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Abstract: Traffic−induced vibration is increasingly affecting people’s lives, which necessitates
scrutiny of the environmental vibrations caused by traffic. This paper proposed a vibration prediction
method suitable for the ancient wooden structures subjected to traffic−induced vibrations based
on the multi−point response transfer ratio function. The accuracy of the proposed approach was
also checked by comparing the predicted results with the measured results in the context of both the
time domain and frequency domain. Subsequently, the environmental vibrations due to heavy−duty
trucks passing at various speeds were measured, and the measurements were utilized as the input
vibration excitation to assess the structural vibration of the Feiyun Pavilion. The structural safety
was evaluated according to the “Technical specifications for protecting historic buildings against
man−made vibration”. In order to meet the structural safety requirements of the Feiyun Pavilion, it
is strongly recommended to limit the type and speed of vehicles in the nearby area.

Keywords: environmental vibrations; traffic−induced vibration; vibration prediction; response
transfer ratio (RTR); ancient wooden structures

1. Introduction

With the development of cities, environmental vibrations and noises produced by
traffic are attracting more and more attention within the international scientific commu-
nity [1]. The environmental vibrations caused by traffic will not only affect people’s lives
and works, but also the usage of some precision instruments [2,3]. Additionally, the
structural performance of buildings will deteriorate under the action of long−term traffic
vibration, particularly for ancient buildings with wooden structures [4,5]. Consequently,
environmental vibrations due to traffic should be further examined in the near future.

The prediction of environmental vibrations generated by traffic loading is one of the leading
research directions of the understudied problem. The commonly used prediction methods
for examining traffic−induced vibration mainly include theoretical analyses [6–8], numerical
simulations [9–12], field tests [13–18], and empirical prediction formulas [19,20]. Although the
theoretical analysis method leads to the exact solution in most cases, numerous assumptions
and simplifications are made to the solution process; therefore, it cannot wholly reflect the
actual situations of the induced vibration process. On the other hand, numerical methods
have been extensively employed with the progress of computer technology; however, it
is challenging to determine various parameters and complex structural modeling of a
complex system problem. Commonly, the empirical prediction formula method requires a
large number of measured data as the premise, and the accuracy of the prediction results
will be affected by the judgment of factors.

Field tests have essentially focused on the dynamic performance analysis of several
typical high−rise ancient wooden structures, while ancient wooden structures with differ-
ent structural features have not been properly investigated. At the same time, most of the
vibration sources are strong but short−lasting dynamic loadings such as earthquakes, while
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there is still a lack of research on long−lasting but micro−amplitude vibrations loadings
such as traffic−induced vibration.

Therefore, this paper aimed to utilize field tests to propose a response−to−transfer
ratio (RTR) vibration prediction method for ancient wooden structures under traffic loads
based on the transfer function. The RTR function is the ratio of the output responses
between systems. For a complex system with multiple subsystems, the overall RTR function
of the system can be obtained through the RTR of each subsystem.

Similar to the transfer function vibration prediction method, the RTR vibration pre-
diction method proposed in this paper does not need to establish the finite element model
and has high calculation accuracy. At the same time, it is different from the vibration
attenuation prediction method, which can only predict the magnitude of vibration energy
but cannot obtain the spectral characteristics at the predicted point. The RTR vibration
prediction method operates in the frequency domain. Therefore, it can accurately predict
the frequency component of the vibration at the prediction point. For ancient wooden
structures, the vibration of some frequencies (such as natural frequency) will cause more
serious damage to the structure, so it is necessary to predict the vibration within a specific
frequency band.

We took Feiyun Pavilion as the case study to verify the properties of the RTR. Then, the
correctness of the RTR vibration prediction method was verified based on the field−measured
data. Considering that the vibration system is a complex one with multiple subsystems,
in order to reduce interference from noise vibration, the multi−point RTR was used for
vibration prediction. In addition, the structural safety under the action of extreme traffic
loads according to relevant codes was also evaluated.

