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Abstract: We experimentally explore the relation between spectral linewidth and RIN transfer in
half-open cavity random distributed feedback Raman lasers, demonstrating for the first time the
possibility of adjusting the pump-to-signal RIN transfer intensity and cut-off frequency by using
spectral filtering in the reflector section. We apply this approach to a 50-km laser system, operating in
the C-Band, reliant on a standard single-mode fiber. We obtained a minimum bandwidth of 13 pm,
which translates into a visible RIN cut-off at 800 MHz.

Keywords: laser; fiber; distributed feedback; Raman effect; RIN transfer; random distributed feedback
fiber lasers

1. Introduction

Random distributed feedback fiber lasers (RDFLs), based on distributed Rayleigh
scattering, represent a particular case of random lasing that has been thoroughly investi-
gated in the last decade, given their unique features [1] and broad range of applications. In
random distributed feedback lasers, in contrast to the usual localized reflectors present in
closed-cavity lasers, the system includes one or more random reflectors in which the light
is randomly back-scattered. Because of this, the properties of the random lasers differ sig-
nificantly from conventional schemes [2]. Several approaches can be employed to provide
this random reflection, but in the case of fiber lasers, randomly distributed feedback can be
provided by the fiber’s own Rayleigh backscattering. This effect is inherently present in
fiber optics, but it is usually weak for short fiber lengths. However, in a laser comprised of
a long enough length of a standard low-loss single-mode fiber (usually a few tens of kilo-
meters), and in the presence of distributed gain, it is relatively simple to design a system in
which random backscattering dominates over roundtrip reflections [3], leading to random,
modeless lasing. Such devices are known as random distributed feedback fiber lasers. Since
distributed feedback in low-loss communication fibers is weak, even for spans of tens of
kilometers, high amplification ratios are required in order to reach the lasing threshold.
Raman amplification is a widespread solution given its distributed nature and the fact that
it can be applied to any conventional optical fiber; however, other approaches, such as the
use of doped fibers [4], Brillouin amplification [5], or a combination of all of them, also can
be used [6] to achieve efficient lasing. Raman-based RDFLs offer stable stimulated emission
in a spectral band of few nanometers, but this spectral behavior can be tailored to create
multi-wavelength sources with linewidths of few picometers [7]. RDFLs offer many other
interesting features, such as broad tunability, high output power and efficiency, multiple
open and half-open design possibilities, the ability to be internally modulated without
frequency restrictions, and the expected random lasing modeless behavior [8,9]. These
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properties can be exploited in several applications, such as long-range sensing, where RD-
FLs have been used as light source for the interrogation of time, wavelength, and coherence
division multiplexing networks, at distances of up to 290 km [10]. RDFLs also offer great
potential for amplification in long-range communications, although in this regard some
key aspects, such as the generation and transmission of relative intensity noise (RIN), have
yet to be fully studied. Some of the most relevant studies of RIN transfer in RDFLs [11,12]
showed the influence of pump power and fiber characteristics on the frequency-dependent
RIN transfer function and shed some light about the differences between RIN transfer
in mode-dominated ultra-long lasing and random distributed feedback regimes. In ad-
dition, the RIN transfer and noise intensity level are becoming relevant for high-power
multiple-order Raman distributed feedback lasers using short fibers [13–16]. Furthermore,
some of this previous work [17] allowed us to theoretically predict that, in some particular
configurations, the maximum RIN transfer in RDFLs, which typically happens at low mod-
ulation frequencies, could be dampened, leading to an anomalous RIN transfer profile in
which pump intensity noise is transferred efficiently only to a mid-frequency band, which
could help to reduce noise impairments in telecommunications and sensing. More recently,
we demonstrated this effect experimentally on different RDFL configurations [18,19]. In
this manuscript, we set out to improve our understanding of RDFLs by experimentally
exploring, for the first time, the impact of spectral linewidth control on RIN generation
and transfer, as well as the output laser characteristics. The results will prove extremely
useful in the design of optimized RDFLs with tunable RIN characteristics, improving their
applicability in a variety of areas

