in Section 4. Then, we show the results and analysis of
our experiments in Section 5. Finally, we our conclusion is provided in Section 6.
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2. Related Work

For HAR and skeleton-based HAR, two types of methods can be used, including
those that use handcrafted features and those that use deep learning. We briefly review
both categories of methods in this section. For healthcare systems, we also study vision-
based methods.

2.1. Human Action Recognition
2.1.1. Hand-Crafted Feature-Based Methods

In the past, HAR methods have relied on manually extracting features from motion
sequences. Motion energy image (MEI) and motion history image (MHI) are two new
methods for action representation introduced in [21]. As an extension of HOG features
in the spatial and temporal dimensions, the 3D histograms of gradients (3DHOG) were
proposed to represent human action [22]. In addition to hand-crafted feature-based models,
spatial-temporal interest points (STIPs) were used to represent human actions based on
their similarity to clips in space–time dimensions [23].

2.1.2. DL-Based Methods

In recent years, DL-based methods gained a lot of attention due to their improved ac-
curacy and performance. There was widespread use of CNNs and long short-term memory
networks (LSTMs) for video understanding [24]. Two types of input are passed through
convolutional layers in a two-stream CNN [25] and merged at the end for classification.
A stream of the network process optical flow extracts temporal information from images.
Another stream extracts the spatial information from an image.

2.2. Skeleton-Based Action Recognition Methods

The performances of DL-based methods such as RNNs, CNNs, and GCNs are remark-
ably better than those of approaches based on handcrafted features [26].

2.2.1. RNN-Based Methods

Sequential data can be modeled using RNNs such as LSTMs and gated recurrent units
(GRUs). A sequence of vectors was used to model skeleton data for skeleton-based action
recognition [27,28]. In [29], Hong et al. proposed a two-stream RNN architecture to model
the skeleton data’s temporal dynamics and spatial configurations.

2.2.2. CNN-Based Methods

Generally, CNNs use structured data in the form of 2D or 3D models. Thus, skeleton
data have been manually transformed into pseudo-images and passed into CNN-based
models [30,31]. Convolution operations in CNN-based models, however, were limited to
neighboring joints, so correlations with joints other than neighbors could not be represented
due to the representational constraint.

2.2.3. GCN-Based Methods

GCN performs convolution operations on graphs and has recently attracted a lot
of interest [17,32]. Since skeleton data can be easily represented as graphs, GCN-based
methods gained popularity in skeleton-based action recognition. A spatial temporal GCN
(ST-GCN) model was proposed by Sijie et al. in [19], which constructs a spatio-temporal
graph in which joints are vertices and edges are connected with natural connections in
human body structures and time. The two-stream adaptive GCN (2s-AGCN) uses adaptive
graph convolution operations on both joint and bone data to recognize actions, as described
by Lei et al. in [20].

2.3. Vision-Based Methods for Healthcare Services

CV is being used to develop smart and intelligent healthcare monitoring systems for
patients and the elderly. To extract the spatio-temporal characteristics of human action,
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the authors in [33] used the Minkowski and cosine distances between joints. Their method
was applied to the development of elderly monitoring systems. An architecture for medical
condition detection based on skeleton data was proposed by Yin et al. in [10]. For detecting
such actions, they proposed an optimized view of an adaptive LSTM network with addi-
tional subnetworks. Vision-based patient monitoring systems have also been developed
using CNNs [34]. Furthermore, Gao et al. in [35] developed a method to detect medical
conditions by combining 3D CNNs and LSTMs.

3. Proposed STGCN

Figure 2 illustrates the overall pipeline of our proposed model. The first step is to
collect skeleton points from depth cameras or RGB videos using pose estimation modules.
Using those points, a spatial graph is constructed, passed through spatiotemporal graph
convolutional blocks, and an action is predicted.

3.1. Skeleton Graph Construction

A skeleton consists of a sequence of vectors representing the 2D or 3D coordinates
of human joints. Using ST-GCN* [19], we formed a spatial temporal graph to represent
structured information in skeleton sequences. We defined an undirected graph G = (V, E)
with a skeleton sequence that consists of N joints and T frames.