2. Prediction Method of the Response Transfer Ratio Function
2.1. The Transfer Function and the Response Transfer Ratio Function

The transfer function is defined as the ratio of the Laplace transform of the linear
system response (output) to the Laplace transform of the excitation (input) under the rest
initial conditions [21]:

T(s) =
Y(s)
X(s)

=
L{y(t)}
L{x(t)} (1)

where T(s) denotes the transfer function of the linear system, Y(s) and L{y(t)} in order
are the response of the system and the Laplace transform of the output, X(s) and L{x(t)}
represent the excitation of the system and the Laplace transform of the input, respectively.
Generally, the transfer function requires that the system can be represented by a linear
time−invariant system and must be applied in the presence of the rest initial condition. It
describes the differential relationships between the input and output of the system.

For complex systems with multiple subsystems, the existing interactions between the
subsystems make it difficult to get the excitation of each subsystem; Therefore, it is difficult
to solve the transfer function of each subsystem by exploiting the output and input. In
contrast, the response of each subsystem is usually easy to get. To distinguish from the
traditional transfer function, the output ratio between each pair subsystems is defined as
the response transfer ratio (RTR) function:

Hn =
Rn

Rm
(2)

In Equation (2), Hn represents the RTR function between the n−th subsystem and the
m−th subsystem. As shown in Figure 1, Rn and Rm in order denote the output response
of the n−th and m−th subsystems. Similar to the transfer function, the RTR function can
describe the dynamic performance of the linear system.
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For the multi−degrees−of−freedom system, the external excitation load of the system
is assumed to be a simple harmonic load, that is:

M
..
X + C

.
X + KX = Psin(ωt) (3)

where M, C, and K in order are the mass, damping, and stiffness matrices of the system. The
parameters

..
X,

.
X, and X represent the acceleration vector, velocity vector, and displacement

vector of the system, respectively, P denotes the vector of the external force applied to the
system, ω is the circular frequency of the external force, and t is the time factor.

By employing the orthogonality properties of vibration modes, it is obtainable:

Mn
..
Xn + Cn

.
Xn + KnXn = Pnsin(ωt) (4)

A harmonic solution to Equation (4) can be sought in the following form:

Xn = Ansin(ωnt− ϕn) (5)

where: An = Pn
Kn

1√
(1− ω

ωn )
2
+
(

2ξnω
ωn

)2
, ϕn = tan−1 2ξn

ω
ωn

1− ω2

ω2
n

, and ωn =
√

Kn
Mn

; Pn and ωn in

order are the generalized load and natural frequency associated with the n−th vibration
mode; Mn and Kn represent the generalized mass and stiffness corresponding to the n−th
mode, respectively, and ξn denotes the generalized damping ratio. By employing the
superposition of modes in view of Equation (5), we can arrive at:

X =
N

∑
n=1

φT
n Xn =

N

∑
n=1

[
φT

n Ansin(ωt− ϕn)
]

(6)

where φn denotes the vector pertinent to the n−th vibration mode, Xn represents the gen-
eralized mode participation coefficient, while An and ϕn are their corresponding constants.

According to Equation (6), in the multi−degrees−of−freedom system under the action of
single frequency vibration excitation, the steady−state response of each degree−of−freedom
is still evaluated based on a single frequency, and the vibration frequency is the same as the
excitation one.

When the input load in Equation (4) varies in constant λ times, the resulting solution
is readily resulted by:

Xn = λAnsin(ωt− ϕn) (7)

X =
N

∑
n=1

φT
n Xn =

N

∑
n=1

[
φT

n λAnsin(ωt− ϕn)
]

(8)
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According to Equation (8), when the ratio of the input load remains unchanged in
various frequency bands, the ratio of the output acceleration also remains unchanged in
the corresponding frequency band.