2. Materials and Methods

Our random distributed feedback Raman fiber laser setup is based on a forward-
pumped topology (please refer to schematic on Figure 1). The cavity is formed by a
50 km-long single-mode fiber (SMF) in which the Rayleigh backscattering acts as a weak
distributed mirror, and a recirculating system based on a circulator and a programmable
filter waveshaper (Finisar, WS 1000S), which allows us to control both the RDFL wavelength
and linewidth. Two wavelength division multiplexers (WDMs) are located on each side of
the 50 km span, one for injecting the pump laser at 1445 nm (IPG Photonics, RLD-5K-1445)
and the other for removing the residual pump at the end output. A 90:10 coupler is used
for extracting 10% of the signal at the header-output feedback loop. A fiber isolator placed
at the end-fiber output is used to avoid reflection.
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Figure 1. Schematic of the RDFL setup (PF: programmable filter; WDM: wavelength division
multiplexer; ISO: isolator).

In order to accurately characterize RIN in our system, we combined low- and high-
frequency detection systems. For low frequencies, ranging from 10 Hz to 1 MHz, a low-noise
custom-made photodetector (10 MHz bandwidth) and a vector signal analyzer (FFT Agilent
89410A) were used. On the other hand, for high frequencies, a fast photodetector with a
6 GHz bandwidth (DSC 100S) and a spectrum analyzer (R&S FSP30) were employed. Both
systems were calibrated and compared, showing an offset of about 2 dB, consistent with
both the detection system and the analyzers’ calibration errors. Having more than a one-
decade spectrum overlap between the two detection systems allows for offset removing.
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Finally, an optical spectrum analyzer (OSA, Advantest Q8384) with 0.01 nm resolution was
used for monitoring the laser spectra.

3. Results and Discussion

To determine the relationship between the programmable filter bandwidth (BW) and
the actual output linewidth of the RDFL, a characterization was carried out for a pump
power of 2 W. Figure 2 shows that the linewidth of the RDFL remains constant around
1.2 nm for filter BWs over 3 nm. This was expected since the characteristic BW of this RDFL
without any filtering is about 2.2 nm. Figure 2 (inset) depicts the spectral evolution of the
end-fiber output. The broadening effect seen in the base of the spectra can be attributed
mainly to nonlinear wave turbulence, as reported before in RDFL [20] and ultra-long
Raman fiber lasers [21].
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Figure 2. Laser linewidth evolution at end-fiber (black) and header (red), depending on the pro-
grammable filter bandwidth selection. (Inset) Spectra at the end-fiber output measured at OSA
(resolution 0.01 nm) for different filter BWs.

The measured RIN of the RDFL and the pump, for a 0.3 nm filter BW and 2 W pump
power, is depicted in Figure 3. The RDFL output powers were 5 mW and 140 mW at the
header and end-fiber outputs, respectively. The noise at the end-fiber output is higher than
at the header for frequencies above 40 kHz, due to the additional pump noise transfer
taking place in the co-propagated configuration of the laser. The RIN at the fiber-end output
is also higher than the pump RIN from 30 kHz to 100 MHz, which denotes amplification
of the noise transferred by the pump. Please note that the roll-off at 3 GHz is due to the
detection system. A peak also can be seen around 7 kHz in the end-fiber output due to
the residual Raman fiber laser pump. The end-fiber output of the fiber also displays a RIN
reduction in the lower frequency range, caused by the triple interaction between the Raman
pump and the two co-propagating generated signals, as shown in [19].
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Figure 3. RIN measurements of the RDFL at the end-fiber (red) and header (black) outputs, and the
RIN of the pump (green), for a 0.3 nm BW and 2 W pump power.

The correlation between the RIN and RDFL linewidth was studied by measuring the
RIN for different bandwidths set in the programmable filter. Figure 4 shows the evolution
of the RIN in both the header and end-fiber outputs for a variety of filter bandwidths.
For this comparison, it is important to point out that each filter bandwidth generates a
different laser linewidth for the header and end-fiber outputs. This effect is greater for
narrow filters [7] and is also evidenced in Figure 2. As can be readily seen, the RIN of the
laser increases for narrower linewidths.