In the graph, the vertices V = {vti|t = 1, . . . , T, i = 1, . . . , N} consist of all the joints in
a skeleton sequence. Figure 3a illustrates construction graphs from skeleton data. There
are two sets of edges in the graph. The first one is called spatial edges (green lines in
Figure 3a), which consists of all natural connections in the human body within a specific
frame, ES = {vtivtj|i, j ∈ H}, where H is the set of naturally connected human joints. The
other is temporal edges (red lines in Figure 3a), which are formed by connecting analogous
joints between two adjacent frames, ET = {vitvi(t+1)}. The edges in ET express dynamics
for a specific joint i across T frames.

Skeleton Joint

Spatial Edge

Temporal Edge

(a) (b)

Figure 3. (a) Spatio-temporal graph of skeleton joints; (b) Mapping of different joints in the graph
depending on their position.

3.2. Graph Convolution

By performing graph convolution, inputs are passed through the layers of GCN to
obtain high-level features. According to [19], the graph convolution operation on vertex vi
can be defined as

fout(vi) = ∑
vj∈Bi

1
Zij

fin(vj) · w(li(vj)), (1)

where f represents feature maps, so fin and fout represent the input and out feature maps, re-
spectively. v is the vertex of the graph and w denotes the weighting function which is
analogous to the original convolution operation. Bi represents the set of unit distance neigh-
boring vertices (vj) of the corresponding vertex vi which take part in convolution operation
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with vi. li was put in ST-GCN [19] to map the variable number of neighboring vertices
in Bi to form three clusters, including the vertex itself, Ci1 (the red circle in Figure 3b),
neighboring vertices closer to the center of gravity, Ci2 (the green circle), and vertices far
away from the gravity, Ci3 (the blue circle). Zij exists to balance the contribution of each
cluster which represents the number of Cik in vj.

3.3. Implementation of GCN

It is required that (1) is converted into the form of tensors in order to implement the
GCN. The shape of skeleton features for the model is C × T × N, where C denotes the
number of channels, T represents the number of frames and N denotes the number of
vertices. To implement the GCN, (1) is transformed into the following.

fout =
Kv

∑
k

Wk(finAk)�Mk, (2)

where kv is the spatial kernel size, and following the above strategy, it is set to three. The

matrix Ak is defined as Ak = Λ
− 1

2
k ĀkΛ

− 1
2

k . Āk is the adjacency matrix for the graph of

shape N × N, which contains element, Āij
k , indicating whether the vertex vj is in the cluster

Cik of vertex vi. Λk is the normalized diagonal matrix, and each element of Λk is defined as
Λii

k = ∑j(Ā
ij
k ) + α. The value of α is set to 0.001 to prevent empty rows. Wk represents the

weighting function in (2) and is defined as the weight vector of shape Cin × Cin × 1× 1 of
1× 1 convolution operation. Mk represents the significance of each vertex and is defined as
the N × N attention map. � indicates dot product operation.

However, the implementation of GCN from (2) is based on predefined graph con-
struction, which does not guarantee the optimal solution [20]. Thus, here we modify (2)
according to [20] as follows.

fout =
Kv

∑
k

Wkfin(Ak + Bk + Ck), (3)

where the adjacency matrix is divided into three parts:
1. Ak: this denotes the physical structure of the human body and is the same as the

normalized N × N matrix Ak in (2). In the skeletal graph, human joints are treated as
vertices and they are connected according to the human body structure. The adjacency
matrix, Ak, is computed to represent the skeletal graph, which determines whether there is
a connection between two vertices.

2. Bk: It is also an adjacency matrix of shape N × N and the values of Bk are pa-
rameterized and they learn throughout the training process along with other parameters.
Although Bk can play the similar role of Mk in (2), it is more flexible and efficient than Mk.
The model learns to fully focus on the recognition task and target individual information
to form different layers with the help of this adjacency matrix. The initial value of Bk is
set to 0 and during the training process, Bk learns the parameters depending on a specific
action class. This helps Bk to learn to detect the most significant joints for a particular action.
Thus, along with the existence of a connection between joints, Bk also learns to identify the
strength of a connection.