Therefore, for the multi−point RTR, input a simple harmonic force P = A sin ωt at the
loading point, the RTR function between the points Pn−1 and Pn is represented by Hn−1.
As a result, the RTR function between the vibration source replacement point P1 and the
vibration prediction point Pn can be expressed by:

H(ω) =
n−1

∏
m

Hm(ω) (9)

where Hm denotes the RTR between point Pm+1 and point Pm, n represents the number of
transfer points on the transfer path. The calculation diagram of the multipoint RTR has
been demonstrated in Figure 2.
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2.2. Vibration Prediction Based on the RTR

For the environmental vibration caused by traffic, when a vehicle passes the road, the
roadside vibration acceleration, x(t), and the acceleration at the prediction point, y(t), can
be recorded simultaneously. Considering the calculation efficiency and accuracy, we then
proceed in dividing the accelerations x(t) and y(t) according to the frequency bandwidth of
the one−third octave. The result X(t, f ) and Y(t, f ) of such a division is the corresponding
acceleration time−history data in each frequency band, the so−called octave time−history
data in the present study. Specific processes for octave time−history data are as follows:
1. Take the Fourier transform of the acceleration data from the time domain to the frequency
domain; 2. According to the one−third octave band, band−pass filtering is performed in
turn to select the acceleration data in each frequency band; 3. Finally, the inverse Fourier
transform is performed on the selected acceleration data in each frequency band to obtain
the acceleration time−history data in the corresponding frequency band, which is called
octave time−history data.

Subsequently, the ratio of maximum value of the octave time−history data, obtainable
from the corresponding frequency band MAX(X(t, f )) and MAX(Y(t, f )), are defined as
the amplitude−RTR. Mathematically, it is stated by:

H( f )MAX =
MAX(X(t, f ))
MAX(Y(t, f ))

(10)

Further, the ratio of the acceleration root−mean−square (RMS) of the octave time−history
data RMS(X(t, f )) and RMS(Y(t, f )) in the corresponding frequency band is defined as
the RMS−RTR, which is calculated by:

H( f )RMS =
RMS(X(t, f ))
RMS(Y(t, f ))

(11)

Using hammer excitation at the same excitation point, the roadside vibration acceleration
time−history x′(t) and the acceleration time−history y′(t) at the prediction point can be
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simultaneously recorded. According to the one−third octave calculation method, the octave
time−history data X′(t, f ) and Y′(t, f ) are computed, and similar to Equations (10) and (11),
the RTR function of the roadside−prediction point acted upon by the hammering excitation
is evaluated according to Equations (12) and (13):

H′( f )MAX =
MAX(X′(t, f ))
MAX(Y′(t, f ))

(12)

H′( f )RMS =
RMS(X′(t, f ))
RMS(Y′(t, f ))

(13)

It is assumed that the RTR function calculated by the hammer excitation test can be
exploited to replace the transfer ratio function of the roadside−prediction point under the
action of the traffic excitation. Thereby,

H( f )MAX ≈ H′( f )MAX (14)

H( f )RMS ≈ H′( f )RMS (15)

The roadside−prediction point RTR functions H′( f )RMS and H′( f )MAX can be mea-
sured by the hammer excitation and then combined with the traffic−induced roadside accel-
eration octave time−history data Xpre(t, f ). Subsequently, the output octave time−history
data at the prediction point can be calculated through the following relations:

Ypre(t, f ) = Xpre(t, f )/H( f )MAX ≈ Xpre(t, f )/H′( f )MAX (16)

Ypre(t, f ) = Xpre(t, f )/H( f )RMS ≈ Xpre(t, f )/H′( f )RMS (17)

Finally, by superimposing the octave time−history data Ypre(t, f ) associated with each
frequency band, the acceleration time−history data ypre(t) at the predicted point can be
evaluated as follows:

ypre(t) = ∑
f

Ypre(t, f ) (18)

The proposed traffic−induced vibration prediction method has been flowcharted in
Figure 3.
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The vibration prediction method based on the RTR is as follows: Firstly, the response
transfer ratio between the roadside and the prediction point is obtained through the
artificial excitation vibration test; Then, collect the roadside environmental vibration caused
by traffic load; Finally, the measured traffic−induced vibration is used as the excitation to
calculate the vibration response of the prediction point by calculated RTR.