When the linewidth of the laser is reduced, the total power is confined to a narrower
band; therefore, its power spectral density is increased. This leads to a RIN increase that
can be seen in Figure 4 for frequencies above 10 kHz for the header output and above
100 MHz in the case of the end-fiber output. A clearer way to see this effect is by comparing
the evolution of noise transfer at a fixed frequency of 1 GHz (Figure 5), unaffected by the
additional pump noise transfer, and before the roll-off due to the detection bandwidth.

Since the linewidth of the RDFL is broader than the bandwidth of the detection system,
it is not possible with the initially proposed configuration to completely ascertain what
dependence the RIN transfer function has on a further reduction in the laser spectral
bandwidth, which should translate into a parallel filtering out of higher frequency signal
modulation, and hence a drop in higher frequency RIN transfer. In order to verify this
point, we modified the setup to generate a RDFL with a linewidth that fits into the detection
bandwidth. A phase-shift fiber Bragg grating (PS-FBG) with a bandwidth of ∼7 pm was
included after the programmable filter, as in [7]. Using this configuration, we achieved a
narrow RDFL with a linewidth of only 13 pm (Figure 6 inset), measured using a Brillouin
optical spectrum analyzer (BOSA OPT100 Aragon Photonics) with a resolution of 0.08 pm.
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As shown in Figure 6, the RIN exhibits a roll-off around 800 MHz, corresponding to
the half-linewidth (6.5 pm) of the laser, measured at the BOSA, confirming the expected
impact on the RIN transfer function.

Please note that our results are fully consistent with previous observations [14,15] of
increased laser spectral purity through the use of low-RIN pumping. More specifically,
they represent evidence of the mirror phenomenon; that is, experimental demonstration of
the possibility of reducing the output RIN in in RDFLs at high frequencies by reducing the
bandwidth of the laser.
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This effect can be easily understood by considering the nature of RIN, which effec-
tively can be seen as a random amplitude modulation of the laser output. The minimum
bandwidth of an amplitude modulated signal is given by twice the value of the modu-
lation frequency. Hence, by reducing the spectral bandwidth, we are filtering out those
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oscillations with a modulation frequency higher than the half linewidth of our laser. This
bandwidth limitation on RIN frequencies is not commonly observed in fiber lasers, since
these sources generally present broad spectra, and thus the corresponding RIN cut-off
frequency due to the laser linewidth is typically much higher than that imposed by the
dispersion-induced walk-off between the pump and the signal.

The filtering effect is, on the other hand, clearly observable in our system: since the
laser linewidth was reduced to 13 pm (approximately 1600 MHz), RIN transfer rolls off at
precisely half this linewidth; that is, 800 MHz.

In other words, we can eliminate RIN transfer at high frequencies in RDFLs by acting
directly on the output laser bandwidth through filtering techniques. This approach can be
combined with the design considerations described in [19] to further reduce the overall
impact of RIN transfer in RDFLs relying on standard, inherently noisy laser pumps.

4. Conclusions

The dependence of output RIN transfer on laser linewidth in ultralong RDFLs and
the possibility of effecting control on the RIN intensity and its cut-off frequency through
the use of spectral filtering were demonstrated for the first time. To achieve this, we have
experimentally characterized the output RIN of a variable laser linewidth RDFL based on a
single-arm, 50-km standard single-mode fiber, operating in the C-Band, with a forward-
pumping topology, in which the wavelength and linewidth selection of the laser were
adjusted by using a combination of programmable filter and a phase-shift grating filter in a
loop mirror configuration.

For our lowest available filter bandwidth of 7 pm, a minimum RDFL output bandwidth
of 13 pm was achieved, associated with a RIN cut-off frequency of 800 MHz. The obtained
results open up new possibilities for the design of RIN-optimized RDFLs for specific
applications with the appropriate choice of reflector bandwidth (e.g., through the use of an
optimal fiber Bragg grating), or the implementation of flexible setups with variable filters.
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