3. Ck: Ck learns a different graph for each sample input, and determines whether there
is any connection between the two joints and the strength of the connection. It does so by
calculating the similarity between the two vertices by applying the normalized embedded
Gaussian function.

f (vi, vj) =
eθ(vi)

Tφ(vj)

∑N
j=1 eθ(vi)

Tφ(vj)
, (4)

where N is the total number of vertices.
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The dot product is used to find the similarity between two joints in the embedding
space. In detail, first input fin is embedded from shape Cin × T× N to shape Cem × T× N
with two embedding functions, θ and φ. Following [20], we use a single 1× 1 convolutional
layer as the embedding functions. The output features of these functions are reorganized
and reshaped into N×CemT and CemT×N matrices. Then, the features maps are multiplied
together to form the N × N shape matrix Ck, whose element Cij

k denotes how similar
the vertex vi is to the vertex vj. Following that, the values are normalized in the range
of 0–1, and a so f tmax function is used. The whole process can be represented by the
following equation.

Ck = so f tmax(fT
inWT

θkWφkfin), (5)

where Wθ and Wφ denotes the parameters of the two embedding functions, θ and φ,
respectively.

The overall architecture of the adaptive graph convolutional layer is depicted in
Figure 4. The kernel size for the convolution operation (kv) is set to three, except for Ak, Bk,
and Ck, as discussed above. Wk is the weight function introduced in (1). First, the input is
transformed into an embedding space using the function θ and φ following (4). The output
of the embedding functions are multiplied together element-wise (displayed by ⊗) to form
the matrix Ck. Then, the three adjacency matrix Ak, Bk, and Ck are added elementwise,
which is shown by ⊕. The added result is then multiplied with the input and passed
through an convolutional layer. Finally, a residual connection is used to insert the input
feature, which improves accuracy. If the number of channels in the input and output of this
adaptive graph convolution layer does not match, then a 1× 1 convolution is used in the
residual path to match the output channel dimension to the input channel dimension.

res (1x1)
Softmax

fin

𝜃!(1×1) 𝜙!(1×1)

Ak Bk

Ck

Wk(1x1)

fout

+

×

×

+
Kv=3

Cin x T x N

N x CemT CemT x N

N x NCinT x N

Cout x T x N

Figure 4. Architecture of an adaptive graph convolutional layer.
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3.4. Spatio-Temporal Graph Convolutional Block

Each spatio-temporal graph convolutional block consists of a spatial convolution layer
and temporal convolution layer. Spatial features extracted by spatial graph convolutional
layers, which are implemented from (3), while temporal features are extracted by following
the convolution operations for the temporal dimension from ST-GCN [19], following (2).
The temporal convolution layer consists of a 2D convolution layer with kt × 1 kernel size,
which takes the features of shape C× T × N as input. The spatial graph convolution layer
performs graph convolution operation on spatial edges to extract spatial features, whereas
the temporal graph convolution layer performs graph convolution on temporal edges.
Figure 5 illustrates a single block of STGCN, which includes a spatial graph convolutional
layer and a temporal convolutional layer. BN and ReLU layers are added to the temporal
convolution layers as well as spatial convolution layers. In our proposed method, spatial
and temporal features are extracted in parallel and independently from each other by our
redefined spatio-temporal graph convolutional block, whereas in other methods such as ST-
GCN and 2s-AGCN, the features are extracted sequentially. There is a 1× 1 convolutional
layer to reduce the output channel, which comes from concatenating the features extracted
by spatial and temporal graph convolutional modules. Finally, to improve the performance
and network stability, a residual connection is added to the block.

Temporal 
Conv Layer

Spatial Graph
Conv Layer

Spatial Convs

BNBN

ReLUReLU

1x1 Conv

Concatenation

ReLU

Next Layer

Previous Layer

Extracted features

Cu
rr

en
t L

ay
er

Figure 5. A spatio-temporal graph convolutional block of STGCN.
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3.5. Spatio-Temporal Graph Convolutional Layers

As shown in Figure 6, these blocks form the STGCN network. The network consists
of ten blocks. The first four blocks have 64 output channels, blocks 5–7 have 128 output
channels, and the remaining blocks have 256 output channels. In order to normalize the
input, we added a BN layer at the beginning. For the final prediction, a fully connected
(FC) layer with a so f tmax function is used to combine and reduce the extracted features.