2.3. Field Test of the RTR Function

Theoretically, the transfer function is only related to the tested object, representing its
inherent attribute, and it does not change with different external incentives. In order to
verify whether the proposed RTR function also satisfies this characteristic, we designed two
groups of hammer excitation experiments with a hammer weight of 30 kg. One group was
oriented to control the hammer to fall from different heights, and only the change of the
excitation energy was allowed without altering the excitation frequency. The other group
dropped the hammer at the same height, and placed rubber, wood, and steel blocks at the
landing point of the hammer. Therefore, the latter group was aimed at changing the input
load spectrum characteristics, without altering the excitation energy. The test conditions
are also presented in Table 1.

Table 1. Working conditions of the drop weight test: (a) Different excitation heights, (b) Different
cushion blocks.

(a)

Test Name
Working Condition Measuring Point Location

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Vibration Source
Replacement Point R

First Floor
Measuring Point

Drop weight
height (cm) 50 55 60 65 70 R A−P1 B−P1

C−P1 D−P1

(b)

Test Name
Working Condition Measuring Point Location

Condition 1 Condition 2 Condition 3 Condition 4 Vibration Source
Replacement Point R

First Floor
Measuring Point

Cushion block − Wood block Rubber
block Steel block R A−P1 B−P1

C−P1 D−P1

As part of research series, this paper takes the Feiyun Pavilion as the case study. The
Feiyun Pavilion (see Figure 4) is a purely wooden building in the Yuan (1271–1368 AD)
and Ming Dynasty (1368–1683 AD) styles. It is located within the Dongyue temple in
Wanrong County, Yuncheng City, Shanxi Province, China. The entire building is mainly
made of wood, and the structural connection uses mortise and tenon joints without any
metal components. The pavilion has three floors on the outside and five floors inside. The
total height of the building is about 23 m.

The layout of the measurement points is demonstrated in Figures 5 and 6. The
excitation point of the drop weight is on the road, which is ten meters away from the
south side of the Feiyun Pavilion. The vibration source replacement point (R) is arranged
at 1m perpendicular to the road, which is to collect the output response of road traffic
subsystem. On the first floor of the Feiyun Pavilion near the four through columns, first
floor measuring points (A−P1, B−P1, C−P1, D−P1) are set up and employed to measure
the output acceleration of the system under the action of hammering excitation. In order
to measure the RTR in three directions, all measuring points should be equipped with
acceleration sensors in horizontal east−west, horizontal north−south direction, and vertical
direction. The sampling frequency is set equal to 512 Hz.
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The equipment utilized in the test includes an INV3020C synchronous data acquisition
system with 28 channels, and 15 uniaxial (10 horizontal and 5 vertical) 941b acceleration
sensors. Before the test, the acceleration sensors are appropriately calibrated for consistency
and sensitivity.

2.3.1. Variation of the RTR Function with Excitation Vibration Energy

The artificial excitation vibration was applied to the system by using a free−falling
weight. By controlling the hammer falling from heights of 50–70 cm with an increment of
5 cm, we examined whether the RTR of the system would change due to the same spectral
characteristics but with various vibrational energies. Considering that the environmental
vibration caused by traffic is mainly low−frequency vibration, we mainly analyzed the
vibration below 80 Hz.

According to Equations (12) and (13), the RTRs of the system subjected to different
levels of the input energy were calculated. For this purpose, at least five sets of valid
hammer vibration data were collected for each working condition, and the RTR from the
vibration source replacement point (R) to the first floor measuring point (A−P1, B−P1,
C−P1, D−P1) was calculated due to each hammering excitation. Subsequently, the average
value of five groups of RTRs in the same direction under the same working condition was
taken as the RTR in this direction under this working condition. Taking the horizontal
east−west direction (X direction) as an example, the amplitude−RTR and the RMS−RTR
under different hammering excitations were evaluated, and the obtained results are graphed
in Figures 7 and 8.
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Firstly, the RTR functions calculated by the two distinct methods were compared. It
can be seen that although their calculation bases are completely different, the discreteness
of the two approaches is small for frequencies below 80 Hz, and the variation laws in terms
of the frequency are the same. The RTR functions, which are calculated by the same method,
are also compared. The RTR varies slightly when the input vibration energy is significantly
different, and the consistency is satisfactory in the frequency range of 5–63 Hz. Therefore,
both methods can appropriately calculate the RTR function of the system, and its value is
independent of the input vibration energy.

2.3.2. Variation of the RTR Function with Excitation Vibration Frequency

In order to input the same vibration energy to the system, we let the hammer have a
free fall from 60 cm. In addition, steel plate, wood plate, and rubber plate are placed at the
hammering point in order to apply vibrations with the same excitation energy but different
spectral characteristics to the system. The RTR function between vibration source replacement
point to the first floor measuring point was calculated according to Equations (12) and (13).
Taking the X direction as an example, the calculation results for this case are illustrated in
Figures 9 and 10.
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By comparing the RTR acted upon by the excitation with different spectrum charac-
teristics, it can be seen that the calculation results of the RTR in the presence of various
working conditions are relatively consistent. Therefore, the different input excitation spec-
trum has little influence on the RTR of the same system, and this characteristic is more
prominent for frequencies in the range of 5–63 Hz. The RTR is independent of the input
vibration spectral characteristics.

Through the calculation and analysis of the RTR under various working conditions, it
can be inferred that the RTR is only affected by the dynamic characteristics of the structural
system. It is the inherent attribute of the structural system, and it will not change for
different input excitations. It implies that the application of the hammering excitation to
calculate the RTR of the system can be utilized as an appropriate replacement of the RTR
under the action of the traffic excitation. This indicates that the Equations (14) and (15)
are reasonable.

3. Vibration Prediction Based on the Measured RTR Function
3.1. Introduction to the On−Site Dynamic Test

As demonstrated in Figure 11, Feiyun Pavilion is only 10 m away from Houtu road in
the south and close to Feiyun Bei road in the east. The long−term wind, rain erosion, and
the impact of traffic vibration have made damages to Feiyun Pavilion up to a certain extent.
Therefore, it is necessary to predict the vibration of the Feiyun Pavilion under the action of
traffic loading.
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Figure 11. Schematic representation of the traffic environment around the Feiyun Pavilion.

Considering the whole media of the vibration transmission is composed of the road,
soil, foundation, and superstructure. The measuring points of such a media are particularly
arranged as presented in Figures 12 and 13. This is somehow similar to the measurement
point arrangement in the “Field test of the RTR function”. In addition to arranging the
vibration source replacement point (R) and the first floor measuring points (A−P1, B−P1,
C−P1, and D−P1), it is also necessary to arrange the third floor measuring points (A−P2,
B−P2, C−P2, and D−P2) at the top of the four corner columns. The third floor measuring
points are also exploited to collect the vibration at the highest point of the structure. At
the same time, the vibration data of the third floor measuring point can also evaluate the
structural safety of the Feiyun Pavilion according to the relevant specifications.
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Figure 13. The vertical layout of the measurement points.

Due to the increase of the measuring points, we choose the following equipment to
collect vibration data: INV3020C synchronous data acquisition system with 28 channels
and 27 uniaxial (18 horizontal and 9 vertical) 941b acceleration sensors.

3.2. The On−Site Test of the Multi−Point RTR

Let us take the measuring point in column D as an example. Firstly, the free−fall
hammer is utilized to input excitation vibration to the system from a height of 60 cm,
on the Houtu road. Then, the multi−point RTR function between the vibration source
replacement point (R), the first floor measuring point (D−P1), and the third floor measuring
point (D−P2) were calculated according to the acceleration data. After that, under the
action of the traffic−induced vibration, the measured environmental vibration at point R
was employed as the excitation, and the multi−point RTR calculated by the hammering
test was employed to predict the traffic−induced vibration at the third floor measuring
point (D−P2). Finally, the effectiveness of the proposed vibration prediction method was
verified by comparing the measured vibration of the third floor measuring point (D−P2)
with the predicted vibration.

According to Equation (9), the collected acceleration data were calculated to obtain
the multi−point (R to D−P2) RTR. The plotted results are demonstrated in Figure 14.
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3.3. Structural Vibration Prediction due to Traffic−Induced Vibration

In order to ensure that a sufficient amount of traffic vibration data were collected,
the sampling duration and frequency in order were set to 1200 s and 512 Hz. Due to the
traffic−induced vibration, the partial acceleration data of the third floor measuring point
(D−P2) in the horizontal east−west direction (X direction) has been presented in Figure 15.
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Figure 15. The time−history of acceleration of the third floor measuring point (D−P2) in the
east−west direction.