BN

GAP128, 256, 264, 128, 23, 64, 1

64, 64, 1 128, 128, 1 256, 256, 1 FC and softmax

predictioninput

Figure 6. The architecture of STGCN.

4. Experimental Setup

This section analyzes the performance of our model on public benchmark datasets
for skeleton-based action recognition. Despite its low computational complexity and
smaller memory footprint, our model outperforms the baseline models in the correspond-
ing category.

4.1. Datasets
NTU-RGBD Dataset

The performance and efficiency of STGCN are tested on a large-scale skeleton-based
action recognition dataset, NTU-RGBD [13]. RGBD consists of 56,000 action clips catego-
rized into 60 action classes, making it the most widely used dataset for action recognition.
Three cameras film each action at the same height, but at different horizontal angles: −45◦,
0◦, 45◦. We report top-1 accuracy in two validation subsets, as suggested by the original
literature [13]. First, there is the cross-subject subset (X-sub), wherein the training set and
validation set are divided based on actors, including a total of 40,320 training samples
and 16,560 validation samples. Then, the cross-view subset (X-view) divides the two sets
according to the camera—including 37,920 training samples from the second and third
cameras, and 18,960 validation samples from the first camera.

4.2. Training Details

The DL framework PyTorch was used to implement our model, which is a very
popular and widely used framework. We trained STGCN with the stochastic gradient
descent (SGD) optimizer and a Nesterov momentum of 0.9 and weight decay of 1× 10−4

. At epochs 30 and 40, the learning rate was reduced by a factor of 10. With a batch size
of 16, training was completed after 50 epochs. For gradient backpropagation, we selected
cross-entropy as the loss function.

There is a maximum of two people in each sample of the NTU-RGBD dataset. When-
ever a sample has fewer than two individuals, the second individual is padded with zero.
A sample of the dataset contains a maximum of 300 frames. Any sample that contains
fewer than 300 frames is replicated and added to the sample to make the frame count 300.
We train our models from scratch using the corresponding datasets.
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5. Results and Discussion

The purpose of this section is to evaluate our model by performing extensive studies
with different input types, comparing it with other standard models, and illustrating its
effectiveness. Additionally, we demonstrate the efficacy of our model in an intelligent
healthcare system.

5.1. Visualization of Feature Selection

Our model performs feature extraction on temporal and spatial dimensions indepen-
dently and combines them. Figure 7 illustrates the joints selected by our model for the
action pickup. At different stages of a network, we show skeletons performing the action
pickup. From each dimension, we select the joint with the highest score and count the
number of selected joints. Red circles indicate the top five selected joints in the visualization.
Circle size represents the number of times a joint is selected, meaning that the largest joint
is the most frequently used joint.

(b)

(a)

(c)

Figure 7. Visualization of feature extraction by STGCN. (a–c) represents the features extracted at
different frames.

We show three frames in Figure 7a–c for the pickup task. The extracted features
highlight hand and leg joints while the body was moving downwards, and later when the
body had already moved downwards, both hands were selected, indicating the pickup.

Additionally, in Figure 8, we report a comparison between the loss and accuracy of the
model in the training and validation phases for both the X-sub and X-view subsets. In the X-
view subset, as illustrated in Figure 8a,b, the model was initially overfitted during training,
but was fixed as the training progressed. In the X-view subset, the training accuracy and
validation accuracy were steady during the whole process. The same trend was noticed
with loss too, as shown in Figure 8c.
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Figure 8. Performance measurement of the training and validation process. (a) Comparison between
training loss and validation loss for the X-view subset. (b) Comparison between training and
validation accuracy for X-view subset. (c) Comparison between training and validation loss for X-sub
subset. (d) Comparison between training accuracy and validation accuracy for X-sub subset.