A representative traffic−induced vibration data segment (520s−570s) was selected for
fast Fourier transform (FFT) analysis. The vibration data in the frequency−domain were
then analyzed, as shown in Figure 16.

The vibration at the vibration source replacement point (R) is mainly low−frequency
vibration below 80 Hz, of which 5 Hz−60 Hz represents its excellent frequency band.
When the vibration is transmitted from the vibration source replacement point (R) to the
third floor measuring point (D−P2), its spectrum characteristics have considerably altered:
the vibration with a frequency above 40 Hz is greatly attenuated, and the vibration is
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mainly low−frequency vibration with frequencies in the range of 5−40 Hz. Therefore, this
frequency interval is defined as the prediction and analysis frequency band. In the vibration
prediction, the acceleration for the frequency interval 5–40 Hz will be mainly calculated.
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Figure 16. Acceleration spectrums: (a) spectrum of the vibration source replacement point (R); and
(b) spectrum of the third floor measuring point (D−P2).

According to the RTR, the traffic−induced vibration data at the third floor measur-
ing point (D−P2) can be predicted. The time−history data of the prediction results are
presented in Figure 17:
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eration time−history prediction based on the amplitude−RTR, and (c) third floor measuring point
(D−P2) acceleration time−history prediction based on the RMS−RTR.
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3.4. Evaluate Prediction Accuracy

Because the phase difference between the measuring points is ignored in the prediction
process, the prediction accuracy is generally evaluated by statistical indicators.

The square of the root−mean−square (RMS) can be employed to quantify the average
vibration energy at each measurement point [22]. Hence, this factor is capable of evaluating
the vibration response produced by traffic vibrations. The RMS value of a discrete−time
signal is defined by:

aRMS =

√√√√√ N
∑

i=1
a2(i)

N
(19)

where a denotes the measured acceleration, and N represents the number of data
points analyzed.

The computed results of the maximum and RMS at the third floor measuring point
(D−P2) during the analysis period have been presented in Table 2.

Table 2. Comparison between the predicted and measured acceleration data at the third floor
measuring point (D−P2).

Maximum Acceleration in
Time−Domain (mm/s2)

RMS of Acceleration in
Time−Domain (mm/s2)

Measured value 10.47 0.97
Predicted value of
amplitude−RTR 10.28 0.91

Predicted value of RMS−RTR 10.89 0.94

By comparing the measured data and the predicted one, it can be seen that the
amplitude−RTR can be utilized to predict the vibration of the third floor measuring point
(D−P2) subjected to traffic−induced vibration. The difference between the maximum
acceleration and the real value is reported as 1.8%, and the relative discrepancy between the
predicted acceleration RMS and the real value is about 6.1%. Employing the RMS−RTR to
predict the vibration of the third floor measuring point, the generated relative error between
the maximum acceleration and the real value is 4.5%, and the resulting error between the
RMS and the real value is about 3.1%. The main reasons for the produced error are as
follows: (1) The signal−to−noise ratio of the acceleration data due to the traffic−induced
vibration is poor; (2) The environment of the on−site test is complex, so the measured
signal can be easily disturbed; (3) Only the excellent frequency band is predicted, while the
vibration energy in other frequency bands is overlooked.

The accuracy of the prediction results was also evaluated in the frequency−domain.
The spectrum, 1/3−octave of the measured data, and predicted data of the third floor
measuring point are calculated. The predicted results have been now illustrated in Figure 18.
The frequency−domain analysis revealed that both the predicted and measured results can
have good consistency in the predicted analysis frequency band.

In both the time−domain and frequency−domain, the application of the measured
RTR function for examining the vibration of ancient wooden structures exhibited a high
prediction accuracy due to the traffic−induced vibration.
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Figure 18. The frequency−domain calculation results of the measured and predicted values: (a) Power
spectra density, (b) 1/3−octave.