5.2. Ablation Study

As discussed in Section 3.3, there are three types of graphs in the adaptive graph
convolutional block, including A, B, and C. We perform an ablation study of our model
to identify the importance of each adjacency matrix. Table 1 shows the importance of the
adaptive learning of graph for action recognition and the performance of the model is
hampered when any one of the three graphs is removed. Accuracy decreases most when
matrix Bk is removed. This happens because Bk has learnable parameters, which learns to
detect the most significant joint for an action. When Ak is missing, the accuracy drops but
not as much as when Bk is removed. It happens because Ak is predefined and Bk learns the
structure of the graph as the training progresses. The model achieves its best accuracy with
all three graphs.

Table 1. Comparison of the validation with the X-view accuracy of STGCN with or without differ-
ent parameters.

Methods Accuracy

STGCN (w/o A) 91.8
STGCN (w/o B) 91.6
STGCN (w/o C) 91.8

STGCN 92.2

5.3. Performance Analysis with Different Input Features

We performed a study to determine which input features provide the best result for our
model. As shown in Table 2, we obtain 83.8% X-sub accuracy and 91.4% X-view accuracy
using skeleton bone data. Both accuracies increased when skeleton joint data was used. We
obtained 84.5% X-sub accuracy and 92.2% X-view accuracy for the skeleton joints.



Sensors 2022, 22, 8438 12 of 18

Table 2. Evaluation of STGCN on different input types.

Input Features X-Sub (%) X-View (%)

Bone data 83.8 91.4
Joint data 84.5 92.2

5.4. Comparison with the State-of-the-Art Models

Finally, we compared our models with the state-of-the-art skeleton-based action recog-
nition models on the NTU-RGBD dataset. In Table 3, we compare our models with those
that are based on hand-crafted-features, RNN-based models, and CNN-based models.
STGCN outperforms all the models in these categories. This is due to the fact that skeleton
data can be better exploited by representing data in a graph structure.

Table 3. Comparisons between STGCN and other state-of-the-art methods on the NTU-RGBD dataset.

Methods X-Sub (%) X-View (%)

Lie Group [26] 50.1 82.8

Deep LSTM [13] 60.7 67.3
ST-LSTM [36] 69.2 77.7

STA-LSTM [37] 73.4 81.2
VA-LSTM [27] 79.2 87.7

ARRN-LSTM [38] 81.8 89.6
Ind-RNN [28] 81.8 88.0

Two-Stream 3DCNN [30] 66.8 72.6
TCN [15] 74.3 83.1

Clips + CNN + MTLN [31] 79.6 84.8
Synthesized CNN [16] 80.0 87.2

CNN + Motion + Trans [39] 83.2 89.3

RSR-GCN (ours) 84.5 92.2

The comparison with the GCN-based models is shown in Table 4. Hence, along with
the accuracy, we also compare the parameter size (M) and computational complexity in
GFLOPs (109 FLOPs). In comparison with ST-GCN [19], our model achieves higher accu-
racy but is larger than ST-GCN [19] in parameter size. Our model achieves 84.5% and 92.2%
accuracy in the X-sub and X-view subsets, respectively, while ST-GCN obtains 81.5% and
88.3% for the same. When we compare our STGCN with 2s-AGCN [20], our model achieves
a competitive score in top-1 accuracy, although it is lighter in respect to parameter size and
computationally less expensive. Our model has 3.6 M parameters, while 2s-AGCN has
6.9 M parameters. Moreover, our model has a complexity of 20.9 GFLOPs, and 2s-AGCN
bears the complexity of 37.4 GFLOPs, which is almost twice the complexity of our model.
Although PL-GCN [40] achieves 89.2% X-sub accuracy and 95.0% X-view accuracy, it has
a massive size of 20.70 M parameters. Similarly, DGNN [41] has 89.9% X-sub accuracy
and 96.1% X-view accuracy with a large parameter size of 26.24 M. In spite of achieving
high accuracy, these models are not suitable for deployment in real-life scenarios because
of the large parameter size. The comparison between STGCN other GCN-based models
in terms of accuracy, parameters, and complexity is illustrated in Figure 9. Our proposed
STGCN achieves competitive accuracy with the state-of-the methods because it extracts the
temporal and spatial features in parallel, which ensures better feature extraction. In con-
trast, other methods including ST-GCN, 2s-AGCN, and others extract features sequentially
and thus require a large number of parameters. Our model balances the trade-off be-
tween accuracy and efficiency, which makes this suitable for deployment in the smart
healthcare environment.
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Table 4. Comparisons of STGCN with state-of-the-art GCN-based methods on the NTU-RGBD
dataset.