4. Prediction and Evaluation of Structural Safety of the Feiyun Pavilion due to Extreme
Traffic Loading

In order to explore the vibration of the Feiyun Pavilion under the action of extreme
traffic loading and evaluate its structural safety according to the prediction results, we
performed the excitation test of heavy−duty trucks (the vehicle’s weight is 40 tons) on a
road similar to the Houtu road. The acceleration data (horizontal north−south, horizontal
east−west, and vertical components) were collected at the vibration source replacement
point when the vehicle speeds are 30, 40, and 50 km/h. The sampling frequency is 512 Hz
and the recording time period is 30 s. The horizontal east−west acceleration data at the
vibration source replacement point have been plotted in Figure 19.
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Figure 20. Predicted acceleration time−history of the third floor measuring point (D−P2) under the 

heavy−duty truck (horizontal east−west direction): (a) third floor measuring point (D−P2) accelera-
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Figure 19. The acceleration of the vibration source replacement point (horizontal east−west direction).

According to the “Technical specifications for protection of historic buildings against
man−made vibration” [23], the allowable vibration of ancient structures should be con-
trolled by the horizontal vibration velocity at the highest point of the structure. Therefore,
the limit of horizontal vibration velocity at the highest point of the Feiyun Pavilion is
0.18 mm/s.

According to the proposed vibration prediction method, the vibration acceleration of
third floor measuring point (D−P2) caused by a heavy−duty truck can be obtained, based
on the amplitude−RTR and RMS−RTR (Figure 20). The predicted vibration velocity of third
floor measuring point (Figure 21) was obtained by integrating the predicted acceleration
data in the frequency−domain. The maximum predicted vibration velocity of the third
floor measuring point have been provided in Table 3.
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Figure 20. Predicted acceleration time−history of the third floor measuring point (D−P2) under the 
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Figure 20. Predicted acceleration time−history of the third floor measuring point (D−P2) under
the heavy−duty truck (horizontal east−west direction): (a) third floor measuring point (D−P2)
acceleration time−history prediction based on the amplitude−RTR; and (b) third floor measuring
point (D−P2) acceleration time−history prediction based on the RMS−RTR.
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Figure 21. Predicted velocity time−history of the third floor measuring point (D−P2) under the
heavy−duty truck (horizontal east−west direction): (a) third floor measuring point (D−P2) vibration
velocity time−history prediction based on the amplitude−RTR; and (b) third floor measuring point
(D−P2) vibration velocity time−history prediction based on the RMS−RTR.

Table 3. The maximum predicted vibration velocity of the third floor measuring point (D−P2) under
the action of heavy−duty trucks.

Vehicle Speed (km/h)

The Maximum of Vibration Velocity Based on
Amplitude−RTR

The Maximum of Vibration Velocity Based on
RMS−RTR

East−West Direction
(mm/s)

North−South
Direction (mm/s)

East−West Direction
(mm/s)

North−South
Direction (mm/s)

30 0.12 0.30 0.14 0.31
40 0.23 0.69 0.27 0.75
50 0.24 2.03 0.28 2.13

The calculation results revealed in Table 3 show that even when the heavy−duty truck
passes through the Feiyun pavilion at a minimum test speed of 30 km/h, the structural
vibration has exceeded the specification limit, which will pose a threat to its structural
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safety. Therefore, it is suggested to limit the type and speed of vehicles in the Feiyun
Pavilion areas for protecting the ancient wooden structures.

5. Conclusions

(1) The multipoint RTR was derived, and showed that the RTR function is the inherent
property of the structure and does not alter with excitation load energy and frequency;

(2) Based on the RTR function, a vibration prediction method suitable for the ancient
wooden structures subjected to traffic−induced vibration was proposed. By compar-
ing with the measured data, the prediction results represented a good accuracy in
both the time and frequency domains;

(3) The structural vibration of the Feiyun Pavilion due to extreme traffic loads was
predicted, and the corresponding structural safety was evaluated according to the
“Technical specifications for protection of historic buildings against man−made vibra-
tion”. The calculation results reveal that in the Feiyun Pavilion area, it is necessary to
restrict the type and speed of vehicles to protect the ancient wooden structures from
traffic−induced vibrations.
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