Methods X-Sub (%) X-View (%) Parameters (M) Complexity (GFLOPS)

ST-GCN [19] 81.5 88.3 3.1 16.3
2s-AGCN [20] 88.5 95.1 6.9 37.4
PL-GCN [40] 89.2 95.0 20.7 -
DGNN [41] 89.9 96.1 26.24 -

STGCN (ours) 84.5 92.2 3.6 20.9

Model

0

25

50

75

100

ST-GCN 2s-AGCN PL-GCN DGNN RST-GCN

X-sub X-view Parameters

Accuracy vs. Parameters

(a)

Model

0

25

50

75

100

ST-GCN 2s-AGCN RST-GCN

X-sub X-view Complexity

Accuracy vs. Complexity

(b)

Figure 9. Comparisons between STGCN and other GCN-based models. (a) Comparison between
STGCN and other GCN-based models with respect to the number of parameters. (b) Comparison
between STGCN and other GCN-based models with respect to complexity.

5.5. Performance Evaluation for Patient Monitoring System

There are nine distinct kinds of activities associated with medical conditions in the
NTU-RBGD dataset [13], including sneeze/cough , staggering, falling, touch head (headache),
touch chest (stomachache/heart pain), touch back (backache), touch neck (neckache), nausea or
vomiting, and use a fan/feeling warm. The recognition of these activities with high accuracy is
of great significance for a real-time patient monitoring system. We evaluated our model on
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statistical testing methodologies, which are often selected to determine the performance
of an HAR classifier. Specifically, we performed a statistical analysis on our model for
health-related action categories to evaluate the performance of the model in a real-time
patient monitoring system. To measure the effectiveness of our model, we used four
metrics, including accuracy, precision, recall, and F1-score. These metrics are based on four
significant values, which are true positives (Tp), true negatives (Tn), false positives (Fp),
and false negatives (Fn).

Accuracy is defined as the proportion of accurate predictions made across all samples,
which is calculated as

accuracy =
Tp + Tn

Tp + Fp + Tn + Fn
. (6)

Precision refers to the proportion of correctly predicted results and the total number
of observations, which are positively classified. Precision can be defines as

precision =
Tp

Tp + Fp
. (7)

Recall is determined as the ratio between correctly predicted results and all the evalu-
ation of the original class. The formula of recall is

recall =
Tp

Tp + Fn
. (8)

F1-score takes the harmonic mean of precision and recall to create a single score, which
is calculated as follows

F1-score =
2× precision× recall

precision + recall
. (9)

We provide a thorough analysis of our model based on the health-related category
in Tables 5 and 6. As shown in Table 5, on the X-view subset, our model achieves 91%
average precision and 92% average recall and F1-score. On the X-sub subset, our model
is able to achieve 84% average recall, while the average precision and F-score are 83%, as
shown in Table 6. We also illustrate the accuracy of our STGCN model for these categories
in Figure 10. Our proposed model achieves high accuracy in the X-view subset as well
as X-sub subset, except for the touch head (headache) action. The reason behind achieving
a low accuracy in this category in the X-sub subset is that different patients can have
pain in different regions of head, and each touches their head differently. However, it is
noticeable that our proposed STGCN achieves almost 98% accuracy in the detection of
falling. In the X-view subset, the model achieves more than 90% accuracy in almost all of
the focused categories.

Table 5. Classification report of STGCN of healthcare-related actions in the X-view subset.

Action Precision Recall F1-Score Accuracy (%)

Sneeze/cough 0.89 0.88 0.88 89.35
Staggering 0.91 0.95 0.93 91.44
Falling 0.98 0.99 0.99 97.82
Headache 0.88 0.93 0.90 87.99
Stomachache/heart pain 0.84 0.90 0.87 84.27
Backache 0.93 0.90 0.92 93.14
Neck ache 0.94 0.91 0.92 93.77
Nausea/vomiting 0.88 0.90 0.89 88.44
Feeling warm 0.93 0.95 0.94 93.46
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Table 6. Classification report of STGCN of healthcare-related actions in the X-sub subset.

Action Precision Recall F1-Score Accuracy (%)

Sneeze/cough 0.82 0.63 0.71 81.60
Staggering 0.86 0.97 0.91 86.17
Falling 0.94 0.95 0.94 93.55
Headache 0.67 0.76 0.71 66.88
Stomachache/heart pain 0.83 0.87 0.85 82.53
Backache 0.79 0.87 0.83 78.95
Neck ache 0.85 0.78 0.81 84.58
Nausea/vomiting 0.89 0.87 0.88 88.81
Feeling warm 0.82 0.89 0.86 82.49
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20

40

60

80

100
Sneeze/coug

Staggering

Falling

Headache

StomachacheBackache

Nechache

Nausea

Feeling Warm

X-view

S-sub

Figure 10. Accuracy of STGCN for medical condition- related actions.

There are a few methods available for patient monitoring systems, while only a few
used nine health-related action classes to validate their model. Table 7 compares STGCN
with RC VA-LSTM [10] for a patient monitoring system. Out of nine classes, our model
outperforms RC VA-LSTM on five categories. However, in four categories, STGCN achieves
less accuracy, and the difference is very negligible.

Table 7. Comparison of accuracy of medical condition-related actions.

Action RC VA-LSTM Accuracy (%) STGCN Accuracy (%)

Sneeze/cough 86.30 89.35
Staggering 96.00 91.44
Falling 98.70 97.82
Headache 81.30 87.99
Stomachache/heart pain 85.30 84.27
Backache 86.10 93.14
Neck ache 84.30 93.77
Nausea/vomiting 90.40 88.44
Feeling warm 91.40 93.46

Moreover, we demonstrate the efficiency and applicability of our proposed model
in terms of the inference speed in Table 8. We demonstrate the inference speed STGCN
with different hardware, including general-purpose CPU (Intel Xeon), high-performance
GPU (Nvidia Tesla K80), and an edge device with limited computing resources (Nvidia
Jetson Nano). Nvidia Jetson Nano is the most suitable device to perform inference in an
actual patient-monitoring. Our model processes 993 frames per second on Nvidia Jetson
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Nano, which is almost twice as fast as 2s-AGCN [20], and slightly slower than ST-GCN [19].
However, STGCN achieves more than 92.2% accuracy in the X-view subset, which is more
than a 4% increase than ST-GCN. Therefore, the proposed model can be used for a wide
range of real-time monitoring applications, including patient monitoring.

Table 8. Comparisons of STGCN with state-of-the-art GCN-based methods in terms of infer-
ence speed.

Methods
Inference Speed (FPS)

CPU Jetson Nano Nvidia K80

ST-GCN [19] 273 1037 5733
2s-AGCN [20] 132 528 2948

Proposed 248 993 5539

6. Conclusions

We presented a novel architecture for skeleton-based action recognition in patient
monitoring and medical condition detection. A spatio-temporal graph convolution opera-
tion was used to efficiently learn spatial and temporal features from skeleton data in the
proposed STGCN. To make our model suitable for real-world applications, we focused on
extracting efficient spatial and temporal features. Our efficient feature extraction method
used in STGCN outperformed ST-GCN on NTU-RGBD, a large-scale skeleton-based dataset,
with a 4% increase in accuracy while being over 40% more efficient than 2s-AGCN. In
addition to consuming less memory, requiring less computation power, and removing the
preprocessing overhead, our model can be used for real-time patient monitoring in smart
healthcare systems. The tracking of a patient’s condition using data from different sensors
along with visual data will be the future direction of this research.
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